
Introduction to Diophantine methods Michel Waldschmidt
http://www.math.jussieu.fr/∼miw/coursHCMUNS2007.html

Fourth course: september 18, 2007. 6

Let n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1 and

T (X) = (X − n0 − 1)(X − n0 − 2) · · · (X −N).

Since T is monic of degree n1 with integer coefficients, it follows from the dif-
ferential equation of the exponential function

δ(ez) = zez

that there is a polynomial B ∈ Z[z], which is monic of degree n1, such that
T (δ)ez = B(z)ez.

Set

A(z) =
n0∑
k=0

T (k)
zk

k!
and R(z) =

∑
k≥N+1

T (k)
zk

k!
·

Then
B(z)ez = A(z) +R(z),

where A is a polynomial with rational coefficients of degree n0 and leading
coefficient

T (n0)
n0!

= (−1)n1
n1!
n0!
·

Also the analytic function R has a zero of multiplicity ≥ N + 1 at the origin.
We can explicit these formulae for A and R. For 0 ≤ k ≤ n0 we have

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N)
= (−1)n1(N − k) · · · (n0 + 2− k)(n0 + 1− k)

= (−1)n1
(N − k)!
(n0 − k)!

·

For k ≥ N + 1 we write in a similar way

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N) =
(k − n0 − 1)!
(k −N − 1)!

·

Hence we have proved:
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Proposition 1.20 (Hermite’s formulae for the exponential function). Let n0 ≥
0, n1 ≥ 0 be two integers. Define N = n0 + n1. Set

A(z) = (−1)n1

n0∑
k=0

(N − k)!
(n0 − k)!k!

· zk and R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!

· zk.

Finally, define B ∈ Z[z] by the condition

(δ − n0 + 1)(δ − n0 + 2) · · · (δ −N)ez = B(z)ez.

Then
B(z)ez = A(z) +R(z).

Further, B is a monic polynomial with integer coefficients of degree n1, A
is a polynomial with rational coefficients of degree n0 and leading coefficient
(−1)n1n1!/n0!, and the analytic function R has a zero of multiplicity N + 1 at
the origin.
Furthermore, if n1 ≥ n0, then the coefficients of A are integers.

Proof. It remains only to check the last assertion on the integrality of the coeffi-
cients of A for n1 ≥ n0. Indeed when n1 ≥ n0 each coefficient of the polynomial
A is an integral multiple of a binomial coefficient:

(N − k)!
(n0 − k)!k!

= (N − k)(N − k − 1) · · · (n0 + 1) · n0!
(n0 − k)!k!

for 0 ≤ k ≤ n0. Hence A ∈ Z[z].

We now restrict to the case n0 = n1 and we set n = n0 = n1. We write also

Tn(z) = (z − n− 1)(z − n− 2) · · · (z − 2n)

and we denote by An, Bn and Rn the Hermite polynomials and the remainder
in Hermite’s Proposition 1.20.

Remark. For n1 < n0 the leading coefficient of A is not an integer, but the
polynomial n0!A always has integer coefficients.

Lemma 1.21. Let z ∈ C. Then

|Rn(z)| ≤ |z|
2n+1

n!
e|z|.

In particular the sequence (Rn(z))n≥0 tends to 0 as n tends to infinity.

Proof. We have

Rn(z) =
∑

k≥2n+1

(k − n− 1)!
(k − 2n− 1)!k!

· zk =
∑
`≥0

(`+ n)!
(`+ 2n+ 1)!

· |z|
`+2n+1

`!
·
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The trivial upper bound

n+∏̀
j=n+1

j ≤
n+∏̀
j=n+1

(j + n+ 1)

is equivalent to
(`+ n)!

(`+ 2n+ 1)!
≤ n!

(2n+ 1)!
,

hence

|Rn(z)| ≤ n!|z|2n+1

(2n+ 1)!

∑
`≥0

|z|`

`!
·

We bound n!/(2n+ 1)! by n!: Lemma 1.21 follows.

We are now able to complete the proof of the irrationality of er for ∈ Q,
r 6= 0.

Let r = a/b be a non-zero rational number. Assume first r is positive. Set
s = er and replace z by a = br in the previous formulae; we deduce

Bn(a)sb −An(a) = Rn(a).

All coefficients in Rn are positive, hence Rn(a) > 0. Therefore Bn(a)sb −
An(a) 6= 0. Since Rn(a) tends to 0 when n tends to infinity and since Bn(a)
and An(a) are rational integers, we may use the implication (ii)⇒(i) in Lemma
1.6: we deduce that the number sb is irrational. As we already saw this readily
implies that s = er and s−1 = e−r are irrational.

1.4.2 Irrationality of π

The proof of the irrationality of log s for s a positive rational number given in
§ 1.4.1 can be extended to the case s = −1 in such a way that one deduces the
irrationality of the number π (this result was first proved by H. Lambert in 1761
[5], using continued fraction expansion for the tangent function).

Assume π is a rational number, π = a/b. Substitute z = ia = iπb in the
previous formulae. Notice that ez = (−1)b:

Bn(ia)(−1)b −An(ia) = Rn(ia),

and that the two complex numbers An(ia) and Bn(ia) are in Z[i]. The left hand
side is in Z[i], the right hand side tends to 0 as n tends to infinity, hence both
sides are 0.

In the proof of § 1.4.1 we used the positivity of the coefficients of Rn and
we deduced that Rn(a) was not 0 (this is the so-called “zero estimate” in tran-
scendental number theory). Here we need another argument.

The last step of the proof of the irrationality of π is achieved by using two
consecutive indices n and n+ 1. We eliminate ez among the two relations

Bn(z)ez −An(z) = Rn(z) and Bn+1(z)ez −An+1(z) = Rn+1(z).
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We deduce that the polynomial

∆n = BnAn+1 −Bn+1An (1.22)

can be written
∆n = −BnRn+1 +Bn+1Rn. (1.23)

As we have seen, the polynomial Bn is monic of degree n; the polynomial An
also has degree n, its highest degree term is (−1)nzn. It follows from (1.22) that
∆n is a polynomial of degree 2n+ 1 and highest degree term (−1)n2z2n+1. On
the other hand since Rn has a zero of multiplicity at least 2n + 1, the relation
(1.23) shows that it is the same for ∆n. Consequently

∆n(z) = (−1)n2z2n+1.

We deduce that ∆n does not vanish outside 0. From (1.23) we deduce that Rn
and Rn+1 have no common zero apart from 0. This completes the proof of the
irrationality of π.

1.4.3 Hermite’s integral formula for the remainder

For h ≥ 0, the h-th derivative DhR(z) of the remainder in Proposition 2.8 is
given by

DhR(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!

· zk−h

(k − h)!
·

In particular for h = n0 + 1 the formula becomes

Dn0+1R =
∑

k≥N+1

zk−n0−1

(k −N − 1)!
= zn1ez. (1.24)

This relations determines R since R has a zero of multiplicity ≥ n0 + 1 at the
origin. When we restrict the operator of D = d/dz to the functions vanishing
at the origin, it has an inverse which is the operator J defined by

J(ϕ) =
∫ z

0

ϕ(t)dt.

Following [4], we can compute the iterates of J :

Lemma 1.25. For n ≥ 0,

Jn+1ϕ =
1
n!

∫ z

0

(z − t)nϕ(t)dt.

Proof. The formula is valid for n = 0. We first check it for n = 1. The derivative
of the function ∫ z

0

(z − t)ϕ(t)dt = z

∫ z

0

ϕ(t)dt−
∫ z

0

tϕ(t)dt
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is ∫ z

0

ϕ(t)dt+ zϕ(z)− zϕ(z) =
∫ z

0

ϕ(t)dt.

We now proceed by induction. The derivative of the function of z

1
n!

∫ z

0

(z − t)nϕ(t)dt =
n∑
k=0

(−1)n−k

k!(n− k)!
· zk

∫ z

0

tn−kϕ(t)dt

is
n∑
k=0

(−1)n−k

k!(n− k)!

(
kzk−1

∫ z

0

tn−kϕ(t)dt+ znϕ(z)
)
.

Since
n∑
k=0

(−1)n−k

k!(n− k)!
= 0,

the right hand side is nothing else than

n∑
k=1

(−1)n−k

(k − 1)!(n− k)!
· zk−1

∫ z

0

tn−kϕ(t)dt =
1

(n− 1)!

∫ z

0

(z − t)n−1ϕ(t)dt.

From (1.24) and 1.25 it plainly follows:

Lemma 1.26. The remainder R(z) in Hermite’s fomula with parameters n0

and n1 is given by

R(z) =
1
n0!

∫ z

0

(z − t)n0tn1etdt.

1.4.4 Hermite’s identity

The next formula is one of the many disguises of Hermite’s identity.

Lemma 1.27. Let f be a polynomial of degree ≤ N . Define

F = f +Df +D2 + · · ·+DNf.

Then for z ∈ C ∫ z

0

e−tf(t)dt = F (0)− e−zF (z).

We can also write the definition of F as

F = (1−D)−1f where (1−D)−1 =
∑
k≥0

Dk.

The series in the right hand side is infinite, but when we apply the operator to a
polynomial only finitely many Dkf are not 0: when f is a polynomial of degree
≤ N then Dkf = 0 for k > N .
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Proof. More generally, if f is a complex function which is analytic at the origin
and N is a positive integer, if we set

F = f +Df +D2 + · · ·+DNf,

then the derivative of e−tF (t) is −e−tf(t) + e−tDN+1f(t).

We shall come back to such formulae in section § 2.1.3.

2 Transcendence

2.1 Hermite’s Method

In 1873 C. Hermite [2] proved that the number e is transcendental. In his paper
he explains in a very clear way how he found his proof. He starts with an
analogy between simultaneous diophantine approximation of real numbers on
the one hand and analytic complex functions of one variable on the other. He
first solves the analytic problem by constructing explicitly what is now called
Padé approximants for the exponential function. In fact there are two types of
such approximants, they are now called type I and type II, and what Hermite
did in 1873 was to compute Padé approximants of type II. He also found those
of type I in 1873 and studied them later in 1893. K. Mahler was the first in the
mid’s 1930 to relate the properties of the two types of Padé’s approximants and
to use those of type I in order to get a new proof of Hermite’s transcendence
Theorem (and also of the generalisation by Lindemann and Weierstraß as well
as quantitative refinements). See [1] Chap. 2 § 3.

In the analogy with number theory, Padé approximants of type II are related
with the simultaneous approximation of real numbers ϑ1, . . . , ϑm by rational
numbers pi/q with the same denominator q (one does not require that the
fractions are irreducible), which means that we wish to bound from below

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣
in terms of q, while type I is related with the study of lower bounds for linear
combinations

|a0 + a1ϑ1 + · · ·+ amϑm|

when a0, . . . , am are rational integers, not all of which are 0, in terms of the
number max0≤i≤m |ai|.

After Hermite’s seminal work, F. Lindemann was able to extend the argu-
ment and to prove the transcendence of π (hence he solved the old greek problem
of the quadrature of the circle: it is not possible using ruler and compass to draw
a square and a circle having the same area). This extension led to the so-called
Hermite-Lindemann’s Theorem:

Theorem 2.1 (Hermite–Lindemann). Let α be a non zero complex algebraic
number. Let logα be any non-zero logarithm of α. Then logα is transcendental.
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Equivalently, let β be a non-zero algebraic number. Then eβ is transcenden-
tal.

Recall that any non-zero complex number z has complex logarithms: these
are the solutions ` ∈ C of the equation e` = z. If ` is one of them, then all
solutions ` to this equation e` = z are `+ 2ikπ with k ∈ Z. The only non-zero
complex of which 0 is a logarithm is 1.

The equivalence between both statements in Theorem 2.1 is easily seen by
setting eβ = α: one can phrase the result by saying that for any non-zero
complex number β, one at least of the two numbers β, eβ is transcendental.

After the proofs by Hermite and Lindemann, a number of authors in the XIX-
th century worked out variants of the argument. The main goal was apparently
to get the shorter possible proof, and most often the reason for which it works
is by no means so clear as in Hermite’s original version. One can find in the
literature such short proofs (see for instance [3]), the connexion with Hermite’s
arguments are most often not so transparent. So we shall come back to the
origin and try to explain what is going on.

We concentrate now on Hermite’s proof for the transcendence of e. The
goal is to prove that for any positive integer m, the numbers 1, e, e2, . . . , em are
linearly independent over Q.

2.1.1 Criterion of linear independence

We first state a criterion for linear independence. This is a generalisation (from
personal notes of Michel Laurent after a course he gave in Marseille) of one
of the previous criteria for irrationality, namely Lemma 1.18. Most often in
mathematics there is sort of an entropy: when a statement provides a necessary
and sufficient condition, and when one of the two implication is easy while the
other requires more work, then it is the difficult part which is most useful. Here
we have a counterexample to this claim (which does not belong to mathematics
but rather to social science): in the criterion 2.2 below, one of the implications
is easy while the other is deeper; but it turns out that it is the easy one which is
required in transcendence proofs. So we state the statement and prove the easy
part now, we postpone the reverse to a later section where we introduce some
tools from geometry of numbers and give further consequences of these tools.

Let ϑ1, . . . , ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. Our goal is to prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.
The idea is to approximate simultaneously ϑ1, . . . , ϑm by rational numbers

p1/q, . . . , pm/q with the same denominator q > 0.
Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ k ≤ m set

εk = qϑk − pk.
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Then qL = M +R with

M = a0q + a1p1 + + · · ·+ amqm ∈ Z and R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.
One of the main difficulties is often to check M 6= 0. This question gives

rise to the so-called zero estimates or non-vanishing lemmas. In the present
situation, a solution is to construct not only one tuple (q, p1, . . . , pm) in Zm+1 \
{0}, but m+1 such tuples which are linearly independent. This yields m+1 pairs
(Mk, Rk), k = 0, . . . ,m in place of a single pair (M,R), and from (a0, . . . , am) 6=
0 one deduces that one at least of M0, . . . ,Mm is not 0.

It turns out that nothing is lossed by using such arguments: existence of
linearly independent simultaneous rational approximations for ϑ1, . . . , ϑm are
characteristic of linearly independent numbers 1, ϑ1, . . . , ϑm. As we just said
earlier, we shall use only the easy part of the next lemma 2.2, and we shall
prove the converse later.

Lemma 2.2. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following conditions are
equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0 there exist m+ 1 linearly independent elements b0, b1, . . . , bm
in Zm+1, say

bi = (qi, p1i, . . . , pmi), (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
, (0 ≤ i ≤ m). (2.3)

The condition on linear independence of the elements b0, b1, . . . , bm means
that the determinant ∣∣∣∣∣∣∣

q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not 0.

For 0 ≤ i ≤ m, set

ri =
(
p1i

qi
, . . . ,

pmi
qi

)
∈ Qm.

Further define, for x = (x1, . . . , xm) ∈ Rm

|x| = max
1≤i≤m

|xi|.

Also for x = (x1, . . . , xm) ∈ Rm and x = (x1, . . . , xm) ∈ Rm set

x− y = (x1 − y1, . . . , xm − ym),
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so that
|x− y| = max

1≤i≤m
|xi − yi|.

Then the relation (2.3) in Lemma 2.2 can be written

|ϑ− ri| ≤
ε

qi
, (0 ≤ i ≤ m).

We shall prove a more explicit version of (ii)⇒(i): we check that any tuple
(q, p1, . . . , pm) ∈ Zm+1 producing a tuple (p1/q, . . . , pm/q) ∈ Qm of sufficiently
good rational approximations to ϑ satisfies the same linear dependence relations
as 1, ϑ1, . . . , ϑm.

Lemma 2.4. Let ϑ1, . . . , ϑm be real numbers. Assume that the numbers 1, ϑ1, . . . , ϑm
are linearly dependent over Q: let a, b1, . . . , bm be rational integers, not all of
which are zero, satisfying

a+ b1ϑ1 + · · ·+ bmϑm = 0.

Let ε > 0 satisfy
∑m
k=1 |bk] > 1/ε. Assume further that (q, p1, . . . , pm) ∈ Zm+1

satisfies q > 0 and
max

1≤k≤m
|qϑk − pk| ≤ ε.

Then
aq + b1p1 + · · ·+ bmpm = 0.

Proof. In the relation

qa+
m∑
k=1

bkpk = −
m∑
k=1

bk(qϑk − pk),

the right hand side has absolute value less than 1 and the left hand side is a
rational integer, so it is 0.

Proof of (ii)⇒(i) in Lemma 2.2. By assumption (ii) we havem+1 linearly inde-
pendent elements bi ∈ Zm+1 such that the corresponding rational approximation
satisfy the assumptions of Lemma 2.4. For each non-zero linear form

aX0 + b1X1 + · · ·+ bmXm = 0

one at least of the L(bi) is not 0. Hence

a+ b1ϑ1 + · · ·+ bmϑm 6= 0.
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2.1.2 Padé approximants

Henri Eugène Padé (1863–1953), who was a student of Charles Hermite (1822–
1901), gave his name to the following objects.

Lemma 2.5. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let n0, n1, . . . , nm be non-negative integers. Set

N = n0 + n1 + · · ·+ nm.

Then there exists a tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the
following properties:
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree ≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x 7→ Q(x)fµ(x) − Pµ(x) has a zero at the
origin of multiplicity ≥ N + 1.

Definition. A tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the con-
dition of Lemma 2.5 is called a Padé system of the second type for (f1, . . . , fm)
attached to the parameters n0, n1, . . . , nm.

Proof. The polynomial Q of Lemma 2.5 should have degree ≤ N − n0, so we
have to find (or rather to prove the existence) its N − n0 + 1 coefficients, not
all being zero. We consider these coefficients as unknowns. The property we
require is that for 1 ≤ µ ≤ m, the Taylor expansion at the origin of Q(z)fµ(z)
has zero coefficients for zN−nµ+1, zN−nµ+1, . . . , zN . If this property holds for
1 ≤ µ ≤ m, we shall define Pµ by truncating the Taylor series at the origin of
Q(z)fµ(z) at the rank zN−nµ , hence Pµ will have degree ≤ N − nµ, while the
remainder Q(z)fµ(z)− Pµ(z) will have a mutiplicity ≥ N + 1 at the origin.

Now for each given µ the condition we stated amounts to require that our
unknowns (the coefficients of Q) satisfy nµ homogeneous linear relations, namely(

d

dx

)k
[Q(x)fµ(x)]x=0 = 0 for N − nµ < k ≤ N.

Therefore altogether we get n1+· · ·+nm = N−n0 homogeneous linear equations,
and since the number N − n0 + 1 of unknowns (the coefficients of Q) is larger,
linear algebra tells us that a non-trivial solution exists.

There is no unicity, because of the homogeneity of the problem: the set of
solutions (together with the trivial solution 0) is a vector space over C, and
Lemma 2.5 tells us that it has positive dimension. In the case where this di-
mension is 1 (which means that there is unicity up to a multiplicative factor),
the system of approximants is called perfect. An example is with m = 1 and
f(z) = ez, as shown by Hermite’s work.
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Exercise 2.6. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let d0, d1, . . . , dm be non-negative integers. Set

M = d0 + d1 + · · ·+ dm +m.

Show that there exists a tuple (A0, . . . , Am) of polynomials in C[X], not all of
which are zero, where Ai has degree ≤ di, such that the function

A0 +A1f1 + · · ·+Amfm

has a zero at the origin of multiplicity ≥M .
These are the Padé approximants of type I.

Most often it is not easy to find explicit solutions: we only know their exis-
tence. As we are going to show, Hermite succeeded to produce explicit solutions
for the systems of Padé approximants of the functions (ex, e2x, . . . , emx).
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