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2.1.3 Hermite’s identity

Let us come back to the problem which was considered in § 1.4.1 and solved by
Hermite (Proposition 1.20):

Given two integers n0 ≥ 0, n1 ≥ 0, find two polynomials A and B with A of
degree ≤ n0 and B of degree ≤ n1 such that the function R(z) = B(z)ez −A(z)
has a zero at the origin of multiplicity ≥ N + 1 with N = n0 + n1.

From § 1.4.3 one easily deduces that there is a non-trivial solution, and it
is unique if one requires B to be monic. Moreover B has degree n1 and R has
multiplicity exactly N + 1 at the origin.

Indeed, since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),

hence it is the product of ez with a polynomial of the same degree as the degree
of B and same leading coefficient. Now R has a zero at the origin of multiplicity
≥ n0 + n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1 at the origin.
Therefore Dn0+1R = czn1ez where c is the leading coefficient of B. Since
Dn0+1R has a zero of multiplicity exactly n1, it follows that R has a zero at the
origin of multiplicity exactly N + 1. Finally R is the unique function satisfying
Dn0+1R = czn1ez with a zero of multiplicity ≥ n0 at 0. According to Lemma
1.25, this implies that the unique solution R for which c = 1 is given by the
formula of Lemma 1.26:

R(z) =
1
n0!

∫ z

0

(z − t)n0tn1etdt.

Hence Padé system for the exponential function is perfect.
Our goal is to generalize these results.
Let f be a polynomial. Hermite’s Lemma 1.27 gives a formula for∫ z

0

e−tf(t)dt

for z ∈ C. A change of variables leads to a formula for∫ u

0

e−xtf(t)dt
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when x and u are complex numbers. Here, in place of using Lemma 1.27, we
repeat the proof. Integrate by part e−xtf(t) between 0 and u:∫ u

0

e−xtf(t)dt = −
[

1
x
e−xtf(t)

]u
0

+
1
x

∫ u

0

e−xtf ′(t)dt.

By induction we deduce∫ u

0

e−xtf(t)dt = −
m∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

+
1

xm+1

∫ u

0

e−xtDm+1f(t)dt.

Let N be an upper bound for the degree of f . For m = N the last integral
vanishes and∫ u

0

e−xtf(t)dt = −
N∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

=
N∑
k=0

1
xk+1

Dkf(0)− e−xu
N∑
k=0

1
xk+1

Dkf(u).

Multipling by xN+1eux yields:

Lemma 2.7. Let f be a polynomial of degree ≤ N and let x, u be complex
numbers. Then

exu
N∑
k=0

xN−kDkf(0) =
N∑
k=0

xN−kDkf(u) + xN+1exu
∫ u

0

e−xtf(t)dt.

With the notation of Lemma 2.7, the function

x 7→
∫ u

0

e−xtf(t)dt

is analytic at x = 0, hence its product with xN+1 has a mutiplicity ≥ N + 1 at
the origin. Moreover

Q(x) =
N∑
k=0

xN−kDkf(0) and P (x) =
N∑
k=0

xN−kDkf(u)

are polynomials in x.
If the polynomial f has a zero of multiplicity ≥ n0 at the origin, then Q has

degree ≤ N −n0. If the polynomial f has a zero of multiplicity ≥ n1 at u, then
P has degree ≤ N − n1.

For instance in the case u = 1, N = n0 + n1, f(t) = tn0(t − 1)n1 , the two
polynomials

Q(x) =
N∑

k=n0

xN−kDkf(0) and P (x) =
N∑

k=n1

xN−kDkf(1)
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satisfy the properties which were required in section §1.4.1 (see Proposition
1.20), namely R(z) = Q(z)ez −P (z) has a zero of multiplicity > n0 + n1 at the
origin, P has degree ≤ n0 and Q has degree ≤ n1.

Lemma 2.7 is a powerful tool to go much further.

Proposition 2.8. Let m be a positive integer, n0, . . . , nm be non-negative in-
tegers. Set N = n0 + · · · + nm. Define the polynomial f ∈ Z[t] of degree N
by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =
N∑

k=n0

xN−kDkf(0), Pµ(x) =
N∑

k=nµ

xN−kDkf(µ)

and
Rµ(x) = xN+1exµ

∫ µ

0

e−xtf(t)dt.

Then the polynomial Q has exact degree N − n0, while Pµ has exact degree
N − nµ, and Rµ is an analytic function having at the origin a multiplicity
≥ N + 1. Further, for 1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q,P1, . . . , Pm) is a Padé system of the second type for the m-tuple of
functions (ex, e2x, . . . , emx), attached to the parameters n0, n1, . . . , nm. Fur-
thermore, the polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have integral
coefficients.

These polynomials Q,P1, . . . , Pm are called the Hermite-Padé polynomials
attached to the parameters n0, n1, . . . , nm.

Proof. The coefficient of xN−n0 in the polynomial Q is Dn0f(0), so it is not
zero since f has mutiplicity exactly n0 at the origin. Similarly for 1 ≤ µ ≤ m
the coefficient of xN−nµ in Pµ is Dn0f(µ) 6= 0.

The assertion on the integrality of the coefficients follows from the next
lemma.

Lemma 2.9. Let f be a polynomial with integer coefficients and let k be a
non-negative integer. Then the polynomial (1/k!)Dkf has integer coefficients.

Proof. If f(X) =
∑
n≥0 anX

n then

1
k!
Dkf =

∑
n≥0

an

(
n

k

)
Xn with

(
n

k

)
=

n!
k!(n− k)!

,

and the binomial coefficients are rational integers.
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From Lemma 2.9 it follows that for any polynomial f ∈ Z[X] and for any
integers k and n with n ≥ k, the polynomial (1/k!)Dnf also belongs to Z[X].
This completes the proof of Proposition 2.8.

In order to complete the proof of the transcendence of e, we shall substitute
1 to x in the relations

Q(x)eµx = Pµ(x) +Rµ(x)

and deduce simultaneous rational approximations (p1/q, p2/q, . . . , pm/q) to the
numbers e, e2, . . . , em. In order to use Lemma 2.2, we need to have independent
such approximations. This is a subtle point which Hermite did not find easy
to overcome, according to his owns comments in [4]. The following approach is
due to K. Mahler, we can view it as an extension of the simple non-vanishing
argument used in § 1.4.2 for the irrationality of π.

We fix integers n0, . . . , n1, all ≥ 1. For j = 0, 1, . . . ,m we denote by
Qj , Pj1, . . . , Pjm the Hermite-Padé polynomials attached to the parameters

n0 − δj0, n1 − δj1, . . . , nm − δjm,

where δji is Kronecker’s symbol

δji =

{
1 if j = i,
0 if j 6= i.

These parameters are said to be contiguous to n0, n1, . . . , nm. They are the rows
of the matrix 

n0 − 1 n1 n2 · · · nm
n0 n1 − 1 n2 · · · nm
...

...
. . .

...
n0 n1 n2 · · · nm − 1

 .

Proposition 2.10. There exists a non-zero constant c such that the determi-
nant

∆(x) =

∣∣∣∣∣∣∣
Q0 P10 · · · Pm0

...
...

. . .
...

Qm P1m · · · Pmm

∣∣∣∣∣∣∣
is the monomial cxmN .

Proof. The matrix of degrees of the entries in the determinant defining ∆ is
N − n0 N − n1 − 1 · · · N − nm − 1

N − n0 − 1 N − n1 · · · N − nm − 1
...

...
. . .

...
N − n0 − 1 N − n1 − 1 · · · N − nm

 .
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Therefore ∆ is a polynomial of exact degree N−n0+N−n1+· · ·+N−nm = mN ,
the leading coefficient arising from the diagonal. This leading coefficient is
c = c0c1 · · · cm, where c0 is the leading coefficient of Q0 and cµ is the leading
coefficient of Pµµ, 1 ≤ µ ≤ m.

It remains to check that ∆ has a multiplicity at least mN at the origin.
Linear combinations of the columns yield

∆(x) =

∣∣∣∣∣∣∣
Q0 P10 − exQ0 · · · Pm0 − emxQ0

...
...

. . .
...

Qm P1m − exQm · · · Pmm − emxQm

∣∣∣∣∣∣∣ .
Each Pµj − eµxQj , 1 ≤ µ ≤ m, 0 ≤ j ≤ m, has multiplicity at least N at the
origin, because for each contiguous triple (1 ≤ j ≤ m) we have

m∑
i=0

(ni − δji) = n0 + n1 + · · ·+ nm − 1 = N − 1.

Looking at the multiplicity at the origin, we can write

∆(x) =

∣∣∣∣∣∣∣
Q0 O(xN ) · · · O(xN )
...

...
. . .

...
Qm O(xN ) · · · O(xN )

∣∣∣∣∣∣∣ .
This completes the proof of Proposition 2.10.

Now we fix a sufficiently large integer n and we use the previous results for
n0 = n1 = · · · = nm = n with N = (m + 1)n. We define, for 0 ≤ j ≤ m, the
integers qj , p1j , . . . , pnj by

n!qj = Qj(1), n!pµj = Pµj(1), (1 ≤ µ ≤ m).

Proposition 2.11. There exists a constant κ > 0 independent on n such that
for 1 ≤ µ ≤ m and 0 ≤ j ≤ m,

|qieµ − pµj | ≤
κn

n!
·

Further, the determinant ∣∣∣∣∣∣∣
q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not zero.

Proof. Recall Hermite’s formulae in Proposition 2.8:

Qj(x)eµx − Pµj(X) = xmneµx
∫ µ

0

e−xtfj(t)dt, (1 ≤ µ ≤ m, 0 ≤ j ≤ m),
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where

fj(t) = (t− j)−1
(
t(t− 1) · · · (t−m)

)n
= (t− j)n−1

∏
1≤i≤m
i6=j

(t− i)n.

We substitute 1 to x and we divide by n!:

qje
µ − pµj =

1
n!
(
Qj(1)eµ − Pµj(1)

)
=
eµ

n!

∫ µ

0

e−tfj(t)dt.

Now the integral is bounded from above by∫ µ

0

e−t|fj(t)|dt ≤ m sup
0≤t≤m

|fj(t)| ≤ m1+(m+1)n.

Finally the determinant in the statement of Proposition 2.11 is ∆(1)/n!m+1,
where ∆ is the determinant of Proposition 2.10. Hence it does not vanish since
∆(1) 6= 0.

Since κn/n! tends to 0 as n tends to infinity, we may apply the criterion
for linear independence Lemma 2.2. Therefore the numbers 1, e, e2, . . . , em are
linearly independent, and since this is true for all integers m, Hermite’s Theorem
on the transcendence of e follows.

2.2 Transcendental numbers: historical survey

We already stated Hermite’s Theorem on the transcendence of e, Lindemann’s
Theorem on the transcendence of π and Hermite-Lindemann’s Theorem on the
transcendence of logα and eβ for non-zero algebraic numbers α and β (with the
proviso logα 6= 0) – see Theorem 2.1. We complete the history of the theory in
the XIX-th century, and then discuss the development in the XX-th century.

References are [3] and [2].

2.2.1 Transcendental numbers before 1900: Liouville, Hermite, Lin-
demann, Weierstraß

The next corollary of Lemma 1.13 was proved by J. Liouville in 1844: this his
how he constructed the first examples of transcendental numbers. His first ex-
plicit examples were given by continued fractions, next he gave further examples
with series like

θa =
∑
n≥0

a−n! (2.12)

for any integer a ≥ 2.
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Lemma 2.13. For any algebraic number α, there exist two constants c and d
such that, for any rational number p/q 6= α,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·

It follows also from Lemma 1.13 that in Lemma 2.13, one can take for d the
degree of α (that is the degree of the minimal polynomial of α).

Exercise 2.14. Compute an explicit value for c in Lemma 2.13 when d the
degree of α.

Definition. A real number θ is a Liouville number if for any κ > 0 there exists
p/q ∈ Q with q ≥ 2 and

0 <
∣∣∣∣α− p

q

∣∣∣∣ ≤ c

qκ
·

It follows from Lemma 2.13 that Liouville numbers are transcendental. In
dynamical systems one says that an irrational real number satisfies a Diophan-
tine condition if is not Liouville: this means that there exists a constant κ > 0
such that, for any p/q ∈ Q with sufficiently large q,∣∣∣∣α− p

q

∣∣∣∣ > c

qκ
·

Let us check that the numbers (2.12) are Liouville numbers: let a ≥ 2 be an
integer and κ > 0 a real number. For sufficiently large N , set

q = aN !, p =
N∑
n=0

aN !−n!.

Then we have
0 < θa −

p

q
=
∑
k≥1

1
a(N+k)!−N !

·

For k ≥ 1 we use the crude estimate

(N + k)!−N ! ≥ N !N(N + 1) · (N + k − 1) ≥ N !
(
N + (k − 1)!

)
,

which yields
0 < θa −

p

q
≤ e

qN
·

We shall discuss the development of this topic in the next subsection.
After the contributions of Ch. Hermite in 1873, F. Lindemann in 1882 and

the Theorem of Hermite Lindemann 2.1, K. Weierstraß completed in 1888 the
proof of a claim by Lindemann:

Theorem 2.15 (Lindemann–Weierstraß – first form). Let α1, . . . , αm be alge-
braic numbers which are pairwise distinct: αi 6= αj for i 6= j. Then the numbers
eα1 , . . . , eαm are linearly independent over Q.
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It is easy to checked that Theorem 2.15 is equivalent to the next statement:

Theorem 2.16 (Lindemann–Weierstraß – second form). Let β1, . . . , βn be al-
gebraic numbers which are linearly independent over Q. Then the numbers
eβ1 , . . . , eβn are algebraically independent over Q.

Now the algebraic independence of complex numbers over Q is equivalent
to the algebraic independence over the field Q of algebraic numbers. Therefore
Theorem 2.15 is also equivalent to the next statement:

Theorem 2.17 (Lindemann–Weierstraß – third form). Let α1, . . . , αm be alge-
braic numbers which are pairwise distinct. Then the numbers eα1 , . . . , eαm are
linearly independent over Q.

This does not cover all the history of transcendental numbers in the XIX-th
Century. In particular the work of Cantor is another main contribution which
gave rise to many development in the XX-th Century.
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