Introduction to Diophantine methods Michel Waldschmidt http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Seventh course: september 24, 2007.⁹

2.2.3 Diophantine approximation and Diophantine Equations

There are deep connexions between diophantine approximation and Diophantine equations. In this section we show how continued fractions expansions are used for solving the equation:

$$x^2 - dy^2 = \pm 1 \tag{2.18}$$

(where the unknowns x, y are in \mathbb{Z}) which is named Pell's equation. Later we shall consider other examples.

There is a natural ordering among the solutions, by increasing x (or y, it amounts to the same). Since we are looking at positive solutions there is a smallest one, called the *fundamental solution*, say (x_1, y_1) .

From $x_1^2 - dy_1^2 = \pm 1$ it readily follows that the sequence of pairs of integers (x_n, y_n) defined by

$$x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^r$$

satisfies also $x_n - y_n \sqrt{d} = (x_1 - y_1 \sqrt{d})^n$ hence

$$x_n^2 - dy_n^2 = \pm 1.$$

If the fundamental solution has $x_1^2 - dy_1^2 = 1$, then all x_n , y_n also have $x_n^2 - dy_n^2 = 1$, while if $x_1^2 - dy_1^2 = -1$, then for all n we have $x_n^2 - dy_n^2 = (-1)^n$. In the second case (x_2, y_2) is the fundamental solution of the equation $x_1^2 - dy_1^2 = 1$.

Let us check that all solutions of the Pell's equation are the (x_n, y_n) with $n \ge 0$ (with n = 0 giving the trivial solution (1, 0)). Consider the following subset of \mathbb{R}^2 :

$$G = \{ (\log |x + y\sqrt{d}|, \log |x - y\sqrt{d}|) ; (x, y) \in \mathbb{Z}^2, \ x^2 - dy^2 = \pm 1 \}.$$

It is easily checked that G is an additive subgroup of \mathbb{R}^2 . This is due to the fact that the equation $x^2 - dy^2 = \pm 1$ can be written $(x + \sqrt{dy})(x - \sqrt{dy}) = \pm 1$, hence the solutions (x, y) form a multiplicative group with the law given by

$$(x + y\sqrt{d})(x' + y'\sqrt{d}) = xx' + dyy' + (xy' + x'y)\sqrt{d},$$

corresponding to the identity

$$(xx' + dyy')^2 - d(xy' + x'y)^2 = (x^2 - dy^2)({x'}^2 - d{y'}^2).$$

Now G is discrete in \mathbb{R}^2 : any compact subset of \mathbb{R}^2 contains only finitely many elements in G, because for each C > 0, if $(x, y) \in \mathbb{Z}^2$ satisfies $|x + y\sqrt{d}| \leq C$ and $|x - y\sqrt{d}| \leq C$, then |x| and |y| are bounded.

⁹Updated: October 12, 2007

Further G is contained in the one dimensional subspace $t_1 + t_2 = 0$ of \mathbb{R}^2 . A discrete subgroup in a real vector space of dimension 1 has rank ≤ 1 (see § 2.2.7). It easily follows that any solution $(x, y) \in \mathbb{Z}^2$ with x > 0 and $y \geq 0$ of Pell's equation satisfies $x + y\sqrt{d} = (x_1 + y_1\sqrt{d})^n$ for some $n \geq 0$.

Hence the problems remains to find the fundamental solution (x_1, y_1) . It turns out, as we shall see, that x_1 may be quite large without d being to large. But there is an efficient algorithm to solve the problem.

The connexion with Diophantine approximation arises from the following remark. If (x, y) is a solution, then $(x - \sqrt{d}y)(x + \sqrt{d}y) = 1$, hence x/y is a good rational approximation of \sqrt{d} and this approximation is sharper when x is larger. Hence a strategy for solving Pell's equation (2.18) is based on the continued fraction expansion of \sqrt{d} .

Let again d be a positive integer which is not a square. It is known that the continued fraction expansion

$$\sqrt{d} = [a_0; \overline{a_1, a_2, \ldots, a_k}]$$

of the square root of d > 0 has $a_0 = \sqrt{d}$ and $a_k = 2a_0$. Moreover

$$a_1, a_2, \ldots, a_{k-1}$$

is a *palindrome*: $a_i = a_{k-i}$ $(1 \le i \le k-1)$. The next proposition shows that the length k of the period is odd if and only if the Diophantine equation $x^2 - dy^2 = -1$ has a root in rational integers x, y.

Proposition 2.19. Let d be a positive which is not a square. Write

$$\sqrt{d} = [a_0; \ \overline{a_1, \ a_2, \ \dots, \ a_k}]$$

a) When k is even, the fundamental solution of the equation $x^2 - dy^2 = 1$ is given by

$$\frac{x_1}{y_1} = [a_0; a_1, a_2, \dots, a_{k-1}]$$

and there is no solution to the equation $x^2 - dy^2 = -1$. b) When k is odd, the fundamental solution to $x^2 - dy^2 = -1$ is given by

$$\frac{x_1}{y_1} = [a_0; a_1, a_2, \dots, a_{k-1}]$$

and the fundamental solution to $x^2 - dy^2 = 1$ is given by

$$\frac{x_2}{y_2} = [a_0; a_1, a_2, \ldots, a_{k-1}, a_k, a_1, a_2, \ldots, a_{k-1}].$$

The solutions (x_n, y_n) are obtained by a similar formula: writing A for the block $a_1, a_2, \ldots, a_{k-1}$,

$$\frac{x_n}{y_n} = [a_0; A, a_k, A, a_k, \dots, A, a_k, A]$$

where A occurs n times.

We consider numerical examples. The easiest Pell's equation is $x^2-2y^2 = -1$ with d = 2 and $\sqrt{2} = [1; \overline{2}]$. The fundamental solution is $(x_1, y_1) = (1, 1)$. For the equation $x^2 - 2y^2 = 1$ the fundamental solution is x = 3, y = 2, corresponding to the expansion

$$[1;2] = 1 + \frac{1}{2} = \frac{3}{2} \cdot$$

Here is another example due to Brahmagupta in 628:

$$x^2 - 92y^2 = 1.$$

Brahmagupta did not use continued fractions but a method of his own (called "cyclic method" — Chakravala — see [2]), and he found the fundamental solution which is x = 1151, y = 120:

$$1151^2 - 92 \cdot 120^2 = 1\,324\,801 - 1\,324\,800 = 1.$$

The continued fraction expansion of $\sqrt{92} = 9,591663046625\ldots$ is ¹⁰

$$\sqrt{92} = [9; \overline{1, 1, 2, 4, 2, 1, 1, 18}]$$

and the fundamental solution arises from

$$[9; 1, 1, 2, 4, 2, 1, 1] = \frac{1151}{120}$$

The next example is due to Bhaskara II in his work *Bijaganita* (1150): the fundamental solution to $x^2 - 61y^2 = 1$ is

 $x = 1\,766\,319\,049, \qquad y = 226\,153\,980.$

Here $\sqrt{61} = [7; \overline{1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}]$ and

$$[7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] = \frac{1\,766\,319\,049}{226\,153\,980}$$

The fundamental solution to $x^2 - 61y^2 = -1$ is obtained as follows:

$$[7; 1, 4, 3, 1, 2, 2, 1, 3, 5] = \frac{29\ 718}{3\ 805},$$

$$29\ 718^2 = 883\ 159\ 524, \quad 61 \cdot 3805^2 = 883\ 159\ 525.$$

A further example due to Narayana (14th Century) is $x^2 - 103y^2 = 1$ with the fundamental solution x = 227528, y = 22419. Indeed

 $227\,528^2 - 103 \cdot 22\,419^2 = 51\,768\,990\,784 - 51\,768\,990\,783 = 1.$

¹⁰Easy to compute using http://wims.unice.fr/wims/

$$\sqrt{103} = [10; \overline{6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20}]$$

$$[10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] = \frac{227528}{22419}$$

Fermat also knew how to solve Pell's equation $x^2 - dy^2 = 1$: he found the fundamental solution for d = 61 (Bhaskara's equation) as well as for d = 109:

 $x = 158070671986249, \quad y = 15140424455100.$

A Pell equation occurred already much earlier in the *Cattle problem* attributed to Archimedes. There are bulls and cows of different colors, the first part of the problem involves several unknowns and easy equations so solve:

$$B - \left(\frac{1}{2} + \frac{1}{3}\right)N = N - \left(\frac{1}{4} + \frac{1}{5}\right)X = X - \left(\frac{1}{6} + \frac{1}{7}\right)B = J.$$

Up to a factor, the solution is

and

B = 2226, N = 1602, X = 1580, J = 891.

The second part of the Cattle problem amounts to solving the Pell equation

$$x^2 - 4729494y^2 = 1.$$

A partial solution was given in 1880 by A. Amthor. The fundamental solution has been given in 1998 by Ilan Vardi in a simple explicit formula

$$\begin{bmatrix} \frac{25194541}{184119152} (109931986732829734979866232821433543901088049 + 50549485234315033074477819735540408986340\sqrt{4729494})^{4658} \end{bmatrix}$$

The size of the fundamental solution is $\simeq 10^{103275}$.

Pell-Fermat Diophantine equations occur in the construction of Riemannian varieties with negative curvature called *arithmetic varieties*. See [1].

We consider another connexion between Diophantine approximation and Diophantine equations which we shall expand in § 2.2.9. In 1909 A. Thue found a connection between Diophantine equation and refinements of Liouville's estimate. We restrict here on one specific example.

Liouville's estimate for the rational Diophantine approximation of $\sqrt[3]{2}$ is

$$\left|\sqrt[3]{2} - \frac{p}{q}\right| > \frac{1}{9q^3}$$

for sufficiently large q (use Lemma 1.13 with $P(X) = X^3 - 2$, $c = 3\sqrt[3]{2} < 9$). Thue was the first to achieve an improvement of the exponent 3. A explicit estimate was then obtained by A. Baker

$$\left| \sqrt[3]{2} - \frac{p}{q} \right| > \frac{1}{10^6 q^{2.955}}$$

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997 when M. Bennett proved that for any $p/q \in \mathbb{Q}$,

$$\left|\sqrt[3]{2} - \frac{p}{q}\right| \ge \frac{1}{4 \ q^{2,5}}.$$

From his result, Thue deduced that for any fixed $k \in \mathbb{Z} \setminus \{0\}$, there are only finitely many $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfying the Diophantine equation $x^3 - 2y^3 = k$. The result of Baker shows more precisely that if $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ is a solution to $x^3 - 2y^3 = k$, then

$$|x| \le 10^{137} |k|^{23}.$$

M. Bennett gave the sharper estimate: for any $(x, y) \in \mathbb{Z}^2$ with x > 0,

$$|x^3 - 2y^3| \ge \sqrt{x}.$$

The connexion between Diophantine approximation to $\sqrt[3]{2}$ and the Diophantine equation $x^3 - 2y^3 = k$ is explained in the next lemma.

Lemma 2.20. Let η be a positive real number. The two following properties are equivalent.

(i) There exists a constant $c_1 > 0$ such that, for any $p/q \in \mathbb{Q}$ with q > 0,

$$\left|\sqrt[3]{2} - \frac{p}{q}\right| > \frac{c_1}{q^{\eta}}$$

(ii) There exists a constant $c_2 > 0$ such that, for any $(x, y) \in \mathbb{Z}^2$ with x > 0,

$$|x^3 - 2y^3| \ge c_2 x^{3-\eta}.$$

Properties (i) and (ii) are true but uninteresting with $\eta \geq 3$. They are not true with $\eta < 2$. It is not expected that they are true with $\eta = 2$, but it is expected that they are true for any $\eta > 2$.

Proof. We assume $\eta < 3$, otherwise the result is trivial. Set $\alpha = \sqrt[3]{2}$.

Assume (i) and let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ have x > 0. Set $k = x^3 - 2y^3$. Since 2 is not the cube of a rational number we have $k \neq 0$. If y = 0 assertion (ii) plainly holds. So assume $y \neq 0$.

Write

$$x^{3} - 2y^{3} = (x - \alpha y)(x^{2} + \alpha xy + \alpha^{2}y^{2}).$$

The polynomial $X^2 + \alpha X + \alpha^2$ has negative discriminant $-3\alpha^2$, hence has a positive minimum $c_0 = 3\alpha^2/4$. Hence the value at (x, y) of the quadratic form $X^2 + \alpha XY + \alpha^2 Y^2$ is bounded form below by $c_0 y^2$. From (i) we deduce

$$|k| = |y|^3 \left| \sqrt[3]{2} - \frac{x}{y} \right| (x^2 + \alpha xy + \alpha^2 y^2) \ge \frac{c_1 c_0 |y|^3}{|y|^{\eta}} = c_3 |y|^{3-\eta}.$$

This gives an upper bound for |y|:

$$|y| \le c_4 |k|^{1/(3-\eta)}$$
, hence $|y^3| \le c_4 |k|^{3/(3-\eta)}$.

We want an upper bound for x: we use $x^3 = k + 2y^3$ and we bound |k| by $|k|^{3/(3-\eta)}$ since $3/(3-\eta) > 1$. Hence

$$x^3 \le c_5 |k|^{3/(3-\eta)}$$
 and $x^{3-\eta} \le c_6 |k|$

Conversely, assume (ii). Let p/q be a rational number. If p is not the nearest integer to $q\alpha$, then $|q\alpha - p| > 1/2$ and the estimate (i) is trivial. So we assume $|q\alpha - p| \leq 1/2$. We need only the weaker estimate $c_7q with some positive constants <math>c_7$ and c_8 , showing that we may replace p by q or q by p in our estimates, provided that we adjust the constants. From

$$p^{3} - 2q^{3} = (p - \alpha q)(p^{2} + \alpha pq + \alpha^{2}q^{2}),$$

using (ii), we deduce

$$c_2 p^{3-\eta} \le c_{10} q^3 \left| \alpha - \frac{p}{q} \right|,$$

and (i) easily follows.

References

- [1] N. BERGERON Sur la topologie de certains espaces provenant de constructions arithmétiques.
- [2] A. WEIL Number theory. An approach through history. From Hammurapi to Legendre, Birkhäuser Boston, Inc., Boston, Mass., (1984) 375 pp.