http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Seventh course: september 24, 2007. ${ }^{9}$

2.2.3 Diophantine approximation and Diophantine Equations

There are deep connexions between diophantine approximation and Diophantine equations. In this section we show how continued fractions expansions are used for solving the equation:

$$
\begin{equation*}
x^{2}-d y^{2}= \pm 1 \tag{2.18}
\end{equation*}
$$

(where the unknowns x, y are in \mathbb{Z}) which is named Pell's equation. Later we shall consider other examples.

There is a natural ordering among the solutions, by increasing x (or y, it amounts to the same). Since we are looking at positive solutions there is a smallest one, called the fundamental solution, say $\left(x_{1}, y_{1}\right)$.

From $x_{1}^{2}-d y_{1}^{2}= \pm 1$ it readily follows that the sequence of pairs of integers $\left(x_{n}, y_{n}\right)$ defined by

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}
$$

satisfies also $x_{n}-y_{n} \sqrt{d}=\left(x_{1}-y_{1} \sqrt{d}\right)^{n}$ hence

$$
x_{n}^{2}-d y_{n}^{2}= \pm 1
$$

If the fundamental solution has $x_{1}^{2}-d y_{1}^{2}=1$, then all x_{n}, y_{n} also have $x_{n}^{2}-d y_{n}^{2}=$ 1 , while if $x_{1}^{2}-d y_{1}^{2}=-1$, then for all n we have $x_{n}^{2}-d y_{n}^{2}=(-1)^{n}$. In the second case $\left(x_{2}, y_{2}\right)$ is the fundamental solution of the equation $x_{1}^{2}-d y_{1}^{2}=1$.

Let us check that all solutions of the Pell's equation are the $\left(x_{n}, y_{n}\right)$ with $n \geq 0$ (with $n=0$ giving the trivial solution (1,0)). Consider the following subset of \mathbb{R}^{2} :

$$
G=\left\{(\log |x+y \sqrt{d}|, \log |x-y \sqrt{d}|) ;(x, y) \in \mathbb{Z}^{2}, x^{2}-d y^{2}= \pm 1\right\}
$$

It is easily checked that G is an additive subgroup of \mathbb{R}^{2}. This is due to the fact that the equation $x^{2}-d y^{2}= \pm 1$ can be written $(x+\sqrt{d} y)(x-\sqrt{d} y)= \pm 1$, hence the solutions (x, y) form a multiplicative group with the law given by

$$
(x+y \sqrt{d})\left(x^{\prime}+y^{\prime} \sqrt{d}\right)=x x^{\prime}+d y y^{\prime}+\left(x y^{\prime}+x^{\prime} y\right) \sqrt{d}
$$

corresponding to the identity

$$
\left(x x^{\prime}+d y y^{\prime}\right)^{2}-d\left(x y^{\prime}+x^{\prime} y\right)^{2}=\left(x^{2}-d y^{2}\right)\left(x^{\prime 2}-d y^{\prime 2}\right) .
$$

Now G is discrete in \mathbb{R}^{2} : any compact subset of \mathbb{R}^{2} contains only finitely many elements in G, because for each $C>0$, if $(x, y) \in \mathbb{Z}^{2}$ satisfies $|x+y \sqrt{d}| \leq C$ and $|x-y \sqrt{d}| \leq C$, then $|x|$ and $|y|$ are bounded.

[^0]Further G is contained in the one dimensional subspace $t_{1}+t_{2}=0$ of \mathbb{R}^{2}. A discrete subgroup in a real vector space of dimension 1 has rank ≤ 1 (see $\S 2.2 .7)$. It easily follows that any solution $(x, y) \in \mathbb{Z}^{2}$ with $x>0$ and $y \geq 0$ of Pell's equation satisfies $x+y \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}$ for some $n \geq 0$.

Hence the problems remains to find the fundamental solution $\left(x_{1}, y_{1}\right)$. It turns out, as we shall see, that x_{1} may be quite large without d being to large. But there is an efficient algorithm to solve the problem.

The connexion with Diophantine approximation arises from the following remark. If (x, y) is a solution, then $(x-\sqrt{d} y)(x+\sqrt{d} y)=1$, hence x / y is a good rational approximation of \sqrt{d} and this approximation is sharper when x is larger. Hence a strategy for solving Pell's equation (2.18) is based on the continued fraction expansion of \sqrt{d}.

Let again d be a positive integer which is not a square. It is known that the continued fraction expansion

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1},}, a_{2}, \ldots, a_{k}\right]
$$

of the square root of $d>0$ has $a_{0}=[\sqrt{d}]$ and $a_{k}=2 a_{0}$. Moreover

$$
a_{1}, a_{2}, \ldots, a_{k-1}
$$

is a palindrome: $a_{i}=a_{k-i}(1 \leq i \leq k-1)$. The next proposition shows that the length k of the period is odd if and only if the Diophantine equation $x^{2}-d y^{2}=-1$ has a root in rational integers x, y.

Proposition 2.19. Let d be a positive which is not a square. Write

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{k}}\right]
$$

a) When k is even, the fundamental solution of the equation $x^{2}-d y^{2}=1$ is given by

$$
\frac{x_{1}}{y_{1}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]
$$

and there is no solution to the equation $x^{2}-d y^{2}=-1$.
b) When k is odd, the fundamental solution to $x^{2}-d y^{2}=-1$ is given by

$$
\frac{x_{1}}{y_{1}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]
$$

and the fundamental solution to $x^{2}-d y^{2}=1$ is given by

$$
\frac{x_{2}}{y_{2}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}, a_{1}, a_{2}, \ldots, a_{k-1}\right]
$$

The solutions $\left(x_{n}, y_{n}\right)$ are obtained by a similar formula: writing A for the block $a_{1}, a_{2}, \ldots, a_{k-1}$,

$$
\frac{x_{n}}{y_{n}}=\left[a_{0} ; A, a_{k}, A, a_{k}, \ldots, A, a_{k}, A\right]
$$

where A occurs n times.
We consider numerical examples. The easiest Pell's equation is $x^{2}-2 y^{2}=-1$ with $d=2$ and $\sqrt{2}=[1 ; \overline{2}]$. The fundamental solution is $\left(x_{1}, y_{1}\right)=(1,1)$. For the equation $x^{2}-2 y^{2}=1$ the fundamental solution is $x=3, y=2$, corresponding to the expansion

$$
[1 ; 2]=1+\frac{1}{2}=\frac{3}{2}
$$

Here is another example due to Brahmagupta in 628:

$$
x^{2}-92 y^{2}=1
$$

Brahmagupta did not use continued fractions but a method of his own (called "cyclic method" - Chakravala - see [2]), and he found the fundamental solution which is $x=1151, y=120$:

$$
1151^{2}-92 \cdot 120^{2}=1324801-1324800=1
$$

The continued fraction expansion of $\sqrt{92}=9,591663046625 \ldots$ is ${ }^{10}$

$$
\sqrt{92}=[9 ; \overline{1,1,2,4,2,1,1,18}]
$$

and the fundamental solution arises from

$$
[9 ; 1,1,2,4,2,1,1]=\frac{1151}{120}
$$

The next example is due to Bhaskara II in his work Bijaganita (1150): the fundamental solution to $x^{2}-61 y^{2}=1$ is

$$
x=1766319049, \quad y=226153980
$$

Here $\sqrt{61}=[7 ; \overline{1,4,3,1,2,2,1,3,4,1,14}]$ and

$$
[7 ; 1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3,5]=\frac{1766319049}{226153980}
$$

The fundamental solution to $x^{2}-61 y^{2}=-1$ is obtained as follows:

$$
\begin{gathered}
{[7 ; 1,4,3,1,2,2,1,3,5]=\frac{29718}{3805}} \\
29718^{2}=883159524, \quad 61 \cdot 3805^{2}=883159525
\end{gathered}
$$

A further example due to Narayana (14th Century) is $x^{2}-103 y^{2}=1$ with the fundamental solution $x=227528, y=22$ 419. Indeed

$$
227528^{2}-103 \cdot 22419^{2}=51768990784-51768990783=1
$$

[^1]$$
\sqrt{103}=[10 ; \overline{6,1,2,1,1,9,1,1,2,1,6,20}]
$$
and
$$
[10 ; 6,1,2,1,1,9,1,1,2,1,6]=\frac{227528}{22419}
$$

Fermat also knew how to solve Pell's equation $x^{2}-d y^{2}=1$: he found the fundamental solution for $d=61$ (Bhaskara's equation) as well as for $d=109$:

$$
x=158070671986249, \quad y=15140424455100
$$

A Pell equation occurred already much earlier in the Cattle problem attributed to Archimedes. There are bulls and cows of different colors, the first part of the problem involves several unknowns and easy equations so solve:

$$
B-\left(\frac{1}{2}+\frac{1}{3}\right) N=N-\left(\frac{1}{4}+\frac{1}{5}\right) X=X-\left(\frac{1}{6}+\frac{1}{7}\right) B=J
$$

Up to a factor, the solution is

$$
B=2226, N=1602, \quad X=1580, \quad J=891
$$

The second part of the Cattle problem amounts to solving the Pell equation

$$
x^{2}-4729494 y^{2}=1
$$

A partial solution was given in 1880 by A. Amthor. The fundamental solution has been given in 1998 by Ilan Vardi in a simple explicit formula

$$
\begin{aligned}
& {\left[\frac{25194541}{184119152}(109931986732829734979866232821433543901088049+\right.} \\
& \left.50549485234315033074477819735540408986340 \sqrt{4729494})^{4658}\right]
\end{aligned}
$$

The size of the fundamental solution is $\simeq 10^{103275}$.
Pell-Fermat Diophantine equations occur in the construction of Riemannian varieties with negative curvature called arithmetic varieties. See [1].

We consider another connexion between Diophantine approximation and Diophantine equations which we shall expand in $\S 2.2 .9$. In 1909 A. Thue found a connection between Diophantine equation and refinements of Liouville's estimate. We restrict here on one specific example.

Liouville's estimate for the rational Diophantine approximation of $\sqrt[3]{2}$ is

$$
\left|\sqrt[3]{2}-\frac{p}{q}\right|>\frac{1}{9 q^{3}}
$$

for sufficiently large q (use Lemma 1.13 with $P(X)=X^{3}-2, c=3 \sqrt[3]{2}<9$). Thue was the first to achieve an improvement of the exponent 3. A explicit estimate was then obtained by A. Baker

$$
\left|\sqrt[3]{2}-\frac{p}{q}\right|>\frac{1}{10^{6} q^{2.955}}
$$

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997 when M. Bennett proved that for any $p / q \in \mathbb{Q}$,

$$
\left|\sqrt[3]{2}-\frac{p}{q}\right| \geq \frac{1}{4 q^{2,5}}
$$

From his result, Thue deduced that for any fixed $k \in \mathbb{Z} \backslash\{0\}$, there are only finitely many $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfying the Diophantine equation $x^{3}-2 y^{3}=k$. The result of Baker shows more precisely that if $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ is a solution to $x^{3}-2 y^{3}=k$, then

$$
|x| \leq 10^{137}|k|^{23}
$$

M. Bennett gave the sharper estimate: for any $(x, y) \in \mathbb{Z}^{2}$ with $x>0$,

$$
\left|x^{3}-2 y^{3}\right| \geq \sqrt{x}
$$

The connexion between Diophantine approximation to $\sqrt[3]{2}$ and the Diophantine equation $x^{3}-2 y^{3}=k$ is explained in the next lemma.
Lemma 2.20. Let η be a positive real number. The two following properties are equivalent.
(i) There exists a constant $c_{1}>0$ such that, for any $p / q \in \mathbb{Q}$ with $q>0$,

$$
\left|\sqrt[3]{2}-\frac{p}{q}\right|>\frac{c_{1}}{q^{\eta}}
$$

(ii) There exists a constant $c_{2}>0$ such that, for any $(x, y) \in \mathbb{Z}^{2}$ with $x>0$,

$$
\left|x^{3}-2 y^{3}\right| \geq c_{2} x^{3-\eta}
$$

Properties (i) and (ii) are true but uninteresting with $\eta \geq 3$. They are not true with $\eta<2$. It is not expected that they are true with $\eta=2$, but it is expected that they are true for any $\eta>2$.

Proof. We assume $\eta<3$, otherwise the result is trivial. Set $\alpha=\sqrt[3]{2}$.
Assume (i) and let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ have $x>0$. Set $k=x^{3}-2 y^{3}$. Since 2 is not the cube of a rational number we have $k \neq 0$. If $y=0$ assertion (ii) plainly holds. So assume $y \neq 0$.

Write

$$
x^{3}-2 y^{3}=(x-\alpha y)\left(x^{2}+\alpha x y+\alpha^{2} y^{2}\right) .
$$

The polynomial $X^{2}+\alpha X+\alpha^{2}$ has negative discriminant $-3 \alpha^{2}$, hence has a positive minimum $c_{0}=3 \alpha^{2} / 4$. Hence the value at (x, y) of the quadratic form $X^{2}+\alpha X Y+\alpha^{2} Y^{2}$ is bounded form below by $c_{0} y^{2}$. From (i) we deduce

$$
|k|=|y|^{3}\left|\sqrt[3]{2}-\frac{x}{y}\right|\left(x^{2}+\alpha x y+\alpha^{2} y^{2}\right) \geq \frac{c_{1} c_{0}|y|^{3}}{|y|^{\eta}}=c_{3}|y|^{3-\eta}
$$

This gives an upper bound for $|y|$:

$$
|y| \leq c_{4}|k|^{1 /(3-\eta)}, \quad \text { hence } \quad\left|y^{3}\right| \leq c_{4}|k|^{3 /(3-\eta)}
$$

We want an upper bound for x : we use $x^{3}=k+2 y^{3}$ and we bound $|k|$ by $|k|^{3 /(3-\eta)}$ since $3 /(3-\eta)>1$. Hence

$$
x^{3} \leq c_{5}|k|^{3 /(3-\eta)} \quad \text { and } \quad x^{3-\eta} \leq c_{6}|k|
$$

Conversely, assume (ii). Let p / q be a rational number. If p is not the nearest integer to $q \alpha$, then $|q \alpha-p|>1 / 2$ and the estimate (i) is trivial. So we assume $|q \alpha-p| \leq 1 / 2$. We need only the weaker estimate $c_{7} q<p<c_{8} q$ with some positive constants c_{7} and c_{8}, showing that we may replace p by q or q by p in our estimates, provided that we adjust the constants. From

$$
p^{3}-2 q^{3}=(p-\alpha q)\left(p^{2}+\alpha p q+\alpha^{2} q^{2}\right)
$$

using (ii), we deduce

$$
c_{2} p^{3-\eta} \leq c_{10} q^{3}\left|\alpha-\frac{p}{q}\right|
$$

and (i) easily follows.

References

[1] N. Bergeron - Sur la topologie de certains espaces provenant de constructions arithmétiques.
[2] A. Weil - Number theory. An approach through history. From Hammurapi to Legendre, Birkhäuser Boston, Inc., Boston, Mass., (1984) 375 pp.

[^0]: ${ }^{9}$ Updated: October 12, 2007

[^1]: ${ }^{10}$ Easy to compute using http://wims.unice.fr/wims/

