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2.2.3 Diophantine approximation and Diophantine Equations

There are deep connexions between diophantine approximation and Diophantine
equations. In this section we show how continued fractions expansions are used
for solving the equation:

x2 − dy2 = ±1 (2.18)

(where the unknowns x, y are in Z) which is named Pell’s equation. Later we
shall consider other examples.

There is a natural ordering among the solutions, by increasing x (or y, it
amounts to the same). Since we are looking at positive solutions there is a
smallest one, called the fundamental solution, say (x1, y1).

From x2
1 − dy2

1 = ±1 it readily follows that the sequence of pairs of integers
(xn, yn) defined by

xn + yn
√
d = (x1 + y1

√
d)n

satisfies also xn − yn
√
d = (x1 − y1

√
d)n hence

x2
n − dy2

n = ±1.

If the fundamental solution has x2
1−dy2

1 = 1, then all xn, yn also have x2
n−dy2

n =
1, while if x2

1 − dy2
1 = −1, then for all n we have x2

n − dy2
n = (−1)n. In the

second case (x2, y2) is the fundamental solution of the equation x2
1 − dy2

1 = 1.
Let us check that all solutions of the Pell’s equation are the (xn, yn) with

n ≥ 0 (with n = 0 giving the trivial solution (1, 0)). Consider the following
subset of R2:

G =
{

(log |x+ y
√
d|, log |x− y

√
d|) ; (x, y) ∈ Z2, x2 − dy2 = ±1}.

It is easily checked that G is an additive subgroup of R2. This is due to the
fact that the equation x2− dy2 = ±1 can be written (x+

√
dy)(x−

√
dy) = ±1,

hence the solutions (x, y) form a multiplicative group with the law given by

(x+ y
√
d)(x′ + y′

√
d) = xx′ + dyy′ + (xy′ + x′y)

√
d,

corresponding to the identity

(xx′ + dyy′)2 − d(xy′ + x′y)2 = (x2 − dy2)(x′2 − dy′2).

Now G is discrete in R2: any compact subset of R2 contains only finitely many
elements in G, because for each C > 0, if (x, y) ∈ Z2 satisfies |x + y

√
d| ≤ C

and |x− y
√
d| ≤ C, then |x| and |y| are bounded.

9Updated: October 12, 2007
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Further G is contained in the one dimensional subspace t1 + t2 = 0 of R2.
A discrete subgroup in a real vector space of dimension 1 has rank ≤ 1 (see
§ 2.2.7). It easily follows that any solution (x, y) ∈ Z2 with x > 0 and y ≥ 0 of
Pell’s equation satisfies x+ y

√
d = (x1 + y1

√
d)n for some n ≥ 0.

Hence the problems remains to find the fundamental solution (x1, y1). It
turns out, as we shall see, that x1 may be quite large without d being to large.
But there is an efficient algorithm to solve the problem.

The connexion with Diophantine approximation arises from the following
remark. If (x, y) is a solution, then (x −

√
dy)(x +

√
dy) = 1, hence x/y is a

good rational approximation of
√
d and this approximation is sharper when x

is larger. Hence a strategy for solving Pell’s equation (2.18) is based on the
continued fraction expansion of

√
d.

Let again d be a positive integer which is not a square. It is known that the
continued fraction expansion

√
d = [a0; a1, a2, . . . , ak]

of the square root of d > 0 has a0 = [
√
d] and ak = 2a0. Moreover

a1, a2, . . . , ak−1

is a palindrome: ai = ak−i (1 ≤ i ≤ k − 1). The next proposition shows
that the length k of the period is odd if and only if the Diophantine equation
x2 − dy2 = −1 has a root in rational integers x, y.

Proposition 2.19. Let d be a positive which is not a square. Write
√
d = [a0; a1, a2, . . . , ak].

a) When k is even, the fundamental solution of the equation x2 − dy2 = 1 is
given by

x1

y1
= [a0; a1, a2, . . . , ak−1]

and there is no solution to the equation x2 − dy2 = −1.
b) When k is odd, the fundamental solution to x2 − dy2 = −1 is given by

x1

y1
= [a0; a1, a2, . . . , ak−1]

and the fundamental solution to x2 − dy2 = 1 is given by

x2

y2
= [a0; a1, a2, . . . , ak−1, ak, a1, a2, . . . , ak−1].

The solutions (xn, yn) are obtained by a similar formula: writing A for the
block a1, a2, . . . , ak−1,

xn
yn

= [a0; A, ak, A, ak, . . . , A, ak, A]
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where A occurs n times.
We consider numerical examples. The easiest Pell’s equation is x2−2y2 = −1

with d = 2 and
√

2 = [1; 2]. The fundamental solution is (x1, y1) = (1, 1).
For the equation x2 − 2y2 = 1 the fundamental solution is x = 3, y = 2,
corresponding to the expansion

[1; 2] = 1 +
1
2

=
3
2
·

Here is another example due to Brahmagupta in 628:

x2 − 92y2 = 1.

Brahmagupta did not use continued fractions but a method of his own (called
“cyclic method” — Chakravala — see [2]), and he found the fundamental solu-
tion which is x = 1151, y = 120:

11512 − 92 · 1202 = 1 324 801− 1 324 800 = 1.

The continued fraction expansion of
√

92 = 9, 591663046625 . . . is 10

√
92 = [9; 1, 1, 2, 4, 2, 1, 1, 18]

and the fundamental solution arises from

[9; 1, 1, 2, 4, 2, 1, 1] =
1151
120
·

The next example is due to Bhaskara II in his work Bijaganita (1150): the
fundamental solution to x2 − 61y2 = 1 is

x = 1 766 319 049, y = 226 153 980.

Here
√

61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14] and

[7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] =
1 766 319 049
226 153 980

·

The fundamental solution to x2 − 61y2 = −1 is obtained as follows:

[7; 1, 4, 3, 1, 2, 2, 1, 3, 5] =
29 718
3 805

,

29 7182 = 883 159 524, 61 · 38052 = 883 159 525.

A further example due to Narayana (14th Century) is x2 − 103y2 = 1 with the
fundamental solution x = 227 528, y = 22 419. Indeed

227 5282 − 103 · 22 4192 = 51 768 990 784− 51 768 990 783 = 1.
10Easy to compute using http://wims.unice.fr/wims/
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√
103 = [10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

and
[10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] =

227 528
22 419

·

Fermat also knew how to solve Pell’s equation x2 − dy2 = 1 : he found the
fundamental solution for d = 61 (Bhaskara’s equation) as well as for d = 109:

x = 158070671986249, y = 15140424455100.

A Pell equation occurred already much earlier in the Cattle problem attributed
to Archimedes. There are bulls and cows of different colors, the first part of the
problem involves several unknowns and easy equations so solve:

B −
(

1
2

+
1
3

)
N = N −

(
1
4

+
1
5

)
X = X −

(
1
6

+
1
7

)
B = J.

Up to a factor, the solution is

B = 2226, N = 1602, X = 1580, J = 891.

The second part of the Cattle problem amounts to solving the Pell equation

x2 − 4729494y2 = 1.

A partial solution was given in 1880 by A. Amthor. The fundamental solution
has been given in 1998 by Ilan Vardi in a simple explicit formula[

25194541
184119152

(109931986732829734979866232821433543901088049+

50549485234315033074477819735540408986340
√

4729494
)4658]

The size of the fundamental solution is ' 10103275.
Pell-Fermat Diophantine equations occur in the construction of Riemannian

varieties with negative curvature called arithmetic varieties. See [1].
We consider another connexion between Diophantine approximation and

Diophantine equations which we shall expand in § 2.2.9. In 1909 A. Thue found
a connection between Diophantine equation and refinements of Liouville’s esti-
mate. We restrict here on one specific example.

Liouville’s estimate for the rational Diophantine approximation of 3
√

2 is∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1
9q3

for sufficiently large q (use Lemma 1.13 with P (X) = X3 − 2, c = 3 3
√

2 < 9).
Thue was the first to achieve an improvement of the exponent 3. A explicit
estimate was then obtained by A. Baker∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1
106q2.955
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and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1
4 q2,5

·

From his result, Thue deduced that for any fixed k ∈ Z \ {0}, there are only
finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation x3 − 2y3 = k.
The result of Baker shows more precisely that if (x, y) ∈ Z× Z is a solution to
x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophantine
equation x3 − 2y3 = k is explained in the next lemma.

Lemma 2.20. Let η be a positive real number. The two following properties
are equivalent.
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x3−η.

Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are not
true with η < 2. It is not expected that they are true with η = 2, but it is
expected that they are true for any η > 2.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z × Z have x > 0. Set k = x3 − 2y3. Since 2 is

not the cube of a rational number we have k 6= 0. If y = 0 assertion (ii) plainly
holds. So assume y 6= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).

The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has a
positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic form
X2 + αXY + α2Y 2 is bounded form below by c0y2. From (i) we deduce

|k| = |y|3
∣∣∣∣ 3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η
= c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).
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We want an upper bound for x: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

x3 ≤ c5|k|3/(3−η) and x3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the nearest
integer to qα, then |qα− p| > 1/2 and the estimate (i) is trivial. So we assume
|qα − p| ≤ 1/2. We need only the weaker estimate c7q < p < c8q with some
positive constants c7 and c8, showing that we may replace p by q or q by p in
our estimates, provided that we adjust the constants. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c10q3

∣∣∣∣α− p

q

∣∣∣∣ ,
and (i) easily follows.
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