Introduction to Diophantine methods Michel Waldschmidt http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Nineth course: september 26, 2007. ¹²

2.2.5 Elementary symmetric functions

References for this section are [2, 5].

Let L be the field $\mathbb{Q}(x_1, \ldots, x_n)$ of rational fractions in n variables over \mathbb{Q} . The elementary symmetric functions $s_1, \ldots, s_n \in \mathbb{Q}[x_1, \ldots, x_n]$ are defined by

$$(X - x_1)(X - x_2) \cdots (X - x_n) = X^n - s_1 X^{n-1} + s_2 X^{n-2} - \dots + (-1)^n s_n.$$

For instance

$$s_1 = x_1 + \dots + x_n, \quad s_n = x_1 \cdots x_n$$

and

$$s_2 = x_1 x_2 + x_1 x_3 + \dots + x_1 x_n + x_2 x_3 + \dots + x_2 x_n + \dots + x_{n-1} x_n.$$

More generally, for $1 \leq k \leq n$, the k-th elementary symmetric function in n variables is

$$s_k = \sum_{i_1 < i_2 < \cdots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

The general polynomial of degree n is $f(X) = (X - x_1)(X - x_2) \cdots (X - x_n)$. Further, let K denote the subfield $\mathbb{Q}(s_1, \ldots, s_n)$ of L. The polynomial f has its coefficients in K and its splitting field over K is L. Since f has degree n, the Galois group of L over K is (isomorphic to) a subgroup of \mathfrak{S}_n . As a consequence $[L:K] \leq n!$.

Any permutation of $\{1, \ldots, n\}$ induces an automorphism of L which fixes each of s_k $(1 \le k \le n)$. Hence K is contained in the subfield $L^{\mathfrak{S}_n}$ of L fixed by \mathfrak{S}_n . According to Galois theory, the extension $L/L^{\mathfrak{S}_n}$ has degree n! Hence $K = L^{\mathfrak{S}_n}$ and L is an extension of K of degree n! and Galois group \mathfrak{S}_n .

A rational function $F(x_1, \ldots, x_n) \in L$ is called *symmetric* if it is invariant under \mathfrak{S}_n . Hence we have proved:

Proposition 2.25. A rational function $F(x_1, \ldots, x_n) \in \mathbb{Q}(x_1, \ldots, x_n)$ is symmetric if and only if there exists a rational function G in n variables such that

$$F(x_1,\ldots,x_n)=G(s_1,\ldots,s_n).$$

The rational function G is unique. If F is a polynomial, then G is also a polynomial. An algorithm for computing it is given in exercise 37, § 14.6 of [2].

Exercise 2.26. Prove that the elements s_1, \ldots, s_n are algebraically independent over \mathbb{Q} .

¹²Updated: October 12, 2007

2.2.6 Modules over principal rings

References for this section are [2, 3, 5].

Let A be a ring (commutative with unit, as usual), M a A-module, N_1 and N_2 submodules of M. By definition M is the direct sum of N_1 and N_2 if the map $(x_1, x_2) \mapsto x_1 + x_2$ is an isomorphism of A-modules of $N_1 \times N_2$ onto M. In this case we write $M = N_1 \oplus N_2$. This means $M = N_1 + N_2$ and $N_1 \cap N_2 = \{0\}$.

A free A-module is a A-module having a basis. Example like $\mathbb{Z}/2\mathbb{Z}$ (and more generally any finite abelian group viewed as a \mathbb{Z} -module) or \mathbb{Q} show that modules over \mathbb{Z} may not have a basis.

When A is a domain and M a A-module, the rank of M is the maximal number of elements in M which are linearly independent over A. If we denote by K the field of fractions of A and if M is a free A-module, then one can embed M into a K-vector space V and the rank of a submodule N of M is the dimension of the K-vector space spanned by N in V. For instance the rank of M itself is the number of elements in any basis of M over A.

Proposition 2.27 (Free modules over a PID). Let A be a PID, M a free A-module of rank m and N a sub-A-module of M. Then N is free of rank $n \leq m$. Moreover there exists a basis $\{e_1, \ldots, e_m\}$ of M as a A-module and there exists elements a_1, \ldots, a_n in A such that $\{a_1e_1, \ldots, a_ne_n\}$ is a basis of N over A and a_i divides a_{i+1} in A for $1 \leq i < n$.

The ideals $a_1A \supset a_2A \supset \cdots \supset a_nA$ of A are called the *invariant factors* of the sub-A-module N of M: they do not depend on the basis (a_1, \ldots, e_n) of M satisfying the conditions of Proposition 2.27.

2.2.7 Geometry of numbers: subgroups of \mathbb{R}^n .

References for this section are [1, 4, 6].

Lemma 2.28. A subgroup G of \mathbb{R}^n is discrete in \mathbb{R}^n if and only if there exists an open subset U of \mathbb{R}^n containing 0 such that $G \cap U$ is discrete.

Exercise 2.29. 1. Check that a non discrete subgroup of \mathbb{R} is dense in \mathbb{R} 2. Give the list of closed subgroups of \mathbb{R} .

3. Let G be a finitely generated subgroup of \mathbb{R} . Give a necessary and sufficient condition on the rank of G for G to be dense in \mathbb{R} .

4. Let $\vartheta \in \mathbb{R}$. Give a necessary and sufficient condition on ϑ for the subgroup $\mathbb{Z} + \mathbb{Z}\vartheta$ to be dense in \mathbb{R} .

Proposition 2.30. Let G be a discrete subgroup of \mathbb{R}^n . There exists an integer t in the interval $0 \le t \le n$ and there exist elements e_1, \ldots, e_t in G, which are linearly independent over \mathbb{R} , such that $G = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_t$.

In particular e_1, \ldots, e_t are linearly independent over \mathbb{Z} , hence G is free of rank t. The integer t is the dimension of the \mathbb{R} -subspace of \mathbb{R}^n spanned by G.

Exercise 2.31. From Proposition 2.30, deduce that in a discrete subgroup of \mathbb{R}^n , linearly independent elements over \mathbb{Z} are linearly independent over \mathbb{R} .

Definition. A discrete subgroup of \mathbb{R}^n of maximal rank n is called a lattice) of \mathbb{R}^n .

Proof of Proposition 2.30. Denote by V the vector subspace of \mathbb{R}^n over \mathbb{R} spanned by G, by t its dimension and let $\{f_1, \ldots, f_t\}$ be a maximal subset of G which is free over \mathbb{R} : it is a basis of V over \mathbb{R}^n and $G' = \mathbb{Z}f_1 + \cdots + \mathbb{Z}f_t$ is a subgroup of G. We show that G' has finite index in G, which means that there are only finitely many classes of G modulo G'.

Let K be the compact subset of \mathbb{R}^n defined by

$$\{u_1f_1 + \dots + u_tf_t ; 0 \le u_i \le 1 \ (1 \le i \le t)\}.$$

Since G is discrete, $G \cap K$ is finite.

Let $x \in G$. Then $x \in V$, hence we can write $x = x_1 f_1 + \cdots + x_t f_t$ with $x_i \in \mathbb{R}$. Let $m_i = [x_i]$ be the integral part of x_i :

$$m_i \in \mathbb{Z}, \quad 0 \le x_i - m_i < 1 \qquad (1 \le i \le n).$$

Set $x' = m_1 f_1 + \cdots + m_t f_t$. Then $x' \in G'$ and $x - x' \in G \cap K$. Therefore there are only finitely many classes of G modulo G', which means that G' has finite index in G.

Denote by s the order of the finite group G/G' and set $f'_i = f_i/s$ $(1 \le i \le t)$. We have

$$G' = \mathbb{Z}f_1 + \dots + \mathbb{Z}f_t \subset G \subset \mathbb{Z}f'_1 + \dots + \mathbb{Z}f'_t,$$

and the conclusion follows from Proposition 2.27.

Theorem 2.32 (Structure of subgroups of \mathbb{R}^n). Let G be an additive subgroup of \mathbb{R}^n . There exists a maximal vector subspace V of \mathbb{R}^n over \mathbb{R} which is contained in the topological closure of G. Let d be the dimension of V and d + t the dimension of the vector space spanned by G over \mathbb{R} . Set $G' = G \cap V$. Then G' is dense in V and there exists a discrete subgroup G'' of G, of rank t, such that G is the direct sum of G' and G''.

Exercise 2.33. Let $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Consider the subgroup

$$G = \mathbb{Z}^n + \mathbb{Z}\mathbf{x} = \{(a_1 + a_0 x_1, \dots, a_n + a_0 x_n) ; (a_0, \dots, a_n) \in \mathbb{Z}^{n+1}\}$$

of \mathbb{R}^n .

1. Show that G is discrete in \mathbb{R}^n if and only if $\mathbf{x} \in \mathbb{Q}^n$.

2. Deduce that the following properties are equivalent.

(i) 0 is an accumulation point of G.

(ii) For any $\epsilon > 0$, there exist integers p_1, \ldots, p_n , q, with q > 0, such that

$$0 < \max_{1 \le i \le n} |qx_i - p_i| < \epsilon.$$

(iii) A least one of the n numbers x_1, \ldots, x_n is irrational.

3. Check that G is dense in \mathbb{R}^n if and only if the numbers $1, x_1, \ldots, x_n$ are linearly independent over \mathbb{Q} .

Deduce that for any $(\xi_1, \xi_2) \in \mathbb{R}^2$ and for any $\epsilon > 0$, there exist rational integers p_1, p_2 and q with

$$|\xi_1 - p_1 - q\sqrt{2}| \le \epsilon$$
 and $|\xi_2 - p_1 - q\sqrt{3}| \le \epsilon$.

Let G be a lattice in \mathbb{R}^n . For each basis $\mathbf{e} = \{e_1, \ldots, e_n\}$ of G the parallelogram

$$P_{\mathbf{e}} = \{x_1 e_1 + \dots + x_n e_n \; ; \; 0 \le x_i < 1 \; (1 \le i \le n)\}$$

is a fundamental domain for G, which means a complete system of representative of classes modulo G. We get a partition of \mathbb{R}^n as

$$\mathbb{R}^n = \bigcup_{g \in G} (P_\mathbf{e} + g) \tag{2.34}$$

A change of bases of G is obtained with a matrix with integer coefficients having determinant ± 1 , hence the Lebesgue measure $\mu(P_{\mathbf{e}})$ of $P_{\mathbf{e}}$ does not depend on **e**: this number is called the *volume* of the lattice G and denoted by v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th century as an application of his *geometry of numbers*.

Theorem 2.35 (Minkowski). Let G be a lattice in \mathbb{R}^n and B a measurable subset of \mathbb{R}^n . Set $\mu(B) > v(G)$. Then there exist $x \neq y$ in B such that $x - y \in G$.

Proof. From (2.34) we deduce that B is the disjoint union of the $B \cap (P_{\mathbf{e}} + g)$ with g running over G. Hence

$$\mu(B) = \sum_{g \in G} \mu\left(B \cap (P_{\mathbf{e}} + g)\right).$$

Since Lebesgue measure is invariant under translation

$$\mu \left(B \cap \left(P_{\mathbf{e}} + g \right) \right) = \mu \left(\left(-g + B \right) \cap P_{\mathbf{e}} \right).$$

The sets $(-g+B) \cap P_{\mathbf{e}}$ are all contained in $P_{\mathbf{e}}$ and the sum of their measures is $\mu(B) > \mu(P_{\mathbf{e}})$. Therefore they are not all pairwise disjoint – this is one of the versions of the *Dirichlet box principle*). There exists $g \neq g'$ in G such that

$$(-g+B) \cap (-g'+B) \neq \emptyset.$$

Let x and y in B satisfy -g + x = -g' + y. Then $x - y = g - g' \in G \setminus \{0\}$.

Corollary 2.36. Let G be a lattice in \mathbb{R}^n and let B be a measurable subset of \mathbb{R}^n , convex and symmetric with respect to the origin, such that $\mu(B) > 2^n v(G)$. Then $B \cap G \neq \{0\}$. Proof. We use Theorem 2.35 with the set

$$B' = \frac{1}{2}B = \{x \in \mathbb{R}^n ; \ 2x \in B\}$$

We have $\mu(B') = 2^{-n}\mu(B) > v(G)$, hence by Theorem 2.35 there exists $x \neq y$ in B' such that $x - y \in G$. Now 2x and 2y are in B, and since B is symmetric $-2y \in B$. Finally B is convex, hence $(2x - 2y)/2 = x - y \in G \cap B \setminus \{0\}$.

Remark. With the notations of Corollary 2.36, if B is also compact in \mathbb{R}^n , then the weaker inequality $\mu(B) \geq 2^n v(G)$ suffices to reach the conclusion. This is obtained by applying Corollary 2.36 with $(1 + \epsilon)B$ for $\epsilon \to 0$.

Exercise 2.37. Let m and n be positive integers.

a) Let t_{ij} for $1 \leq i, j \leq n$ be n^2 real numbers with determinant ± 1 . Let A_1, \ldots, A_n be positive real numbers with $A_1 \cdots A_n = 1$. Show that there exists an non-zero element (x_1, \ldots, x_n) in \mathbb{Z}^n such that

$$|x_1t_{i1} + \dots + x_nt_{in}| < A_i \text{ for } 1 \le i \le n-1$$

and

$$|x_1t_{1n} + \dots + x_nt_{nn}| \le A_n.$$

Hint. First solve the system with the weaker inequality < in place of <

$$|x_1t_{i1} + \dots + x_nt_{in}| \le A_i \quad for \quad 1 \le i \le n$$

by using Corollary 2.36. Next use the same method but with A_n replaced with $A_n + \epsilon$ for a sequence of ϵ which tends to 0.

b) Deduce the following result. Let ϑ_{ij} $(1 \le i \le n, 1 \le j \le m)$ be mn real numbers. Let Q > 1 be a real number. Show that there exists rational integers $q_1, \ldots, q_m, p_1, \ldots, p_n$ with

$$1 \le \max\{|q_1|, \ldots, |q_m|\} < Q^{n/m}$$

and

$$\max_{1 \le i \le n} |\vartheta_{i1}q_1 + \dots + \vartheta_{im}q_m - p_i| \le \frac{1}{Q} \cdot$$

Hint. Use a) with n replaced by n+m and for a triangular matrix $(t_{ij})_{1 \le i,j \le m+n}$ with 1 on the diagonal.

c) Deduce that if $\vartheta_1, \ldots, \vartheta_m$ are real numbers and H a real number > 1, then there exists a tuple (a_0, a_1, \ldots, a_m) of rational integers such that

$$0 < \max_{1 \le i \le m} |a_i| < H \quad and \quad |a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m| \le H^{-m}.$$

d) Let ϑ be a real number with $|\vartheta| \leq 1/2$, d a positive integer and H a positive integer. Show that there exists a non-zero polynomial $P \in \mathbb{Z}[X]$ of degree $\leq d$ and coefficients in the interval [-H, H] such that

$$|P(\vartheta)| \le H^{-d}$$

We conclude this section with the definition of a *rational subspace*. Let $k \subset K$ be a field extension and n a positive integer. For a K-vector subspace V of K^n , the two following properties are equivalent:

(i) There exists a basis of V which consists of elements in k^n .

(ii) There exist linear forms L_1, \ldots, L_m with coefficients in k such that V is the intersection of the hyperplans $L_i = 0$, $(1 \le i \le m)$.

When there properties are satisfied the subspace V is called *rational over* k.

Exercise 2.38. Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers. Assume that $1, \vartheta_1, \ldots, \vartheta_m$ are linearly independent over \mathbb{Q} . Let V be a vector subspace of \mathbb{R}^{m+1} which is rational over \mathbb{Q} and has dimension $\leq m$.

a) Check that the intersection of V with the real line $\mathbb{R}(1, \vartheta_1, \ldots, \vartheta_m)$ is $\{0\}$. b) Deduce that

$$\|(x_0, x_1, \dots, x_m)\| = \max_{1 \le i \le m} |x_0 \vartheta_j - x_j|$$

defines a norm on V.

2.2.8 Elimination Theory, Resultant.

References for this section are [2, 5, 7].

Let k be a field and P, Q two polynomials in $\mathbb{Q}[X]$ of degrees n and m respectively. Since k[X] is a UFD, we can decompose P and Q as products of irreducible polynomials. The ideal \mathcal{I} generated by P and Q is principal, generated by the greatest common divisor of P and Q (this gcd is unique up to a constant, it is unique if we require that it is monic. Bézout's Theorem states that this gcd can be written as UP + VQ with U and V in k[X], and Euclide's algorithms gives a solution (U, V) with deg $U < \deg Q$ and deg $V < \deg P$. This ideal is k[X] if and only if the monic gcd is 1, which means also that P and Q have no common zero in an algebraic closure of k.

Assume gcd(P,Q) = 1. The problem with Euclide's algorithm is that it is efficient for numerical purposes, when the polynomials P and Q are given, but it is not so efficient for giving estimates for the coefficients of U and V. Fortunately there is another efficient algorithm to compute U and V such that PU + QV is a non-zero constant in k. Write

$$P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0, \quad Q = b_m X^m + b_{m-1} X^{m-1} + \dots + b_0$$

and

$$U = u_{m-1}X^{m-1} + u_{m-2}X^{m-2} + \dots + u_0, \quad V = v_{n-1}X^{n-1} + v_{n-2}X^{n-2} + \dots + v_0.$$

Consider the coefficients $u_0, u_1, \ldots, u_{m-1}, v_0, v_1, \ldots, v_{n-1}$ of U and V as m+nunknowns which should satisfy the system of m+n equations given by the fact that the coefficients of $X, X^2, \ldots, X^{m+n-1}$ in PU + QV is zero, while the constant coefficient is not zero. The determinant of the matrix of this system is not zero, since there is a solution by Bézout's Theorem. Here is the matrix

a_n	a_{n-1}			a_1	a_0	0		0 \
0	a_n			a_2	a_1	a_0	• • •	0
:	÷	·	·	÷	:	:	·	:
0	0	•••	a_n	a_{n-1}	a_{n-2}	a_{n-3}	• • •	a_0
b_m	b_{m-1}	•••	b_1	b_0	0	0	• • •	0
0	b_m	•••	•••	b_1	b_0	0	•••	0
1 :	÷	·		÷	÷	·		:
1 :	÷		·				·	:
$\int 0$	0		0	b_m	b_{m-1}	b_{m-2}		b_0

There are *m* rows with the coefficients of *P* and *n* rows ¹³ with the coefficients of Q, the diagonal is $(a_n, \ldots, a_n, b_0, \ldots, b_0)$. This matrix can be considered for any pair (P, Q) of polynomials with coefficients in any domain *A*. The determinant *R* of this matrix is then an element in *A* which is called the *resultant* of *P* and *Q*. The determinant is invariant by linear combinations of the columns: multiplying the *k*-th column by X^{m+n-k} , adding to the last column and expanding the determinant shows that there are polynomials *U* and *V* such that R = PU+QV. The resultant is not zero if and only if *U* and *V* are relatively prime in k[X], where *k* is the quotient field of *A*.

Exercise 2.39. a) Using the Cauchy–Schwarz inequality

$$\left|\sum_{i} x_{i} y_{i}\right|^{2} \leq \left|\sum_{i} x_{i}\right|^{2} \cdot \left|\sum_{i} y_{i}\right|^{2}$$

show that the absolute value of a determinant with complex coefficients is bounded by the product of the Euclidean norms of its columns.

b) For a polynomial $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$ in $\mathbb{C}[X]$, define

$$||P|| = (|a_n|^2 + \dots + |a_0|^2)^{1/2}$$

Let P and Q be two non-constant polynomials in $\mathbb{Z}[X]$ of degrees n and m respectively. Show that the two following properties are equivalent: (i) P and Q are relatively prime in $\mathbb{Q}[X]$. (ii) For any $\vartheta \in \mathbb{C}$,

$$(m+n) \|P\|^m \|Q\|^n \max\{|P(\vartheta)|, |Q(\vartheta)|\} > 1.$$

References

 N. BOURBAKI – Eléments de Mathématique, Topologie Générale, Herman 1974, Chap. VII, § 1, N°1, Prop. 2;

¹³The matrix has been written in the case m = n - 1

- [2] D.S. DUMMIT & R.M. FOOTE Abstract Algebra, Prentice Hall 1991, 1999.
- [3] Bùi Xuân Hải Nhóm Tuyến Tính (chuyên đề cao học), NXB ĐHQG Tẹ HCM 2007.
- [4] G.H. HARDY & A.M. WRIGHT An Introduction to the Theory of Numbers, Oxford Sci. Publ., 1938, Chap. XXIII.
- [5] S. LANG Algebra, Third edition. Addison-Wesley Publishing Co., Reading, Mass., 1993. Trad. franç. Algèbre, Dunod, 2004.
- [6] W. M. SCHMIDT Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, Berlin, 1980. See Chap. 1 § 5.
- [7] M. WALDSCHMIDT Nombres transcendants, Lecture Notes in Mathematics, Vol. 402, Springer-Verlag (1974). See Chap. 5.