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We denote by ez =
∑

n≥0 z
n/n! the exponential function (z ∈ C) and by

log x the Neperian logarithm of a positive real number x, so that

elog x = x for x > 0 and log et = t for t ∈ R.

Exercise 1. a) Prove that
log 2
log 3

is irrational.
b) Deduce that one at least of the two numbers log 2, log 3 is irrational.
c) Do you know whether both are irrational?

Exercise 2. For each of the following statements, say whether it is true or not,
and explain your answer.
(i) If x ∈ R is irrational, then x2 is irrational.
(ii) If x ∈ R is irrational, then

√
x is irrational.

(iii) If x and y in R are irrational, then x+ y is irrational.
(iv) If x and y in R are irrational, then xy is irrational.
(v) If x ∈ R is irrational, then ex is irrational.
(vi) If x > 0 is irrational, then log x is irrational.

Exercise 3. a) Let f(X,Y ) = aX2 + bXY + cY 2 ∈ R[X,Y ] be a homogeneous
quadratic polynomial with real coefficients and with positive discriminant

∆ = b2 − 4ac > 0.

Let ε > 0. Show that there exists (x, y) ∈ Z2 with (x, y) 6= (0, 0) such that

|f(x, y)| ≤
√

∆/5 + ε.

Hint: you may use a Theorem of Hurwitz.
b) Let ∆ be a positive real number. Give an example of a homogeneous
quadratic polynomial f having discriminant ∆ such that

min
{
|f(x, y)| ; (x, y) ∈ Z× Z, (x, y) 6= (0, 0)

}
=
√

∆/5.
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c) Give an example of a homogeneous quadratic polynomial f having positive
discriminant such that

min
{
|f(x, y)| ; (x, y) ∈ Z× Z, (x, y) 6= (0, 0)

}
= 0.

Exercise 4. Let α be a complex number. Show that the following properties
are equivalent.
(i) The number α is root of a polynomial of degree ≤ 2 with coefficients in Q(i)
(ii) The Q(i)–vector space spanned by 1, α, α2, α3 . . . has dimension ≤ 2.
(iii) For any integer m ≥ 1, the number αm is root of a polynomial of degree
≤ 2 with coefficients in Q(i).

Exercise 5. a) Using Fourier’s proof of the irrationality of e and Liouville’s
proof that e and e2 are not quadratic numbers, show that e2i is not root of a
polynomial of degree ≤ 2 with coefficients in Q(i).
b) Deduce that for any integer m ≥ 1, the number e2i/m is not root of a
polynomial of degree ≤ 2 with coefficients in Q(i).
c) Show that for any integer m ≥ 1, the numbers

(
cos(1/m)

)2,
(
sin(1/m)

)2,
cos(1/m) sin(1/m), cos(2/m), sin(2/m) are irrational.

Exercise 6. Show that a real number x is irrational if and only if 0 is an
accumulation point of {

a+ bx ; (a, b) ∈ Z2
}
⊂ R.
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Examen – December 15, 2007
Solutions

Solution exercise 1.
a) If a and b are two positive rational integers, then 2b is even and 3a is odd,
therefore 2b 6= 3a, hence log 2/ log 3 6= a/b.
b) The quotient of two rational numbers is a rational number.
c) By the Theorem of Hermite and Lindemann each of the numbers log 2, log 3
is transcendental, hence irrational.

Solution exercise 2.
(i) No: take for instance x =

√
2.

(ii) Yes: the square of a rational number a/b is a rational number a2/b2. Hence
if
√
x is rational then x is rational.

(iii) No: take any irrational number x, any rational number r and set y = r−x.
(iv) No: take any irrational number x, any rational number r and set y = r/x.
(v) No: we have seen in exercise 1 that one at least of x1 = log 2, x2 = log 3 is
irrational, while ex1 = 2, ex2 = 3 are rational.
(vi) No: take for instance x = e, which is irrational, while log e = 1 is rational.

Solution exercise 3.
a) Let θ and θ′ be the roots of the polynomial aX2 + bX + c. By Hurwitz’s
Theorem for any ε > 0 there exists x and y in Z with y2 ≥ |a|/5ε and∣∣∣∣θ − x

y

∣∣∣∣ < 1√
5y2
·

Write
f(x, y) = a(x− θy)(x− θ′y)

and use the estimates

|x− θy| ≤ 1√
5y

and |x− θ′y| ≤ y|θ − θ′|+ |x− θy| ≤ y|θ − θ′|+ 1√
5y
·

Since |a(θ − θ′)| =
√

∆ we deduce

|f(x, y)| ≤ |a| · 1√
5y

(
y|θ − θ′|+ 1√

5y

)
≤
√

∆
5

+
|a|
5y2
≤
√

∆
5

+ ε.

b) The sequence of Fibonacci numbers (Fn)n≥0 satisfies

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1 for n ≥ 1.

Define

f(X,Y ) =

√
∆
5

(X2 −XY − Y 2).
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Then f has discriminant ∆ and |f(Fn, Fn−1)| =
√

∆/5. On the other hand for
any (x, y) ∈ Z2 \{(0, 0)} the number x2−xy−y2 is a non–zero rational integer,
hence has absolute value ≥ 1. Therefore

min
{
|f(x, y)| ; (x, y) ∈ Z× Z, (x, y) 6= (0, 0)

}
=
√

∆/5.

c) Let θ be a real number such that for any ε > 0 there exists p/q ∈ Q with

0 <
∣∣∣∣θ − p

q

∣∣∣∣ ≤ ε

q2
·

For instance a Liouville number satisfies this property (and much more!). Then
the polynomial f(X,Y ) = Y (X − θY ) satisfies

min
{
|f(x, y)| ; (x, y) ∈ Z× Z, (x, y) 6= (0, 0)

}
= 0.

Solution exercise 4.
The implication (iii) ⇒ (i) is trivial: take m = 1.

Proof of (i)⇒ (ii). If α is root of a polynomial of degree ≤ 2 with coefficients
in Q(i), then there exist a and b in Q(i) such that α2 = aα + b. By induction
for each integer m ≥ 1 we can write αm = amα + bm with am and bm in Q(i).
Hence the Q(i)–vector space spanned by 1, α, α2, α3 . . . is also spanned by 1, α,
hence has dimension ≤ 2.

Proof of (ii) ⇒ (iii). If the Q(i)–vector space spanned by 1, α, α2, α3 . . .
has dimension ≤ 2, then the three numbers 1, αm, α2m are linearly dependent
over Q(i).

Solution exercise 5
a) Assume a, b and c are elements in Z[i] such that e2i is a root of the polynomial
aX2 + bX + c. Write

ae2i + b+ ce−2i = 0,

replace e2i and e−2i by the Taylor expansion of the exponential function, trun-
cate at a rank N and multiply by N !/2N−1:

N !
2N−1

b+
N∑

n=0

N !2n

n!2N−1

(
ain + c(−i)n

)
= AN +BN + CN (1)

where

AN =
4

N + 1
(
aiN+1 + c(−i)N+1

)
, BN =

8
(N + 1)(N + 2)

(
aiN+2 + c(−i)N+2

)
and

CN =
∑

n≥N+3

N !2n

n!2N−1

(
ain + c(−i)n

)
.
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Take for N a power of 2, so that the numbers N !/n!2N−n−1 are rational integers
for 0 ≤ n ≤ N . Hence in equation (1), the left hand side is in Z[i]. Assume
further that N is sufficiently large. In equation (1), the right hand side has
modulus ≤ 1, hence both sides vanish. Also for N sufficiently large

(N + 1)|AN | = (N + 1)|BN + CN | < 1,

and since (N + 1)AN is in Z[i] we deduce AN = 0 and BN + CN = 0. Now

(N + 1)(N + 2)|BN | = (N + 1)(N + 2)|CN | < 1,

while (N + 1)(N + 2)BN is in Z[i], hence BN = 0. From AN = BN = 0 we
deduce a = c = 0, and finally also b = 0.
c) Fix m ≥ 1. Define

α = ei/m, a1 = cos(1/m), b1 = sin(1/m), c1 = cos(1/m) sin(1/m),

a2 = cos(2/m), and b2 = sin(2/m).

We have
α+ α−1 = 2a1, α− α−1 = 2ib1,

α2 + α−2 = 2a2, α2 − α−2 = 2ib2,

hence

α2 + α−2 + 2 = 4a2
1, α2 + α−2 − 2 = −4b21, α2 − α−2 = 4ia1b1.

Since α2 is not root of a quadratic equation with coefficients in Q(i), it follows
that each of the numbers a2

1, b21, a1b1, a2, b2 is not in Q(i).

Solution exercise 6.
To say that 0 is an accumulation point of{

a+ bx ; (a, b) ∈ Z2
}
⊂ R

means that for any ε > 0, there exists (a, b) ∈ Z2 such that 0 < |a + bx| ≤ ε.
According to the irrationality criterion, this is equivalent to x being irrational.
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