UNIVERSITY OF NATURAL SCIENCES http://www.hcmuns.edu.vn/

HO CHI MINH City

Introduction to Diophantine methods: irrationality and transcendence

Michel Waldschmidt, Professeur, Université P. et M. Curie (Paris VI) http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Examen – December 15, 2007 3 hours

We denote by $e^z = \sum_{n \ge 0} z^n/n!$ the exponential function $(z \in \mathbb{C})$ and by $\log x$ the Neperian logarithm of a positive real number x, so that

$$e^{\log x} = x$$
 for $x > 0$ and $\log e^t = t$ for $t \in \mathbb{R}$.

Exercise 1. a) Prove that

$$\frac{\log 2}{\log 3}$$

is irrational.

b) Deduce that one at least of the two numbers log 2, log 3 is irrational.

c) Do you know whether both are irrational?

Exercise 2. For each of the following statements, say whether it is true or not, and explain your answer.

(i) If $x \in \mathbb{R}$ is irrational, then x^2 is irrational.

(ii) If $x \in \mathbb{R}$ is irrational, then \sqrt{x} is irrational.

(iii) If x and y in \mathbb{R} are irrational, then x + y is irrational.

(iv) If x and y in \mathbb{R} are irrational, then xy is irrational.

(v) If $x \in \mathbb{R}$ is irrational, then e^x is irrational.

(vi) If x > 0 is irrational, then $\log x$ is irrational.

Exercise 3. a) Let $f(X, Y) = aX^2 + bXY + cY^2 \in \mathbb{R}[X, Y]$ be a homogeneous quadratic polynomial with real coefficients and with positive discriminant

$$\Delta = b^2 - 4ac > 0.$$

Let $\epsilon > 0$. Show that there exists $(x, y) \in \mathbb{Z}^2$ with $(x, y) \neq (0, 0)$ such that

$$|f(x,y)| \le \sqrt{\Delta/5} + \epsilon$$

Hint: you may use a Theorem of Hurwitz.

b) Let Δ be a positive real number. Give an example of a homogeneous quadratic polynomial f having discriminant Δ such that

$$\min\{|f(x,y)| \; ; \; (x,y) \in \mathbb{Z} \times \mathbb{Z}, \; (x,y) \neq (0,0)\} = \sqrt{\Delta/5}.$$

c) Give an example of a homogeneous quadratic polynomial f having positive discriminant such that

$$\min\{|f(x,y)| \; ; \; (x,y) \in \mathbb{Z} \times \mathbb{Z}, \; (x,y) \neq (0,0)\} = 0.$$

Exercise 4. Let α be a complex number. Show that the following properties are equivalent.

(i) The number α is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$ (ii) The $\mathbb{Q}(i)$ -vector space spanned by 1, α , α^2 , α^3 ... has dimension ≤ 2 .

(iii) For any integer $m \ge 1$, the number α^m is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.

Exercise 5. a) Using Fourier's proof of the irrationality of e and Liouville's proof that e and e^2 are not quadratic numbers, show that e^{2i} is not root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.

b) Deduce that for any integer $m \ge 1$, the number $e^{2i/m}$ is not root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.

c) Show that for any integer $m \ge 1$, the numbers $(\cos(1/m))^2$, $(\sin(1/m))^2$, $\cos(1/m)\sin(1/m)$, $\cos(2/m)$, $\sin(2/m)$ are irrational.

Exercise 6. Show that a real number x is irrational if and only if 0 is an accumulation point of

$$\left\{a+bx; (a,b)\in\mathbb{Z}^2\right\}\subset\mathbb{R}.$$

Examen – December 15, 2007 Solutions

Solution exercise 1.

a) If a and b are two positive rational integers, then 2^b is even and 3^a is odd, therefore $2^b \neq 3^a$, hence $\log 2/\log 3 \neq a/b$.

b) The quotient of two rational numbers is a rational number.

c) By the Theorem of Hermite and Lindemann each of the numbers $\log 2,\,\log 3$ is transcendental, hence irrational.

Solution exercise 2.

(i) No: take for instance $x = \sqrt{2}$.

(ii) Yes: the square of a rational number a/b is a rational number a^2/b^2 . Hence if \sqrt{x} is rational then x is rational.

(iii) No: take any irrational number x, any rational number r and set y = r - x.

(iv) No: take any irrational number x, any rational number r and set y = r/x. (v) No: we have seen in exercise 1 that one at least of $x_1 = \log 2$, $x_2 = \log 3$ is irrational, while $e^{x_1} = 2$, $e^{x_2} = 3$ are rational.

(vi) No: take for instance x = e, which is irrational, while $\log e = 1$ is rational.

Solution exercise 3.

a) Let θ and θ' be the roots of the polynomial $aX^2 + bX + c$. By Hurwitz's Theorem for any $\epsilon > 0$ there exists x and y in \mathbb{Z} with $y^2 \ge |a|/5\epsilon$ and

$$\left|\theta - \frac{x}{y}\right| < \frac{1}{\sqrt{5}y^2}.$$

Write

$$f(x,y) = a(x - \theta y)(x - \theta' y)$$

and use the estimates

$$|x - \theta y| \le \frac{1}{\sqrt{5}y}$$
 and $|x - \theta' y| \le y|\theta - \theta'| + |x - \theta y| \le y|\theta - \theta'| + \frac{1}{\sqrt{5}y}$.

Since $|a(\theta - \theta')| = \sqrt{\Delta}$ we deduce

$$|f(x,y)| \le |a| \cdot \frac{1}{\sqrt{5y}} \left(y|\theta - \theta'| + \frac{1}{\sqrt{5y}} \right) \le \sqrt{\frac{\Delta}{5}} + \frac{|a|}{5y^2} \le \sqrt{\frac{\Delta}{5}} + \epsilon.$$

b) The sequence of Fibonacci numbers $(F_n)_{n\geq 0}$ satisfies

$$F_n^2 - F_n F_{n-1} - F_{n-1}^2 = (-1)^{n-1}$$
 for $n \ge 1$.

Define

$$f(X,Y) = \sqrt{\frac{\Delta}{5}}(X^2 - XY - Y^2).$$

Then f has discriminant Δ and $|f(F_n, F_{n-1})| = \sqrt{\Delta/5}$. On the other hand for any $(x, y) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ the number $x^2 - xy - y^2$ is a non-zero rational integer, hence has absolute value ≥ 1 . Therefore

$$\min\left\{|f(x,y)|\; ;\; (x,y)\in\mathbb{Z}\times\mathbb{Z},\; (x,y)\neq(0,0)\right\}=\sqrt{\Delta/5}.$$

c) Let θ be a real number such that for any $\epsilon > 0$ there exists $p/q \in \mathbb{Q}$ with

$$0 < \left| \theta - \frac{p}{q} \right| \le \frac{\epsilon}{q^2}$$

For instance a Liouville number satisfies this property (and much more!). Then the polynomial $f(X, Y) = Y(X - \theta Y)$ satisfies

$$\min\{|f(x,y)| \; ; \; (x,y) \in \mathbb{Z} \times \mathbb{Z}, \; (x,y) \neq (0,0)\} = 0.$$

Solution exercise 4.

The implication (iii) \Rightarrow (i) is trivial: take m = 1.

Proof of (i) \Rightarrow (ii). If α is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$, then there exist a and b in $\mathbb{Q}(i)$ such that $\alpha^2 = a\alpha + b$. By induction for each integer $m \geq 1$ we can write $\alpha^m = a_m \alpha + b_m$ with a_m and b_m in $\mathbb{Q}(i)$. Hence the $\mathbb{Q}(i)$ -vector space spanned by 1, α , α^2 , $\alpha^3 \dots$ is also spanned by 1, α , hence has dimension ≤ 2 .

Proof of (ii) \Rightarrow (iii). If the $\mathbb{Q}(i)$ -vector space spanned by 1, α , α^2 , α^3 ... has dimension ≤ 2 , then the three numbers 1, α^m , α^{2m} are linearly dependent over $\mathbb{Q}(i)$.

Solution exercise 5

a) Assume a, b and c are elements in $\mathbb{Z}[i]$ such that e^{2i} is a root of the polynomial $aX^2 + bX + c$. Write

$$ae^{2i} + b + ce^{-2i} = 0,$$

replace e^{2i} and e^{-2i} by the Taylor expansion of the exponential function, truncate at a rank N and multiply by $N!/2^{N-1}$:

$$\frac{N!}{2^{N-1}}b + \sum_{n=0}^{N} \frac{N!2^n}{n!2^{N-1}} \left(ai^n + c(-i)^n\right) = A_N + B_N + C_N \tag{1}$$

where

$$A_N = \frac{4}{N+1} \left(a i^{N+1} + c(-i)^{N+1} \right), \quad B_N = \frac{8}{(N+1)(N+2)} \left(a i^{N+2} + c(-i)^{N+2} \right)$$

and

$$C_N = \sum_{n \ge N+3} \frac{N! 2^n}{n! 2^{N-1}} \left(a i^n + c(-i)^n \right).$$

Take for N a power of 2, so that the numbers $N!/n!2^{N-n-1}$ are rational integers for $0 \leq n \leq N$. Hence in equation (1), the left hand side is in $\mathbb{Z}[i]$. Assume further that N is sufficiently large. In equation (1), the right hand side has modulus ≤ 1 , hence both sides vanish. Also for N sufficiently large

$$(N+1)|A_N| = (N+1)|B_N + C_N| < 1,$$

and since $(N+1)A_N$ is in $\mathbb{Z}[i]$ we deduce $A_N = 0$ and $B_N + C_N = 0$. Now

$$(N+1)(N+2)|B_N| = (N+1)(N+2)|C_N| < 1,$$

while $(N + 1)(N + 2)B_N$ is in $\mathbb{Z}[i]$, hence $B_N = 0$. From $A_N = B_N = 0$ we deduce a = c = 0, and finally also b = 0. c) Fix $m \ge 1$. Define

$$\alpha = e^{i/m}, \quad a_1 = \cos(1/m), \quad b_1 = \sin(1/m), \quad c_1 = \cos(1/m)\sin(1/m),$$

 $a_2 = \cos(2/m), \quad \text{and} \quad b_2 = \sin(2/m).$

We have

$$\alpha + \alpha^{-1} = 2a_1, \quad \alpha - \alpha^{-1} = 2ib_1,$$

 $\alpha^2 + \alpha^{-2} = 2a_2, \quad \alpha^2 - \alpha^{-2} = 2ib_2,$

hence

$$\alpha^{2} + \alpha^{-2} + 2 = 4a_{1}^{2}, \quad \alpha^{2} + \alpha^{-2} - 2 = -4b_{1}^{2}, \quad \alpha^{2} - \alpha^{-2} = 4ia_{1}b_{1}.$$

Since α^2 is not root of a quadratic equation with coefficients in $\mathbb{Q}(i)$, it follows that each of the numbers $a_1^2, b_1^2, a_1b_1, a_2, b_2$ is not in $\mathbb{Q}(i)$.

Solution exercise 6.

To say that 0 is an accumulation point of

$$\left\{a+bx ; (a,b) \in \mathbb{Z}^2\right\} \subset \mathbb{R}$$

means that for any $\epsilon > 0$, there exists $(a, b) \in \mathbb{Z}^2$ such that $0 < |a + bx| \le \epsilon$. According to the irrationality criterion, this is equivalent to x being irrational.