Introduction to Diophantine methods: irrationality and transcendence

Michel Waldschmidt,
Professeur, Université P. et M. Curie (Paris VI)
http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Examen - December 15, 2007
 3 hours

We denote by $e^{z}=\sum_{n \geq 0} z^{n} / n$! the exponential function $(z \in \mathbb{C})$ and by $\log x$ the Neperian logarithm of a positive real number x, so that

$$
e^{\log x}=x \text { for } x>0 \quad \text { and } \quad \log e^{t}=t \text { for } t \in \mathbb{R}
$$

Exercise 1. a) Prove that

$$
\frac{\log 2}{\log 3}
$$

is irrational.
b) Deduce that one at least of the two numbers $\log 2, \log 3$ is irrational.
c) Do you know whether both are irrational?

Exercise 2. For each of the following statements, say whether it is true or not, and explain your answer.
(i) If $x \in \mathbb{R}$ is irrational, then x^{2} is irrational.
(ii) If $x \in \mathbb{R}$ is irrational, then \sqrt{x} is irrational.
(iii) If x and y in \mathbb{R} are irrational, then $x+y$ is irrational.
(iv) If x and y in \mathbb{R} are irrational, then $x y$ is irrational.
(v) If $x \in \mathbb{R}$ is irrational, then e^{x} is irrational.
(vi) If $x>0$ is irrational, then $\log x$ is irrational.

Exercise 3. a) Let $f(X, Y)=a X^{2}+b X Y+c Y^{2} \in \mathbb{R}[X, Y]$ be a homogeneous quadratic polynomial with real coefficients and with positive discriminant

$$
\Delta=b^{2}-4 a c>0
$$

Let $\epsilon>0$. Show that there exists $(x, y) \in \mathbb{Z}^{2}$ with $(x, y) \neq(0,0)$ such that

$$
|f(x, y)| \leq \sqrt{\Delta / 5}+\epsilon
$$

Hint: you may use a Theorem of Hurwitz.
b) Let Δ be a positive real number. Give an example of a homogeneous quadratic polynomial f having discriminant Δ such that

$$
\min \{|f(x, y)| ;(x, y) \in \mathbb{Z} \times \mathbb{Z},(x, y) \neq(0,0)\}=\sqrt{\Delta / 5}
$$

c) Give an example of a homogeneous quadratic polynomial f having positive discriminant such that

$$
\min \{|f(x, y)| ;(x, y) \in \mathbb{Z} \times \mathbb{Z}, \quad(x, y) \neq(0,0)\}=0
$$

Exercise 4. Let α be a complex number. Show that the following properties are equivalent.
(i) The number α is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$
(ii) The $\mathbb{Q}(i)$-vector space spanned by $1, \alpha, \alpha^{2}, \alpha^{3} \ldots$ has dimension ≤ 2.
(iii) For any integer $m \geq 1$, the number α^{m} is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.

Exercise 5. a) Using Fourier's proof of the irrationality of e and Liouville's proof that e and e^{2} are not quadratic numbers, show that $e^{2 i}$ is not root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.
b) Deduce that for any integer $m \geq 1$, the number $e^{2 i / m}$ is not root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$.
c) Show that for any integer $m \geq 1$, the numbers $(\cos (1 / m))^{2},(\sin (1 / m))^{2}$, $\cos (1 / m) \sin (1 / m), \cos (2 / m), \sin (2 / m)$ are irrational.

Exercise 6. Show that a real number x is irrational if and only if 0 is an accumulation point of

$$
\left\{a+b x ;(a, b) \in \mathbb{Z}^{2}\right\} \subset \mathbb{R}
$$

Examen - December 15, 2007 Solutions

Solution exercise 1.

a) If a and b are two positive rational integers, then 2^{b} is even and 3^{a} is odd, therefore $2^{b} \neq 3^{a}$, hence $\log 2 / \log 3 \neq a / b$.
b) The quotient of two rational numbers is a rational number.
c) By the Theorem of Hermite and Lindemann each of the numbers $\log 2, \log 3$ is transcendental, hence irrational.

Solution exercise 2.

(i) No: take for instance $x=\sqrt{2}$.
(ii) Yes: the square of a rational number a / b is a rational number a^{2} / b^{2}. Hence if \sqrt{x} is rational then x is rational.
(iii) No: take any irrational number x, any rational number r and set $y=r-x$.
(iv) No: take any irrational number x, any rational number r and set $y=r / x$.
(v) No: we have seen in exercise 1 that one at least of $x_{1}=\log 2, x_{2}=\log 3$ is irrational, while $e^{x_{1}}=2, e^{x_{2}}=3$ are rational.
(vi) No: take for instance $x=e$, which is irrational, while $\log e=1$ is rational.

Solution exercise 3.

a) Let θ and θ^{\prime} be the roots of the polynomial $a X^{2}+b X+c$. By Hurwitz's Theorem for any $\epsilon>0$ there exists x and y in \mathbb{Z} with $y^{2} \geq|a| / 5 \epsilon$ and

$$
\left|\theta-\frac{x}{y}\right|<\frac{1}{\sqrt{5} y^{2}}
$$

Write

$$
f(x, y)=a(x-\theta y)\left(x-\theta^{\prime} y\right)
$$

and use the estimates

$$
|x-\theta y| \leq \frac{1}{\sqrt{5} y} \quad \text { and } \quad\left|x-\theta^{\prime} y\right| \leq y\left|\theta-\theta^{\prime}\right|+|x-\theta y| \leq y\left|\theta-\theta^{\prime}\right|+\frac{1}{\sqrt{5} y}
$$

Since $\left|a\left(\theta-\theta^{\prime}\right)\right|=\sqrt{\Delta}$ we deduce

$$
|f(x, y)| \leq|a| \cdot \frac{1}{\sqrt{5} y}\left(y\left|\theta-\theta^{\prime}\right|+\frac{1}{\sqrt{5} y}\right) \leq \sqrt{\frac{\Delta}{5}}+\frac{|a|}{5 y^{2}} \leq \sqrt{\frac{\Delta}{5}}+\epsilon
$$

b) The sequence of Fibonacci numbers $\left(F_{n}\right)_{n \geq 0}$ satisfies

$$
F_{n}^{2}-F_{n} F_{n-1}-F_{n-1}^{2}=(-1)^{n-1} \quad \text { for } n \geq 1
$$

Define

$$
f(X, Y)=\sqrt{\frac{\Delta}{5}}\left(X^{2}-X Y-Y^{2}\right)
$$

Then f has discriminant Δ and $\left|f\left(F_{n}, F_{n-1}\right)\right|=\sqrt{\Delta / 5}$. On the other hand for any $(x, y) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ the number $x^{2}-x y-y^{2}$ is a non-zero rational integer, hence has absolute value ≥ 1. Therefore

$$
\min \{|f(x, y)| ;(x, y) \in \mathbb{Z} \times \mathbb{Z},(x, y) \neq(0,0)\}=\sqrt{\Delta / 5}
$$

c) Let θ be a real number such that for any $\epsilon>0$ there exists $p / q \in \mathbb{Q}$ with

$$
0<\left|\theta-\frac{p}{q}\right| \leq \frac{\epsilon}{q^{2}}
$$

For instance a Liouville number satisfies this property (and much more!). Then the polynomial $f(X, Y)=Y(X-\theta Y)$ satisfies

$$
\min \{|f(x, y)| ;(x, y) \in \mathbb{Z} \times \mathbb{Z},(x, y) \neq(0,0)\}=0
$$

Solution exercise 4.

The implication (iii) \Rightarrow (i) is trivial: take $m=1$.
Proof of (i) \Rightarrow (ii). If α is root of a polynomial of degree ≤ 2 with coefficients in $\mathbb{Q}(i)$, then there exist a and b in $\mathbb{Q}(i)$ such that $\alpha^{2}=a \alpha+b$. By induction for each integer $m \geq 1$ we can write $\alpha^{m}=a_{m} \alpha+b_{m}$ with a_{m} and b_{m} in $\mathbb{Q}(i)$. Hence the $\mathbb{Q}(i)$-vector space spanned by $1, \alpha, \alpha^{2}, \alpha^{3} \ldots$ is also spanned by $1, \alpha$, hence has dimension ≤ 2.

Proof of (ii) \Rightarrow (iii). If the $\mathbb{Q}(i)$-vector space spanned by $1, \alpha, \alpha^{2}, \alpha^{3} \ldots$ has dimension ≤ 2, then the three numbers $1, \alpha^{m}, \alpha^{2 m}$ are linearly dependent over $\mathbb{Q}(i)$.
Solution exercise 5
a) Assume a, b and c are elements in $\mathbb{Z}[i]$ such that $e^{2 i}$ is a root of the polynomial $a X^{2}+b X+c$. Write

$$
a e^{2 i}+b+c e^{-2 i}=0
$$

replace $e^{2 i}$ and $e^{-2 i}$ by the Taylor expansion of the exponential function, truncate at a rank N and multiply by $N!/ 2^{N-1}$:

$$
\begin{equation*}
\frac{N!}{2^{N-1}} b+\sum_{n=0}^{N} \frac{N!2^{n}}{n!2^{N-1}}\left(a i^{n}+c(-i)^{n}\right)=A_{N}+B_{N}+C_{N} \tag{1}
\end{equation*}
$$

where
$A_{N}=\frac{4}{N+1}\left(a i^{N+1}+c(-i)^{N+1}\right), \quad B_{N}=\frac{8}{(N+1)(N+2)}\left(a i^{N+2}+c(-i)^{N+2}\right)$
and

$$
C_{N}=\sum_{n \geq N+3} \frac{N!2^{n}}{n!2^{N-1}}\left(a i^{n}+c(-i)^{n}\right)
$$

Take for N a power of 2 , so that the numbers $N!/ n!2^{N-n-1}$ are rational integers for $0 \leq n \leq N$. Hence in equation (1), the left hand side is in $\mathbb{Z}[i]$. Assume further that N is sufficiently large. In equation (1), the right hand side has modulus ≤ 1, hence both sides vanish. Also for N sufficiently large

$$
(N+1)\left|A_{N}\right|=(N+1)\left|B_{N}+C_{N}\right|<1,
$$

and since $(N+1) A_{N}$ is in $\mathbb{Z}[i]$ we deduce $A_{N}=0$ and $B_{N}+C_{N}=0$. Now

$$
(N+1)(N+2)\left|B_{N}\right|=(N+1)(N+2)\left|C_{N}\right|<1
$$

while $(N+1)(N+2) B_{N}$ is in $\mathbb{Z}[i]$, hence $B_{N}=0$. From $A_{N}=B_{N}=0$ we deduce $a=c=0$, and finally also $b=0$.
c) Fix $m \geq 1$. Define

$$
\begin{gathered}
\alpha=e^{i / m}, \quad a_{1}=\cos (1 / m), \quad b_{1}=\sin (1 / m), \quad c_{1}=\cos (1 / m) \sin (1 / m), \\
a_{2}=\cos (2 / m), \quad \text { and } \quad b_{2}=\sin (2 / m)
\end{gathered}
$$

We have

$$
\begin{aligned}
\alpha+\alpha^{-1} & =2 a_{1}, \quad \alpha-\alpha^{-1}=2 i b_{1} \\
\alpha^{2}+\alpha^{-2} & =2 a_{2}, \quad \alpha^{2}-\alpha^{-2}=2 i b_{2}
\end{aligned}
$$

hence

$$
\alpha^{2}+\alpha^{-2}+2=4 a_{1}^{2}, \quad \alpha^{2}+\alpha^{-2}-2=-4 b_{1}^{2}, \quad \alpha^{2}-\alpha^{-2}=4 i a_{1} b_{1}
$$

Since α^{2} is not root of a quadratic equation with coefficients in $\mathbb{Q}(i)$, it follows that each of the numbers $a_{1}^{2}, b_{1}^{2}, a_{1} b_{1}, a_{2}, b_{2}$ is not in $\mathbb{Q}(i)$.

Solution exercise 6.

To say that 0 is an accumulation point of

$$
\left\{a+b x ;(a, b) \in \mathbb{Z}^{2}\right\} \subset \mathbb{R}
$$

means that for any $\epsilon>0$, there exists $(a, b) \in \mathbb{Z}^{2}$ such that $0<|a+b x| \leq \epsilon$. According to the irrationality criterion, this is equivalent to x being irrational.

