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Exercise 1. For n ≥ 1 define

an =

{
1 if n is a power of 2,
0 otherwise.

Hence

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, . . . ) = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, . . . ).

Prove that the number written in binary notation

0.a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 · · · = 0.1 1 0 1 0 0 0 1 0 0 . . .

is irrational.

Exercise 2. Which are the correct sentences? Explain your answer.
(i) The sum of two rational numbers is

(A) always rational
(B) always irrational
(C) sometimes rational, sometimes irrational.

(ii) The sum of two irrrational numbers is
(A) always rational
(B) always irrational
(C) sometimes rational, sometimes irrational.

(iii) The sum of rational number and an irrational number is
(A) always rational
(B) always irrational
(C) sometimes rational, sometimes irrational.

(iv), (v), (vi) Same questions with the product instead of the sum.
(vii) If (an)n≥0 is an infinite sequence with an ∈ {−1, 1} for all n ≥ 0, then the
number ∑

n≥0

an2−n

is irrational.
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Exercise 3. Define u0 = 0, u1 = 1, and by induction un = 2un−1 + un−2 for
n ≥ 2.
a) Check, for any n ≥ 1,

u2
n − 2unun−1 − u2

n−1 = (−1)n−1.

b) Show that the sequence (un/un−1)n≥1 converges as n → ∞. What is the
limit?
c) Prove that there exists a sequence (pn/qn)n≥1 of rational numbers such that

lim
n→∞

qn

∣∣∣qn√2− pn
∣∣∣ =

1
2
√

2
·

d) Prove that for any κ > 2
√

2, there are only finitely many p/q ∈ Q satisfying∣∣∣∣√2− p

q

∣∣∣∣ ≤ 1
κq2
·

Exercise 4. Let α be a complex number. Show that the following properties
are equivalent.
(i) α is root of a polynomial of degree ≤ 3 with rational coefficients.
(ii) The Q–vector space spanned by 1, α, α2, α3 . . . has dimension ≤ 3.
(iii) For any integer m ≥ 1, the number αm is root of a polynomial of degree
≤ 3 with rational coefficients.

Exercise 5. Recall the next Theorem due to Hermite and Lindemann: for any
non–zero complex number z, one at least of the two numbers z, ez is transcen-
dental. Deduce the following results.
a) For any non–zero algebraic number α, the numbers eα, cos(α) and sin(α) are
transcendental.
b) Let λ ∈ C, λ 6= 0. Assume eλ is algebraic. Then λ is transcendental.
c) The numbers log 2 and π are transcendental.
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Examen – Second session
Solutions

Solution exercise 1.
For m ≥ 1 between a2m and a2m+1 there are 2m − 1 consecutive zeroes,

a2m+1 = a2m+2 = · · · = a2m+1−1 = 0.

Therefore the sequence (an)n≥0 is not ultimately periodic, and it follows that
the given number is irrational.

Solution exercise 2.

(i) The sum of two rational numbers is
(A) always rational

because
a

b
+
c

d
=
ad+ bc

bd
·

The set of rational numbers is a field.
(ii) The sum of two irrrational numbers is

(C) sometimes rational, sometimes irrational.
If x is irrational and r is rational then y = r − x is irrational, while the sum of
x and y is r, hence is rational.
If x is irrational then x+ x = 2x is also irrational.
(iii) The sum of rational number and an irrational number is

(B) always irrational.
If r is rational and r+ x is also rational then x = (r+ x)− r is rational. Hence
if r is rational and x is irrational then r + x is irrational.
(iv) The product of two rational numbers is

(A) always rational
because

a

b
· c
d

=
ac

bd
·

The set of rational numbers is a field.
(v) The product of two irrrational numbers is

(C) sometimes rational, sometimes irrational.
If x is irrational and r is rational then y = r/x is irrational, while the product
of x and y is r hence is rational.
If t is rational then t2 is also rational. Therefore if x is irrational then

√
x is

also irrational. Now the product of
√
x with itself is x, hence irrational.

(vi) The product of rational number and an irrational number is
(C) sometimes rational, sometimes irrational.

The product of 0 and any irrational number is 0, hence rational.
If r 6= 0 is rational and rx is also rational then x = rx/r is rational, hence if r
is rational 6= 0 and x is irrational then rx is irrational.
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(vii) If the sequence (an)n≥0 is ultimately periodic, then the number∑
n≥0

an2−n

is rational. For instance for an = 1 for all n ≥ 0 the sum is 2.

Solution exercise 3. For n ≥ 1 set

vn = un/un−1 and wn = u2
n − 2unun−1 − u2

n−1

so that
wn = u2

n−1(v2
n − 2vn − 1).

a) From the recurrence formula un+1 = 2un + un−1 one deduces

wn+1 = u2
n+1−2un+1un−u2

n = un+1(un+1−2un)−u2
n = un−1(2un+un−1)−u2

n = −wn.

Therefore wn = (−1)nw0, and since w0 = 1 we conclude wn = (−1)n−1.
b) The roots of the polynomial X2 − 2X − 1 are α = 1 +

√
2 and α′ = 1−

√
2.

Notice that α′ < 0 < α and

wn = (un − αun−1)(un − α′un−1).

From the recurrence formula we deduce un > 2un−1 for n ≥ 2, hence un ≥ 2n

for n ≥ 0 and
un − α′un−1 ≥ un ≥ 2n.

Using |wn| = 1 we obtain

|α− vn| ≤
1

22n−1
·

Therefore the sequence (vn)n≥1 converges to α = 1 +
√

2 as n→∞.
c) We have wn = u2

n−1(vn−α)(vn−α′) and the limit of the sequence (vn−α′)n≥1

is α− α′ = 2
√

2. Hence

lim
n→∞

un−1 |un−1α− un| =
1

2
√

2
·

For n ≥ 1 define pn = un−1 − un and qn = un−1. Then

lim
n→∞

qn

∣∣∣qn√2− pn
∣∣∣ =

1
2
√

2
·

d) For κ > 2
√

2, let p/q ∈ Q satisfy∣∣∣∣√2− p

q

∣∣∣∣ ≤ 1
κq2
·

We have

1 ≤ |(p+q)2−2q(p+q)−q2| = |(p+q−qα)(p+q−qα′)| ≤ 1
κ

(
α− α′ + 1

κq2

)
·
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Hence q2κ(κ − 2
√

2) < 1. Therefore q is bounded, and since p is the nearest
integer to q

√
2 there are only finitely many solutions p/q.

Solution exercise 4.
The implication (iii) ⇒ (i) is trivial: take m = 1.

Proof of (i)⇒ (ii). Since α is root of a polynomial of degree ≤ 3 with rational
coefficients, then it is also root of a monic polynomial X3 − aX2 − bX − c of
degree 3 with rational coefficients (multiply by X or X2 if necessary and divide
by the leading coefficient). By induction, for each integer m ≥ 1 we can write
αm = amα

2 + bmα + cm with am, bm and cm in Q. Hence the Q–vector space
spanned by 1, α, α2, α3 . . . is also spanned by 1, α, α2, hence has dimension
≤ 3.

Proof of (ii) ⇒ (iii). If the Q–vector space spanned by 1, α, α2, α3 . . . has
dimension ≤ 3, then the four numbers 1, αm, α2m, α3m are linearly dependent
over Q.

Solution exercise 5.
a) Let α be a non–zero algebraic number. Taking z = α in the Hermite–
Lindemann Theorem shows that eα is transcendental. Also iα is a non–zero
algebraic number, hence eiα is transcendental. This means that it is not root of
a polynomial with rational coefficients, and this implies that it is not root of a
polynomial with algebraic coefficients. Since eiα is root of the polynomials

X2 − 2X cos(α) + 1 and X2 − 2iX sin(α)− 1,

it follows that cos(α) and sin(α) are transcendental.
b) Let λ ∈ C, λ 6= 0. If eλ is algebraic, then the Hermite–Lindemann Theorem
with z = λ shows that λ is transcendental.
c) For λ = log 2 the number eλ = 2 is algebraic, hence log 2 is transcendental.
For λ = iπ the number eλ = −1 is algebraic, hence iπ is transcendental. The
product of two algebraic numbers is algebraic, and i is algebraic, hence π is
transcendental.
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