Introduction to Diophantine methods Michel Waldschmidt
http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Exercises

Solve as many as you can, but at least 2, of the following exercises.
Deadline: Monday, october 1, 2007, 1:30 pm. ${ }^{6}$
Exercise 1. Recall the geometric construction given in § 1.1 : starting with a rectangle of sides 1 and x, split it into a maximal number of squares of sides 1 , and if a second smaller rectangle remains repeat the construction: split it into squares as much as possible and continue if a third rectangle remains.
a) Prove that the number of squares in this process is the sequence of integers $\left(a_{n}\right)_{n \geq_{0}}$ in the continued fraction expansion of x.
b) Start with a unit square. Put on top of it another unit square: you get a rectangle with sides 1 and 2 . Next put on the right a square of sides 2, which produces a rectangle with sides 2 and 3 . Continue the process as follows: when you reach a rectangle of small side a and large side b, complete it with a square of sides b, so that you get a rectangle with sides b and $a+b$.
Which is the sequence of sides of the rectangles you obtain with this process? Generalizing this idea, deduce a geometrical construction of the rational number having continued fraction expansion

$$
\left[a_{0} ; a_{1}, \ldots, a_{k}\right]
$$

Exercise 2. Let $b \geq 2$ be an integer. Show that a real number x is rational if and only if the sequence $\left(d_{n}\right)_{n \geq 1}$ of digits of x in the expansion in basis b

$$
x=[x]+d_{1} b^{-1}+d_{2} b^{-2}+\cdots+d_{n} b^{-n}+\cdots \quad\left(0 \leq d_{n}<b\right)
$$

is ultimately periodic (see § 1.1).
Deduce another proof of Lemma 1.17 in \S 1.3.5.
Exercise 3. Let $b \geq 2$ be an integer. Let $\left(a_{n}\right)_{n \geq 0}$ be a bounded sequence of rational integers and $\left(u_{n}\right)_{n \geq 0}$ an increasing sequence of positive numbers. Assume there exists $c>0$ such that, for all sufficiently large n,

$$
u_{n}-u_{n-1} \geq c n
$$

Show that the number

$$
\vartheta=\sum_{n \geq 0} a_{n} b^{-u_{n}}
$$

is irrational if and only if the set $\left\{n \geq 0 ; a_{n} \neq 0\right\}$ is infinite.
Compare with Lemma 1.17 in \S 1.3.5.

[^0]Exercise 4. Recall the proof, given in in $\S 1.1$ of the irrationality of the square root of an integer n, assuming n is not the square of an integer: by contradiction, assume \sqrt{n} is rational and write $\sqrt{n}=a / b$ as an irreducible fraction; notice that b is the least positive integer such that $b \sqrt{n}$ is an integer; denote by m the integral part of \sqrt{n} and consider the number $b^{\prime}=(\sqrt{n}-m) b$. Since $0<b^{\prime}<b$ and $b^{\prime} \sqrt{n}$ is an integer, we get a contradiction.

Extend this proof to a proof of the irrationality of $\sqrt[k]{n}$, when n and k are positive integers and n is not the k-th power of an integer.

Exercise 5. Let α be a complex number. Show that the following properties are equivalent.
(i) The number α is algebraic.
(ii) The numbers $1, \alpha, \alpha^{2}, \ldots$ are linearly dependent over \mathbb{Q}.
(iii) The \mathbb{Q}-vector subspace of \mathbb{C} spanned by the numbers $1, \alpha, \alpha^{2}, \ldots$ has finite dimension.
(iv) There exists an integer $N \geq 1$ such that the \mathbb{Q}-vector subspace of \mathbb{C} spanned by the N numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{N-1}$ has dimension $<N$.
(v) There exists positive integers $n_{1}<n_{2}<\ldots<n_{k}$ such that $\alpha^{n_{1}}, \ldots, \alpha^{n_{k}}$ are linearly dependent over \mathbb{Q}.

Exercise 6. Recall the definition of the Smarandache function given in § 1.2.7 Prove that for any $p / q \in \mathbb{Q}$ with $q \geq 2$,

$$
\left|e-\frac{p}{q}\right|>\frac{1}{(S(q)+1)!}
$$

Exercise 7. Let $\left(a_{n}\right)_{n \geq 0}$ be a bounded sequence of rational integers.
a) Prove that the following conditions are equivalent:
(i) The number

$$
\vartheta_{1}=\sum_{n \geq 0} \frac{a_{n}}{n!}
$$

is rational.
(ii) There exists $N_{0}>0$ such that $a_{n}=0$ for all $n \geq N_{0}$.
b) Prove that these properties are also equivalent to
(iii) The number

$$
\vartheta_{2}=\sum_{n \geq 0} \frac{a_{n} 2^{n}}{n!}
$$

is rational.
Exercise 8. Complete the proof of (iii) \Rightarrow (iv) in Lemma 1.6.
Exercise 9. Extend the irrationality criterion Lemma 1.6 by replacing \mathbb{Q} by $\mathbb{Q}(i)$.

Exercise 10. Check that any solution (m, m_{1}, m_{2}) of Markoff's equation (1.15) is in Markoff's tree.
(See § 1.4.1).

Exercise 11. a) Check that Liouville's inequality in Lemma 2.12 holds with d the degree of the minimal polynomial of α and c given by

$$
c=\frac{1}{1+\max _{|t-\alpha| \leq 1}\left|P^{\prime}(t)\right|}
$$

where $P \in \mathbb{Z}[X]$ is the minimal polynomial of α.
b) Check also that the same estimate is true with again d the degree of the minimal polynomial P of α and c given by

$$
c=\frac{1}{a_{0} \prod_{i=2}^{d}\left(\left|\alpha_{j}-\alpha\right|+1\right)},
$$

where a_{0} is the leading coefficient and $\alpha_{1}, \ldots, \alpha_{d}$ the roots of P with $\alpha_{1}=\alpha$:

$$
P(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \cdots\left(X-\alpha_{d}\right)
$$

Exercise 12. Let m and n be positive integers and $\vartheta_{i j}(1 \leq i \leq n, 1 \leq j \leq m$ be $m n$ real numbers. Let $Q \geq 1$ be a positive integer. Show that there exists rational integers $q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}$ with

$$
1 \leq \max \left\{\left|q_{1}\right|, \ldots,\left|q_{m}\right|\right\}<Q^{n / m}
$$

and

$$
\max _{1 \leq i \leq n}\left|\vartheta_{i 1} q_{1}+\cdots+\vartheta_{i m} q_{m}-p_{i}\right| \leq \frac{1}{Q}
$$

Deduce that if $\vartheta_{1}, \ldots, \vartheta_{m}$ are real numbers and H a positive integer, then there exists a tuple $\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ of rational integers such that

$$
0<\max _{1 \leq i \leq m}\left|a_{i}\right| \leq H \quad \text { and } \quad\left|a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}\right| \leq H^{-m}
$$

Exercise 13. Let f_{1}, \ldots, f_{m} be analytic functions of one complex variable near the origin. Let $d_{0}, d_{1}, \ldots, d_{m}$ be non-negative integers. Set

$$
M=d_{0}+d_{1}+\cdots+d_{m}+m
$$

a) Show that there exists a tuple $\left(A_{0}, \ldots, A_{m}\right)$ of polynomials in $\mathbb{C}[X]$, not all of which are zero, where A_{i} has degree $\leq d_{i}$, such that the function

$$
A_{0}+A_{1} f_{1}+\cdots+A_{m} f_{m}
$$

has a zero at the origin of multiplicity $\geq M$.
(This is Exercise 9 .)
b) Give an explicit solution $\left(A_{0}, A_{1}\right)$ in the case $m=1$ and $f_{1}(z)=e^{z}$.

Exercise 14. Prove the implication (i) \Rightarrow (ii) in lemma 2.2 in the special cases $m=1, m=2$ and $m=3$.

Exercise 15. a) Let b be a positive integer. Give the continued fraction expansion of the number

$$
\frac{-b+\sqrt{b^{2}-4}}{2} .
$$

b) Let a and b be two positive integers. Write a degree 2 polynomial with integer coefficients having a root at the real number whose continued fraction expansion is

$$
[0 ; \overline{a, b}]
$$

Exercise 16. Check that the resistance of the following network for the circuit

is given by the continued fraction

$$
\left[R_{0} ; S_{1}, R_{1}, S_{2}, R_{2} \ldots\right]
$$

(See § 2.2.2).
Exercise 17. Using Hermite's method as explained in $\S 2.1$, prove that for any non-zero $r \in \mathbb{Q}(i)$, the number e^{r} is transcendental.
Exercise 18. Let $\left(v_{n}\right)_{n \geq 1}$ be a sequence of positive integers. Check that the following properties are equivalent.
(i) $\lim _{n \rightarrow \infty} v_{n}=+\infty$.
(ii) For any integer $k \geq 1$, the set of $n \geq 1$ such that $v_{n}=k$ is finite.

Remark. This question is related with Pillai's Conjecture.
Exercise 19. Prove that the following conditions are equivalent.
(i) There exists $c_{1}>0$ such that, for any pair (a, b) of integers satisfying $a \geq 3$ and $b \geq 2$,

$$
\left|e^{b}-a\right| \geq a^{-c_{1}}
$$

(ii) There exists $c_{2}>0$ such that, for any pair (a, b) of integers satisfying $a \geq 3$ and $b \geq 2$,

$$
\left|e^{b}-a\right| \geq e^{-c_{2} b}
$$

(vii) There exists $c_{3}>0$ such that, for any pair (a, b) of integers satisfying $a \geq 3$ and $b \geq 2$,

$$
|b-\log a| \geq a^{-c_{3}}
$$

(viii) There exists $c_{4}>0$ such that, for any pair (a, b) of integers satisfying $a \geq 3$ and $b \geq 2$,

$$
|b-\log a| \geq e^{-c_{4} b}
$$

Exercise 20. Let m be a positive integer and $\epsilon>0$ a real number. Show that there exists $q_{0}>0$ such that, for any $q \geq q_{0}$ and for any tuple $\left(q, p_{1}, \ldots, p_{m}\right)$ of rational integers with $q>q_{0}$,

$$
\max _{1 \leq \mu \leq m}\left|e^{\mu}-\frac{p_{\mu}}{q}\right| \geq \frac{1}{q^{1+(1 / m)+\epsilon}}
$$

Is it possible to improve the exponent by replacing $1+(1 / m)$ with a smaller number?
Hint. Consider Hermite's proof of the transcendence of $e(\S 2.1 .3)$, especially Proposition 2.10. First check (for instance using Cauchy's formulae)

$$
\max _{0 \leq j \leq m} \frac{1}{k!}\left|D^{k} f_{j}(\mu)\right| \leq c_{1}^{n}
$$

where c_{1} is a positive real number which does not depend on n. Next, check that the numbers p_{j} and $q_{\mu j}$ satisfy

$$
\max \left\{q_{j},\left|p_{\mu j}\right|\right\} \leq(n!)^{m} c_{2}^{m}
$$

for $1 \leq \mu \leq m$ and $0 \leq j \leq n$, where again $c_{2}>0$ does not depend on n. Then repeat the proof of Hermite in $\S 2.1$ with n satisfying

$$
(n!)^{m} c_{3}^{-2 m n} \leq q<((n+1)!)^{m} c_{3}^{-2 m(n+1)}
$$

where $c_{3}>0$ is a suitable constant independent on n. One does not need to compute c_{1}, c_{2} and c_{3} in terms of m, one only needs to show their existence so that the proof yields the desired estimate.

[^0]: ${ }^{6}$ Updated: February 20, 2008

