Introduction to Diophantine methods Michel Waldschmidt http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Exercises

Solve as many as you can, but at least 2, of the following exercises. Deadline: Monday, october 1, 2007, 1:30 pm.⁶

Exercise 1. Recall the geometric construction given in § 1.1 : starting with a rectangle of sides 1 and x, split it into a maximal number of squares of sides 1, and if a second smaller rectangle remains repeat the construction: split it into squares as much as possible and continue if a third rectangle remains.

a) Prove that the number of squares in this process is the sequence of integers $(a_n)_{n>0}$ in the continued fraction expansion of x.

b) Start with a unit square. Put on top of it another unit square: you get a rectangle with sides 1 and 2. Next put on the right a square of sides 2, which produces a rectangle with sides 2 and 3. Continue the process as follows: when you reach a rectangle of small side a and large side b, complete it with a square of sides b, so that you get a rectangle with sides b and a + b.

Which is the sequence of sides of the rectangles you obtain with this process? Generalizing this idea, deduce a geometrical construction of the rational number having continued fraction expansion

$$[a_0; a_1, \ldots, a_k].$$

Exercise 2. Let $b \ge 2$ be an integer. Show that a real number x is rational if and only if the sequence $(d_n)_{n\ge 1}$ of digits of x in the expansion in basis b

$$x = [x] + d_1 b^{-1} + d_2 b^{-2} + \dots + d_n b^{-n} + \dots \qquad (0 \le d_n < b)$$

is ultimately periodic (see $\S 1.1$). Deduce another proof of Lemma 1.17 in $\S 1.3.5$.

Exercise 3. Let $b \ge 2$ be an integer. Let $(a_n)_{n\ge 0}$ be a bounded sequence of rational integers and $(u_n)_{n\ge 0}$ an increasing sequence of positive numbers. Assume there exists c > 0 such that, for all sufficiently large n,

$$u_n - u_{n-1} \ge cn.$$

Show that the number

$$\vartheta = \sum_{n \ge 0} a_n b^{-u_n}$$

is irrational if and only if the set $\{n \ge 0 ; a_n \ne 0\}$ is infinite. Compare with Lemma 1.17 in § 1.3.5.

⁶Updated: February 20, 2008

Exercise 4. Recall the proof, given in in § 1.1 of the irrationality of the square root of an integer n, assuming n is not the square of an integer: by contradiction, assume \sqrt{n} is rational and write $\sqrt{n} = a/b$ as an irreducible fraction; notice that b is the least positive integer such that $b\sqrt{n}$ is an integer; denote by m the integral part of \sqrt{n} and consider the number $b' = (\sqrt{n} - m)b$. Since 0 < b' < b and $b'\sqrt{n}$ is an integer, we get a contradiction.

Extend this proof to a proof of the irrationality of $\sqrt[k]{n}$, when n and k are positive integers and n is not the k-th power of an integer.

Exercise 5. Let α be a complex number. Show that the following properties are equivalent.

(i) The number α is algebraic.

(ii) The numbers $1, \alpha, \alpha^2, \ldots$ are linearly dependent over \mathbb{Q} .

(iii) The Q-vector subspace of C spanned by the numbers $1, \alpha, \alpha^2, \ldots$ has finite dimension.

(iv) There exists an integer $N \ge 1$ such that the Q-vector subspace of C spanned by the N numbers $1, \alpha, \alpha^2, \ldots, \alpha^{N-1}$ has dimension < N.

(v) There exists positive integers $n_1 < n_2 < \ldots < n_k$ such that $\alpha^{n_1}, \ldots, \alpha^{n_k}$ are linearly dependent over \mathbb{Q} .

Exercise 6. Recall the definition of the Smarandache function given in § 1.2.7 Prove that for any $p/q \in \mathbb{Q}$ with $q \geq 2$,

$$\left|e - \frac{p}{q}\right| > \frac{1}{(S(q)+1)!}$$

Exercise 7. Let $(a_n)_{n\geq 0}$ be a bounded sequence of rational integers.

a) Prove that the following conditions are equivalent:

(i) The number

$$\vartheta_1 = \sum_{n \ge 0} \frac{a_n}{n!}$$

is rational.

(ii) There exists $N_0 > 0$ such that $a_n = 0$ for all $n \ge N_0$. b) Prove that these properties are also equivalent to

(iii) The number

$$\vartheta_2 = \sum_{n \ge 0} \frac{a_n 2^n}{n!}$$

is rational.

Exercise 8. Complete the proof of $(iii) \Rightarrow (iv)$ in Lemma 1.6.

Exercise 9. Extend the irrationality criterion Lemma 1.6 by replacing \mathbb{Q} by $\mathbb{Q}(i)$.

Exercise 10. Check that any solution (m, m_1, m_2) of Markoff's equation (1.15) is in Markoff's tree.

(See \S 1.4.1).

Exercise 11. a) Check that Liouville's inequality in Lemma 2.12 holds with d the degree of the minimal polynomial of α and c given by

$$c = \frac{1}{1 + \max_{|t-\alpha| \le 1} |P'(t)|}$$
.

where $P \in \mathbb{Z}[X]$ is the minimal polynomial of α .

b) Check also that the same estimate is true with again d the degree of the minimal polynomial P of α and c given by

$$c = \frac{1}{a_0 \prod_{i=2}^{d} (|\alpha_j - \alpha| + 1)},$$

where a_0 is the leading coefficient and $\alpha_1, \ldots, \alpha_d$ the roots of P with $\alpha_1 = \alpha$:

$$P(X) = a_0(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_d).$$

Exercise 12. Let *m* and *n* be positive integers and ϑ_{ij} $(1 \le i \le n, 1 \le j \le m)$ be *mn* real numbers. Let $Q \ge 1$ be a positive integer. Show that there exists rational integers $q_1, \ldots, q_m, p_1, \ldots, p_n$ with

$$1 \le \max\{|q_1|, \ldots, |q_m|\} < Q^{n/m}$$

and

$$\max_{1 \le i \le n} |\vartheta_{i1}q_1 + \dots + \vartheta_{im}q_m - p_i| \le \frac{1}{Q}.$$

Deduce that if $\vartheta_1, \ldots, \vartheta_m$ are real numbers and H a positive integer, then there exists a tuple (a_0, a_1, \ldots, a_m) of rational integers such that

$$0 < \max_{1 \le i \le m} |a_i| \le H \quad \text{and} \quad |a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m| \le H^{-m}$$

Exercise 13. Let f_1, \ldots, f_m be analytic functions of one complex variable near the origin. Let d_0, d_1, \ldots, d_m be non-negative integers. Set

$$M = d_0 + d_1 + \dots + d_m + m$$

a) Show that there exists a tuple (A_0, \ldots, A_m) of polynomials in $\mathbb{C}[X]$, not all of which are zero, where A_i has degree $\leq d_i$, such that the function

$$A_0 + A_1 f_1 + \dots + A_m f_m$$

has a zero at the origin of multiplicity $\geq M$. (This is Exercise 9 .)

b) Give an explicit solution (A_0, A_1) in the case m = 1 and $f_1(z) = e^z$.

Exercise 14. Prove the implication (i) \Rightarrow (ii) in lemma 2.2 in the special cases m = 1, m = 2 and m = 3.

Exercise 15. a) Let b be a positive integer. Give the continued fraction expansion of the number

$$\frac{-b + \sqrt{b^2 - 4}}{2}$$

b) Let a and b be two positive integers. Write a degree 2 polynomial with integer coefficients having a root at the real number whose continued fraction expansion is

 $[0; \overline{a, b}].$

Exercise 16. Check that the resistance of the following network for the circuit

 $\circ \underbrace{\stackrel{R_0}{\longrightarrow} \stackrel{R_1}{\longrightarrow} \stackrel{R_2}{\longrightarrow} \cdots }_{\substack{1/S_1 \\ \downarrow 1/S_2 \\ \downarrow 1/S_1 \\ \downarrow 1/S_2 \\ \downarrow 1/S_j: \text{ resistances in parallele}}$

is given by the continued fraction

$$[R_0; S_1, R_1, S_2, R_2 \dots]$$

(See \S 2.2.2).

Exercise 17. Using Hermite's method as explained in § 2.1, prove that for any non-zero $r \in \mathbb{Q}(i)$, the number e^r is transcendental.

Exercise 18. Let $(v_n)_{n\geq 1}$ be a sequence of positive integers. Check that the following properties are equivalent.

(i) $\lim_{n \to \infty} v_n = +\infty.$

(ii) For any integer $k \ge 1$, the set of $n \ge 1$ such that $v_n = k$ is finite. *Remark.* This question is related with Pillai's Conjecture.

Exercise 19. Prove that the following conditions are equivalent. (i) There exists $c_1 > 0$ such that, for any pair (a, b) of integers satisfying $a \ge 3$ and $b \ge 2$,

$$|e^b - a| \ge a^{-c_1}.$$

(ii) There exists $c_2 > 0$ such that, for any pair (a, b) of integers satisfying $a \ge 3$ and $b \ge 2$,

$$|e^b - a| \ge e^{-c_2 b}$$

(vii) There exists $c_3 > 0$ such that, for any pair (a, b) of integers satisfying $a \ge 3$ and $b \ge 2$,

$$|b - \log a| \ge a^{-c_3}.$$

(viii) There exists $c_4 > 0$ such that, for any pair (a, b) of integers satisfying $a \ge 3$ and $b \ge 2$,

$$|b - \log a| \ge e^{-c_4 b}.$$

Exercise 20. Let *m* be a positive integer and $\epsilon > 0$ a real number. Show that there exists $q_0 > 0$ such that, for any $q \ge q_0$ and for any tuple (q, p_1, \ldots, p_m) of rational integers with $q > q_0$,

$$\max_{1 \le \mu \le m} \left| e^{\mu} - \frac{p_{\mu}}{q} \right| \ge \frac{1}{q^{1+(1/m)+\epsilon}}$$

Is it possible to improve the exponent by replacing 1 + (1/m) with a smaller number?

Hint. Consider Hermite's proof of the transcendence of e (§ 2.1.3), especially Proposition 2.10. First check (for instance using Cauchy's formulae)

$$\max_{0 \le j \le m} \frac{1}{k!} |D^k f_j(\mu)| \le c_1^n,$$

where c_1 is a positive real number which does not depend on n. Next, check that the numbers p_j and $q_{\mu j}$ satisfy

$$\max\{q_j, |p_{\mu j}|\} \le (n!)^m c_2^m$$

for $1 \le \mu \le m$ and $0 \le j \le n$, where again $c_2 > 0$ does not depend on n. Then repeat the proof of Hermite in § 2.1 with n satisfying

$$(n!)^m c_3^{-2mn} \le q < \left((n+1)!\right)^m c_3^{-2m(n+1)},$$

where $c_3 > 0$ is a suitable constant independent on n. One does not need to compute c_1 , c_2 and c_3 in terms of m, one only needs to show their existence so that the proof yields the desired estimate.