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Exercises
Solve as many as you can, but at least 2, of the following exercises.

Deadline: Monday, october 1, 2007, 1:30 pm. 6

Exercise 1. Recall the geometric construction given in § 1.1 : starting with a
rectangle of sides 1 and x, split it into a maximal number of squares of sides 1,
and if a second smaller rectangle remains repeat the construction: split it into
squares as much as possible and continue if a third rectangle remains.
a) Prove that the number of squares in this process is the sequence of integers
(an)n≥0 in the continued fraction expansion of x.
b) Start with a unit square. Put on top of it another unit square: you get a
rectangle with sides 1 and 2. Next put on the right a square of sides 2, which
produces a rectangle with sides 2 and 3. Continue the process as follows: when
you reach a rectangle of small side a and large side b, complete it with a square
of sides b, so that you get a rectangle with sides b and a+ b.
Which is the sequence of sides of the rectangles you obtain with this process?
Generalizing this idea, deduce a geometrical construction of the rational number
having continued fraction expansion

[a0; a1, . . . , ak].

Exercise 2. Let b ≥ 2 be an integer. Show that a real number x is rational if
and only if the sequence (dn)n≥1 of digits of x in the expansion in basis b

x = [x] + d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · · (0 ≤ dn < b)

is ultimately periodic (see § 1.1 ).
Deduce another proof of Lemma 1.17 in § 1.3.5.

Exercise 3. Let b ≥ 2 be an integer. Let (an)n≥0 be a bounded sequence
of rational integers and (un)n≥0 an increasing sequence of positive numbers.
Assume there exists c > 0 such that, for all sufficiently large n,

un − un−1 ≥ cn.

Show that the number
ϑ =

∑
n≥0

anb
−un

is irrational if and only if the set {n ≥ 0 ; an 6= 0} is infinite.
Compare with Lemma 1.17 in § 1.3.5.
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Exercise 4. Recall the proof, given in in § 1.1 of the irrationality of the square
root of an integer n, assuming n is not the square of an integer: by contradiction,
assume

√
n is rational and write

√
n = a/b as an irreducible fraction; notice that

b is the least positive integer such that b
√
n is an integer; denote by m the integral

part of
√
n and consider the number b′ = (

√
n−m)b. Since 0 < b′ < b and b′

√
n

is an integer, we get a contradiction.
Extend this proof to a proof of the irrationality of k

√
n, when n and k are

positive integers and n is not the k-th power of an integer.

Exercise 5. Let α be a complex number. Show that the following properties
are equivalent.
(i) The number α is algebraic.
(ii) The numbers 1, α, α2, . . . are linearly dependent over Q.
(iii) The Q-vector subspace of C spanned by the numbers 1, α, α2, . . . has finite
dimension.
(iv) There exists an integer N ≥ 1 such that the Q-vector subspace of C spanned
by the N numbers 1, α, α2, . . . , αN−1 has dimension < N .
(v) There exists positive integers n1 < n2 < . . . < nk such that αn1 , . . . , αnk are
linearly dependent over Q.

Exercise 6. Recall the definition of the Smarandache function given in § 1.2.7
Prove that for any p/q ∈ Q with q ≥ 2,∣∣∣∣e− p

q

∣∣∣∣ > 1
(S(q) + 1)!

·

Exercise 7. Let (an)n≥0 be a bounded sequence of rational integers.
a) Prove that the following conditions are equivalent:
(i) The number

ϑ1 =
∑
n≥0

an
n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.
b) Prove that these properties are also equivalent to
(iii) The number

ϑ2 =
∑
n≥0

an2n

n!

is rational.

Exercise 8. Complete the proof of (iii)⇒(iv) in Lemma 1.6.

Exercise 9. Extend the irrationality criterion Lemma 1.6 by replacing Q by
Q(i).

Exercise 10. Check that any solution (m,m1,m2) of Markoff’s equation (1.15)
is in Markoff’s tree.
(See § 1.4.1 ).
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Exercise 11. a) Check that Liouville’s inequality in Lemma 2.12 holds with d
the degree of the minimal polynomial of α and c given by

c =
1

1 + max
|t−α|≤1

|P ′(t)|
·

where P ∈ Z[X] is the minimal polynomial of α.
b) Check also that the same estimate is true with again d the degree of the
minimal polynomial P of α and c given by

c =
1

a0

d∏
i=2

(|αj − α|+ 1)

,

where a0 is the leading coefficient and α1, . . . , αd the roots of P with α1 = α:

P (X) = a0(X − α1)(X − α2) · · · (X − αd).

Exercise 12. Let m and n be positive integers and ϑij (1 ≤ i ≤ n, 1 ≤ j ≤ m
be mn real numbers. Let Q ≥ 1 be a positive integer. Show that there exists
rational integers q1, . . . , qm, p1, . . . , pn with

1 ≤ max{|q1|, . . . , |qm|} < Qn/m

and
max

1≤i≤n
|ϑi1q1 + · · ·+ ϑimqm − pi| ≤

1
Q
·

Deduce that if ϑ1, . . . , ϑm are real numbers and H a positive integer, then there
exists a tuple (a0, a1, . . . , am) of rational integers such that

0 < max
1≤i≤m

|ai| ≤ H and |a0 + a1ϑ1 + · · ·+ amϑm| ≤ H−m.

Exercise 13. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let d0, d1, . . . , dm be non-negative integers. Set

M = d0 + d1 + · · ·+ dm +m.

a) Show that there exists a tuple (A0, . . . , Am) of polynomials in C[X], not all
of which are zero, where Ai has degree ≤ di, such that the function

A0 +A1f1 + · · ·+Amfm

has a zero at the origin of multiplicity ≥M .
(This is Exercise 9 .)
b) Give an explicit solution (A0, A1) in the case m = 1 and f1(z) = ez.

Exercise 14. Prove the implication (i)⇒(ii) in lemma 2.2 in the special cases
m = 1, m = 2 and m = 3.
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Exercise 15. a) Let b be a positive integer. Give the continued fraction ex-
pansion of the number

−b+
√
b2 − 4

2
·

b) Let a and b be two positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0; a, b].

Exercise 16. Check that the resistance of the following network for the circuit

◦ R0−−−→• R1−−−→• R2−−−→• · · ·y1/S1

y1/S2

◦−−−→•−−−→•−−−→• · · ·

Ri: resistances in series

1/Sj : resistances in parallele

is given by the continued fraction

[R0;S1, R1, S2, R2 . . . ]

(See § 2.2.2).

Exercise 17. Using Hermite’s method as explained in § 2.1, prove that for any
non-zero r ∈ Q(i), the number er is transcendental.

Exercise 18. Let (vn)n≥1 be a sequence of positive integers. Check that the
following properties are equivalent.
(i) lim

n→∞
vn = +∞.

(ii) For any integer k ≥ 1, the set of n ≥ 1 such that vn = k is finite.
Remark. This question is related with Pillai’s Conjecture.

Exercise 19. Prove that the following conditions are equivalent.
(i) There exists c1 > 0 such that, for any pair (a, b) of integers satisfying a ≥ 3
and b ≥ 2,

|eb − a| ≥ a−c1 .

(ii) There exists c2 > 0 such that, for any pair (a, b) of integers satisfying a ≥ 3
and b ≥ 2,

|eb − a| ≥ e−c2b.

(vii) There exists c3 > 0 such that, for any pair (a, b) of integers satisfying a ≥ 3
and b ≥ 2,

|b− log a| ≥ a−c3 .

(viii) There exists c4 > 0 such that, for any pair (a, b) of integers satisfying
a ≥ 3 and b ≥ 2,

|b− log a| ≥ e−c4b.
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Exercise 20. Let m be a positive integer and ε > 0 a real number. Show that
there exists q0 > 0 such that, for any q ≥ q0 and for any tuple (q, p1, . . . , pm) of
rational integers with q > q0,

max
1≤µ≤m

∣∣∣∣eµ − pµ
q

∣∣∣∣ ≥ 1
q1+(1/m)+ε

·

Is it possible to improve the exponent by replacing 1 + (1/m) with a smaller
number?
Hint. Consider Hermite’s proof of the transcendence of e (§ 2.1.3), especially
Proposition 2.10. First check (for instance using Cauchy’s formulae)

max
0≤j≤m

1
k!
|Dkfj(µ)| ≤ cn1 ,

where c1 is a positive real number which does not depend on n. Next, check
that the numbers pj and qµj satisfy

max{qj , |pµj |} ≤ (n!)mcm2

for 1 ≤ µ ≤ m and 0 ≤ j ≤ n, where again c2 > 0 does not depend on n.
Then repeat the proof of Hermite in § 2.1 with n satisfying

(n!)mc−2mn
3 ≤ q <

(
(n+ 1)!

)m
c
−2m(n+1)
3 ,

where c3 > 0 is a suitable constant independent on n. One does not need to
compute c1, c2 and c3 in terms of m, one only needs to show their existence so
that the proof yields the desired estimate.
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