Introduction to Diophantine methods Michel Waldschmidt
http://www.math.jussieu.fr/~miw/coursHCMUNS2007.html

Exercises - second sheet

Solve as many as you can, but at least 2, of the following exercises.
Exercise 1. Let $b \geq 2$ be an integer. Show that a real number x is rational if and only if the sequence $\left(d_{n}\right)_{n \geq 1}$ of digits of x in the expansion in basis b

$$
x=[x]+d_{1} b^{-1}+d_{2} b^{-2}+\cdots+d_{n} b^{-n}+\cdots \quad\left(0 \leq d_{n}<b\right)
$$

is ultimately periodic (see § 1.1).
Deduce another proof of Lemma 1.17 in \S 1.3.5.
Exercise 2. Let $b \geq 2$ be an integer. Let $\left(a_{n}\right)_{n \geq 0}$ be a bounded sequence of rational integers and $\left(u_{n}\right)_{n \geq 0}$ an increasing sequence of positive numbers. Assume there exists $c>0$ and $n_{0} \geq 0$ such that, for all $n \geq n_{0}$,

$$
u_{n+1}-u_{n} \geq c n
$$

a) Deduce, for all $k \geq 1$ and $n \geq n_{0}$,

$$
u_{n+k}-u_{n} \geq c n k+c \cdot \frac{k(k-1)}{2}
$$

b) Show that the number

$$
\vartheta=\sum_{n \geq 0} a_{n} b^{-u_{n}}
$$

is irrational if and only if the set $\left\{n \geq 0 ; a_{n} \neq 0\right\}$ is infinite.
c) Deduce another proof of Lemma 1.17 in \S 1.3.5.

Exercise 3. Recall the proof, given in in $\S 1.1$ of the irrationality of the square root of an integer n, assuming n is not the square of an integer: by contradiction, assume \sqrt{n} is rational and write $\sqrt{n}=a / b$ as an irreducible fraction; notice that b is the least positive integer such that $b \sqrt{n}$ is an integer; denote by m the integral part of \sqrt{n} and consider the number $b^{\prime}=(\sqrt{n}-m) b$. Since $0<b^{\prime}<b$ and $b^{\prime} \sqrt{n}$ is an integer, we get a contradiction.

Extend this proof to a proof of the irrationality of $\sqrt[k]{n}$, when n and k are positive integers and n is not the k-th power of an integer.
Hint. Assume that the number $x=\sqrt[k]{n}$ is rational. Then the numbers

$$
x^{2}, x^{3}, \ldots, x^{k-1}
$$

are also rational. Denote by d the least positive integer such that the numbers $d x, d x^{2}, \ldots, d x^{k-1}$ are integers. Further, denote by m the integral part of x and consider the number $d^{\prime}=(x-m) d$.

Exercise 4. Let α be a complex number. Show that the following properties are equivalent.
(i) The number α is algebraic.
(ii) The numbers $1, \alpha, \alpha^{2}, \ldots$ are linearly dependent over \mathbb{Q}.
(iii) The \mathbb{Q}-vector subspace of \mathbb{C} spanned by the numbers $1, \alpha, \alpha^{2}, \ldots$ has finite dimension.
(iv) There exists an integer $N \geq 1$ such that the \mathbb{Q}-vector subspace of \mathbb{C} spanned by the N numbers $1, \alpha, \alpha^{2}, \ldots, \alpha^{N-1}$ has dimension $<N$.
(v) There exists positive integers $n_{1}<n_{2}<\ldots<n_{k}$ such that $\alpha^{n_{1}}, \ldots, \alpha^{n_{k}}$ are linearly dependent over \mathbb{Q}.

Exercise 5. a) Use the geometrical proof of the irrationality of e in $\S 1.2 .7$ to deduce, without computation, that for any integer $n>1$,

$$
\frac{1}{(n+1)!}<\min _{m \in \mathbb{Z}}\left|e-\frac{m}{n!}\right|<\frac{1}{n!} .
$$

b) Recall the definition of the Smarandache function : $S(q)$ is the least positive integer such that $S(q)$! is a multiple of q. Prove that for any $p / q \in \mathbb{Q}$ with $q \geq 2$,

$$
\left|e-\frac{p}{q}\right|>\frac{1}{(S(q)+1)!} .
$$

Exercise 6. Let $\left(a_{n}\right)_{n \geq 0}$ be a bounded sequence of rational integers.
a) Prove that the following conditions are equivalent:
(i) The number

$$
\vartheta_{1}=\sum_{n \geq 0} \frac{a_{n}}{n!}
$$

is rational.
(ii) There exists $N_{0}>0$ such that $a_{n}=0$ for all $n \geq N_{0}$.
b) Prove that these properties are also equivalent to
(iii) The number

$$
\vartheta_{2}=\sum_{n \geq 0} \frac{a_{n} 2^{n}}{n!}
$$

is rational.
Exercise 7. This exercise extends the irrationality criterion Lemma 1.6 by replacing \mathbb{Q} by $\mathbb{Q}(i)$. The elements in $\mathbb{Q}(i)$ are called the Gaussian numbers, the elements in $\mathbb{Z}(i)$ are called the Gaussian integers. The elements of $\mathbb{Q}(i)$ will be written p / q with $p \in \mathbb{Z}[i]$ and $q \in \mathbb{Z}, q>0$.

Let ϑ be a complex number. Check that the following conditions are equivalent.
(i) $\vartheta \notin \mathbb{Q}(i)$.
(ii) For any $\epsilon>0$ there exists $p / q \in \mathbb{Q}(i)$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any rational integer $N \geq 1$ there exists a rational integer q in the range $1 \leq q \leq N^{2}$ and a Gaussian integer p such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\sqrt{2}}{q N}
$$

(iv) There exist infinitely many Gaussian numbers $p / q \in \mathbb{Q}(i)$ such that

$$
\left|\vartheta-\frac{p}{q}\right|<\frac{\sqrt{2}}{q^{3 / 2}}
$$

Exercise 8. Recall Liouville's inequality in Lemma 2.12:
For any algebraic number α there exist two positive constants κ and d such that, for any rational number $p / q \neq \alpha$,

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{1}{\kappa q^{d}}
$$

Denote by $P \in \mathbb{Z}[X]$ the minimal polynomial of α.
a) Prove this result with d the degree of P and κ given by

$$
\kappa=\max \left\{1 ; \max _{|t-\alpha| \leq 1}\left|P^{\prime}(t)\right|\right\}
$$

b) Check also that the same estimate is true with again d the degree of P and κ given by

$$
\kappa=a_{0} \prod_{i=2}^{d}\left(\left|\alpha_{j}-\alpha\right|+1\right)
$$

where a_{0} is the leading coefficient and $\alpha_{1}, \ldots, \alpha_{d}$ the roots of P with $\alpha_{1}=\alpha$:

$$
P(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \cdots\left(X-\alpha_{d}\right)
$$

Hint: For both parts of this exercise one may distinguish two cases, whether $|\alpha-(p / q)|$ is ≥ 1 or <1.
Exercise 9. Let $\left(a_{n}\right)_{n \geq 0}$ be a bounded sequence of rational integers and $\left(u_{n}\right)_{n \geq 0}$ be an increasing sequence of integers satisfying

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=+\infty
$$

Assume that the set $\left\{n \geq 0 ; a_{n} \neq 0\right\}$ is infinite.
Define

$$
\vartheta=\sum_{n \geq 0} a_{n} 2^{-u_{n}}
$$

Show that ϑ is a Liouville number .
Hint: compare with (2.32).

Exercise 10. a) Let b be a positive integer. Give the continued fraction expansion of the number

$$
\frac{-b+\sqrt{b^{2}+4}}{2}
$$

b) Let a, b and c be positive integers. Write a degree 2 polynomial with integer coefficients having a root at the real number whose continued fraction expansion is

$$
[0 ; \overline{a, b, c}]
$$

