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Exercises - second sheet
Solve as many as you can, but at least 2, of the following exercises.

Exercise 1. Let b ≥ 2 be an integer. Show that a real number x is rational if
and only if the sequence (dn)n≥1 of digits of x in the expansion in basis b

x = [x] + d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · · (0 ≤ dn < b)

is ultimately periodic (see § 1.1).
Deduce another proof of Lemma 1.17 in § 1.3.5.

Exercise 2. Let b ≥ 2 be an integer. Let (an)n≥0 be a bounded sequence
of rational integers and (un)n≥0 an increasing sequence of positive numbers.
Assume there exists c > 0 and n0 ≥ 0 such that, for all n ≥ n0,

un+1 − un ≥ cn.

a) Deduce, for all k ≥ 1 and n ≥ n0,

un+k − un ≥ cnk + c · k(k − 1)
2

·

b) Show that the number
ϑ =

∑
n≥0

anb
−un

is irrational if and only if the set {n ≥ 0 ; an 6= 0} is infinite.
c) Deduce another proof of Lemma 1.17 in § 1.3.5.

Exercise 3. Recall the proof, given in in § 1.1 of the irrationality of the square
root of an integer n, assuming n is not the square of an integer: by contradiction,
assume

√
n is rational and write

√
n = a/b as an irreducible fraction; notice that

b is the least positive integer such that b
√
n is an integer; denote by m the integral

part of
√
n and consider the number b′ = (

√
n−m)b. Since 0 < b′ < b and b′

√
n

is an integer, we get a contradiction.
Extend this proof to a proof of the irrationality of k

√
n, when n and k are

positive integers and n is not the k-th power of an integer.
Hint. Assume that the number x = k

√
n is rational. Then the numbers

x2, x3, . . . , xk−1

are also rational. Denote by d the least positive integer such that the numbers
dx, dx2, . . . , dxk−1 are integers. Further, denote by m the integral part of x and
consider the number d′ = (x−m)d.
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Exercise 4. Let α be a complex number. Show that the following properties
are equivalent.
(i) The number α is algebraic.
(ii) The numbers 1, α, α2, . . . are linearly dependent over Q.
(iii) The Q-vector subspace of C spanned by the numbers 1, α, α2, . . . has finite
dimension.
(iv) There exists an integer N ≥ 1 such that the Q-vector subspace of C spanned
by the N numbers 1, α, α2, . . . , αN−1 has dimension < N .
(v) There exists positive integers n1 < n2 < . . . < nk such that αn1 , . . . , αnk are
linearly dependent over Q.

Exercise 5. a) Use the geometrical proof of the irrationality of e in § 1.2.7 to
deduce, without computation, that for any integer n > 1,

1
(n+ 1)!

< min
m∈Z

∣∣∣e− m

n!

∣∣∣ < 1
n!
·

b) Recall the definition of the Smarandache function : S(q) is the least positive
integer such that S(q)! is a multiple of q. Prove that for any p/q ∈ Q with q ≥ 2,∣∣∣∣e− p

q

∣∣∣∣ > 1
(S(q) + 1)!

·

Exercise 6. Let (an)n≥0 be a bounded sequence of rational integers.
a) Prove that the following conditions are equivalent:
(i) The number

ϑ1 =
∑
n≥0

an
n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.
b) Prove that these properties are also equivalent to
(iii) The number

ϑ2 =
∑
n≥0

an2n

n!

is rational.

Exercise 7. This exercise extends the irrationality criterion Lemma 1.6 by
replacing Q by Q(i). The elements in Q(i) are called the Gaussian numbers,
the elements in Z(i) are called the Gaussian integers. The elements of Q(i) will
be written p/q with p ∈ Z[i] and q ∈ Z, q > 0.

Let ϑ be a complex number. Check that the following conditions are equiv-
alent.
(i) ϑ 6∈ Q(i).
(ii) For any ε > 0 there exists p/q ∈ Q(i) such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·
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(iii) For any rational integer N ≥ 1 there exists a rational integer q in the range
1 ≤ q ≤ N2 and a Gaussian integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
qN
·

(iv) There exist infinitely many Gaussian numbers p/q ∈ Q(i) such that∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
q3/2
·

Exercise 8. Recall Liouville’s inequality in Lemma 2.12 :
For any algebraic number α there exist two positive constants κ and d such that,
for any rational number p/q 6= α,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
κqd
·

Denote by P ∈ Z[X] the minimal polynomial of α.
a) Prove this result with d the degree of P and κ given by

κ = max
{

1 ; max
|t−α|≤1

|P ′(t)|
}
.

b) Check also that the same estimate is true with again d the degree of P and
κ given by

κ = a0

d∏
i=2

(|αj − α|+ 1),

where a0 is the leading coefficient and α1, . . . , αd the roots of P with α1 = α:

P (X) = a0(X − α1)(X − α2) · · · (X − αd).

Hint: For both parts of this exercise one may distinguish two cases, whether
|α− (p/q)| is ≥ 1 or < 1.

Exercise 9. Let (an)n≥0 be a bounded sequence of rational integers and (un)n≥0

be an increasing sequence of integers satisfying

lim sup
n→∞

un+1

un
= +∞.

Assume that the set {n ≥ 0 ; an 6= 0} is infinite.
Define

ϑ =
∑
n≥0

an2−un .

Show that ϑ is a Liouville number .
Hint: compare with (2.32).
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Exercise 10. a) Let b be a positive integer. Give the continued fraction ex-
pansion of the number

−b+
√
b2 + 4

2
·

b) Let a, b and c be positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0; a, b, c].
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