

Irrational number : a real (or complex) number which is not
rational.
p / q with p and q in $\mathbf{Z}, q>0$ and $\operatorname{gcd}(p, q)=1$.

 : sıəqunu ןeuo!łey

Numbers $=$ real or complex numbers R, C.
Numbers : rational, irrational
'puә \ddagger ou səop ssəวoud s! $4 \perp$ • uo!uodoxd әues әч7 u! u!ege

 $\frac{1}{\sqrt{2}-1}=1+\sqrt{2}$, - This second small rectangle has side lenghts in the
proportion - Decompose it into two squares with sides 1 and a smaller
rectangle of sides $1+\sqrt{2}-2=\sqrt{2}-1$ and 1 .

- Start with a rectangle have side length 1 and $1+\sqrt{2}$.
- Decompose it into two squares with sides 1 and a sma
Irrationality of $\sqrt{2}$: geometric proof
Sulba Sutras, Vedic civilization in India, $\sim 800-500 \mathrm{BC}$.
Hippasus of Metapontum (around 500 BC).

http://www.math.univ-paris13.fr/~rittaud/RacineDeDeux

The fabulous destiny of $\sqrt{2}$

$$
\begin{aligned}
& \text { Continued fraction } \\
& \text { The number } \\
& \qquad \sqrt{2}=1.414213562373095048801688724209 \ldots \\
& \text { satisfies } \\
& \qquad \sqrt{2}=1+\frac{1}{\sqrt{2}+1} \\
& \text { Hence } \\
& \qquad \sqrt{2}=1+\frac{1}{2+\frac{1}{\sqrt{2}+1}}=1+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}} \\
& \text { We write the continued fraction expansion of } \sqrt{2} \text { using the } \\
& \text { shorter notation } \\
& \qquad \sqrt{2}=[1 ; 2,2,2,2,2, \ldots]=[1 ; \overline{2}] .
\end{aligned}
$$

ן ן ן

49 (2) (2002) 182-192
Solving the Pell Equation,
Notices of the A.M.S.

- H.W. Lenstra Jr,

$\left(\frac{u^{s}}{\mathrm{~L}}-\frac{{ }_{s} u}{\mathrm{~L}}\right) \stackrel{\mathrm{I}=u}{\overbrace{\infty}^{+\mathrm{I} \leftarrow s} \dot{\omega} \mid}=$

$$
\begin{aligned}
& 1-1+1-1+1-1+\cdots=\frac{1}{2} \\
& 1+1+1+1+1+\cdots=-\frac{1}{2} \\
& 1+2+3+4+5+\cdots=-\frac{1}{12} \\
& 1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\cdots=0
\end{aligned}
$$

Letter of Ramanujan
to M.J.M. Hill in 1912
$1+2+3+\cdots+\infty=-\frac{1}{12}$
$1^{2}+2^{2}+3^{2}+\cdots+\infty^{2}=0$
$1^{3}+2^{3}+3^{3}+\cdots+\infty^{3}=\frac{1}{120}$
Srinivasa Ramanujan (1887-1920)
$6 L / 6 I$
$06 G$

K. Ramasubramanian, The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.

Known results
Irrationality of t
Āryabhaṭa, b. 4

$$
\left\{\frac{9}{G} \cdot \frac{\hbar}{\varepsilon} \cdot \frac{\varepsilon}{\tau} \cdot \frac{\tau}{\tau} \cdot \frac{\varepsilon}{\tau} \cdot \frac{\pi}{\tau} \cdot \frac{9}{\tau}\right\} \ni 1
$$ Here is the set of rational values for z for which the answer is

known (and, for these arguments, the Gamma value is a

$$
\begin{aligned}
& \text { known (and, for these arguments, the Gamma value is a } \\
& \text { transcendental number): }
\end{aligned}
$$

¿ןеиo!?еג!
$\Gamma(1 / 5)=4.590843711998803053204758275929152$ Is the number
Euler Gamma function
Irrationality of π
Leonhard Euler (1707-1783)
De fractionibus continuis dissertatio,
Commentarii Acad. Sci. Petropolitanae,
$\mathbf{9}$ (1737), 1744, p. 98-137;
Opera Omnia Ser. I vol. 14,
Commentationes Analyticae, p. 187-215.
$e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$
$=2.718281828459045235360287471352 \ldots$
$=1+1+\frac{1}{2} \cdot\left(1+\frac{1}{3} \cdot\left(1+\frac{1}{4} \cdot\left(1+\frac{1}{5} \cdot(1+\cdots)\right)\right)\right)$.

 $=[2 ; \overline{1,2 m, 1}]_{m \geq 1}$
[..'9'I'I't'I'I 'Z'I 'Z] =
$\frac{\dot{L}}{}+t$
$\frac{\frac{L}{I}+I}{I}+I$
$\frac{L}{I}+\tau$
Continued fraction expansion for e (Euler)
obtained by splitting the interval I_{n-1} into n intervals of the
same length, so that the length of I_{n} will be $1 / n!$.
Start with an interval I_{1} with length 1 . The interval I_{n} will be

 http://home.earthlink.net/~jsondow/ Jonathan Sondow
Geometric proof of the irrationality of e
Starting point : $y=\tanh (x / a)$ satisfies the differential
equation $a y^{\prime}+y^{2}=1$.
This leads Euler to
$\left.\qquad \begin{array}{rl}e^{1 / a} & =[1 ; a-1,1,1,3 a-1,1,1,5 a-1, \ldots] \\ & =[1,(2 m+1) a-1,1\end{array}\right]_{m \geq 0}$.

[^0](0ع8I-89LI) də!uno」 ydəso

Irrationality of e, following J. Fourier
¡u/uz ${ }^{\text {L=u }}$ 了 sן!
The denominator N ! arises when one approximates the
 it amounts to approximate e by a / N ! where $a \in \mathbf{Z}$. Better Fourier's argument rests on truncating the exponential series,
The number e^{2} is not quadratic
The irrationality of e^{4}, hence of $e^{4 / b}$ for
follows. The irrationality of e^{4}, hence of $e^{4 / b}$ for b a positive integer,
The number e^{2} is not quadratic
The irrationality of e^{4}, hence of $e^{4 / b}$ for
follows. J. Liouville (1809-1882)
gave the first examples of
transcendental numbers.
For instance
$\sum_{n \geq 1} \frac{1}{10^{n!}}=0.1100010000000$.
is a transcendental number. Existence of transcendental numbers (1844)

number e is not a cubic irrational. prove the irrationality of e^{3}, even less to prove that the It does not seem that this kind of argument will suffice to

 The number e^{2} is notLiouville (1840) : Write the quadratic equation as
$a e+b+c e^{-1}=0$.
Joseph Liouville The number e is not quadratic numbers by giving explicit examples (continued fractions, 1844 : J. Liouville proved the existence of transcendental

J. Liouville (1809-1882) proved also that e^{2} is not a quadratic irrational number in 1840.

Liouville (1840) : Write the quadratic equation as
$a e+b+c e^{-1}=0$.
Joseph Liouville . 1840) : Write the

[^1] e number e is not quadratic
Charles Hermite
A rational function $A(z) / B(z)$ is close to a complex analytic
function f if $B(z) f(z)-A(z)$ has a zero of high multiplicity
at the origin.
Goal : find $B \in \mathbf{C}[z]$ such that the Taylor expansion at the
origin of $B(z) f(z)$ has a big gap : $A(z)$ will be the part of the
expansion before the gap, $R(z)=B(z) f(z)-A(z)$ the
remainder.

$B(z) e^{z}=A(z)+R(z)$
Given $n_{0} \geq 0, n_{1} \geq 0$, find A and B in $\mathbf{R}[z]$ of degrees $\leq n_{0}$
and $\leq n_{1}$ such that $R(z)=B(z) e^{z}-A(z)$ has a zero at the
origin of multiplicity $\geq N+1$ with $N=n_{0}+n_{1}$.
Theorem There is a non-trivial solution, it is unique with B
monic. Further, B is in $\mathbf{Z}[z]$ and $\left(n_{0}!/ n_{1}!\right) A$ is in $\mathbf{Z}[z]$.
Furthermore A has degree n_{0}, B has degree n_{1} and R has
multiplicity exactly $N+1$ at the origin.
\[

$$
\begin{aligned}
& \text { is the product of } e^{z} \text { with a polynomial of the same degree as } \\
& \text { the degree of } B \text { and same leading coefficient. } \\
& \text { Since } D^{n_{0}+1} R(z) \text { has a zero of multiplicity } \geq n_{1} \text { at the origin, } \\
& D^{n_{0}+1} R=z^{n_{1}} e^{z} \text {. Hence } R \text { is the unique function satisfying } \\
& D^{n_{0}+1} R=z^{n_{1}} e^{z} \text { with a zero of multiplicity } \geq n_{0} \text { at } 0 \text { and } B \\
& \text { has degree } n_{1} \text {. }
\end{aligned}
$$
\]

Hence $\pi \notin \mathbf{Q}$
The same argument gives the irrationality of $\log (-1)$, meaning
$\log (-1)=i \pi \notin \mathbf{Q}(i)$.
The irrationality of e^{r} for $r \in \mathbf{Q}^{\times}$, is equivalent to the
irrationality of $\log s$ for $s \in \mathbf{Q}_{>0}$.

Irrationality of logarithms including π

Also $A(z)=-(-1+D)^{-n_{1}-1} z^{n_{0}}$ and
$B(z)=(1+D)^{-n_{0}-1} z^{n_{1}}$.
$p_{z^{2}} \partial_{\text {tu }} 7_{\text {ou }}(7-z)_{z}^{0} \int^{0} \frac{\mathrm{i}^{0} u}{\mathrm{~L}}=(z)$ と
$\nexists p(7) \alpha_{u}(7-z) \frac{i u}{\tau} \int_{z}^{0}=\alpha_{\tau+u} \Gamma$

$$
\begin{aligned}
& \text { C.L. Siegel, 1949. } \\
& \text { Solve } D^{n_{0}+1} R(z)=z^{n_{1}} e^{z} \\
& \text { The operator } J \varphi=\int_{0}^{z} \varphi(t) d t \\
& \text { inverse of } D \text {, satisfies }
\end{aligned}
$$

Siegel's algebraic point of view
$L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}$
Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers and $a_{0}, a_{1}, \ldots, a_{m}$ rational
integers, not all of which are zero. We wish to prove that the
number

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

is not zero. Approximate simultaneously $\vartheta_{1}, \ldots, \vartheta_{m}$ by rational
numbers $b_{1} / b_{0}, \ldots, b_{m} / b_{0}$.
Let $b_{0}, b_{1}, \ldots, b_{m}$ be rational integers. For $1 \leq k \leq m$ set

$$
\epsilon_{k}=b_{0} \vartheta_{k}-b_{k} .
$$

Then $b_{0} L=A+R$ with
A= $a_{0} b_{0}+\cdots+a_{m} b_{m} \in \mathbf{Z} \quad$ and $\quad R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \in \mathbf{R}$.
If $0<|R|<1$, then $L \neq 0$.

[^2] Hermite constructs explicitly polynomials B_{0}, B_{1}, \ldots, $N=n_{0}+\cdots+n_{m}$ $1, e^{\alpha_{1} x}, \ldots, e^{\alpha_{m} x}$
$$
(u>y>I) \quad ‘(z)^{y} g-_{z_{10}} \partial(z)^{0} g
$$

Let $\alpha_{1}, \ldots, \alpha_{m}$ be pairwise distinct complex numbers and
n_{0}, \ldots, n_{m} be rational integers, all ≥ 0. Set
Hermite : approximation to the functions

[^3] numbers z and e^{z} is transcendental. For any non-zero complex number z, one at least of the two
Padé approximants

rational functions analytic functions by Approximation of complex

ranscental function

Transcendental functions

-
(
(s)

Arithmetic functions

$\cdot(z)_{f} \mid$ dns $=\left.\Delta\right|_{f} \mid$

Question: Are-there integer valued entire function growing
slower than 2^{z} without being a polynomial? polynomial.
Example : 2^{z} is an integer valued entire function, not a analytic in \mathbf{C}, and maps \mathbf{N} into \mathbf{Z}.
An integer valued entire function is a function f, which is
Integer valued entire functions $D^{k} f(\alpha) \in \mathbf{Q}(\alpha)$ for all $k \geq 0$ and all algebraic α Also there are transcendental entire functions f such that T, as well as all its derivatives. there exist transcendental entire functions f mapping S into If S is a countable subset of \mathbf{C} and T is a dense subset of \mathbf{C}, Stäckel, Faber, van der Poorten, Gramain. Answers by Weierstrass (letter to Strauss in 1886), Strauss, arguments? transcendental values at algebraic

Weierstrass question
Integer valued entire functions

Further works on this topic by G.H. Hardy, G. Pólya, D. Sato,
E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson, F. Gross,...

and $f(n) \in \mathbf{Z}$ for $n \in \mathbf{Z}_{>0}$, then
$\limsup 2^{-R}|f|_{R} \geq 1$.

$6 L / 89$
$つ Ъ G$

$\cdot(\partial 乙) / \Perp=$ ん : (I86I) u!ешел $\lrcorner \sqsupset$

$$
\limsup _{R \rightarrow \infty} \frac{1}{R^{2}} \log |f|_{R} \geq \gamma
$$

An entire function f which is not a polynomial and satisfies
$f(a+i b) \in \mathbf{Z}[i]$ for all $a+i b \in \mathbf{Z}[i]$ satisfies
Newton interpolation series at the points in $\mathbf{Z}[i]$.
A.O. Gel'fond (1929) : growth of entire functions mapping the
Gaussian integers into themselves.

Integer valued entire function on $\mathbf{Z}[i]$

Hilbert's seventh problem
Auxiliary functions
C.L. Siegel (1929) :
Hermite's explicit formulae
can be replaced by
Dirichlet's box principle
(Thue-Siegel Lemma)
which shows the existence
of suitable auxiliary functions.
M. Laurent (1991) : instead of using the
pigeonhole principle for proving the existence
of solutions to homogeneous linear systems
of equations, consider the matrices of such
systems and take determinants.
Slope inequalities in Arakelov theory
Périodes et isogénies des variétés abéliennes sur les corps de
nombres, (d'après D. Masser et G. Wüstholz).
Séminaire Nicolas Bourbaki, Vol. 1994/95.
J-B. Bost (1994) :
matrices and determinants require
choices of bases.
Arakelov's Theory produces
slope inequalities which
avoid the need of bases.

Taylor series and interpolation series
Taylor series are the special case of Hermite's for
single point and multiplicities - they give rise
approximants.

$$
\begin{aligned}
& \text { T. Rivoal (2006) : new proof of the irrationality of } \zeta(2) \text { by } \\
& \text { expanding } \\
& \qquad \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+z}\right) \\
& \text { as a Hermite-Lagrange series in }
\end{aligned}
$$

Mixing C. Hermite and R. Lagrange
Further develoments
 Séminaire Nicolas Bourbaki, Dimanche 18 mars 2007.

Federico Pellarin - Aspects de l'indépendance algébrique en
Finite characteristic independence.

modular functions (méthode stéphanoise and work of
Yu.V. Nesterenko).
Transcendence and algebraic independence of values of

[^0]: Course of analysis at the École Polytechnique Paris, 1815

[^1]: and the remainder does not tend to zero and truncating does not work : the denominator is too large Assume $a e^{2}+b e+c=0$. Replacing e and e^{2} by the series follows that e is not a quadratic number. which is not a periodic expansion. J.L. Lagrange (1770) : it Recall (Euler, 1737) : $e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots]$ positive integer. That e^{2} is irrational is a stronger statement. Since e is irrational, the same is true for $e^{1 / b}$ when b is a

[^2]: Hence our goal is to prove linear independence, over the
 rational number field, of complex numbers.
 Ұиәриәдәри! Кןеәи!|-О әле
 ϑ is transcendental if and only if the
 $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{m}, \ldots$
 We wish to prove transcendence results.
 Irrationality proofs involve rational approximation to a single
 real number ϑ.
 Simultaneous approximation and transcendence

[^3]: non-zero algebraic complex numbers, provided $\log \alpha \neq 0$. Corollaries : Transcendence of $\log \alpha$ and of e^{β} for α and β

