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1 Introduction

1.1 Irrationality of
√
2

We first give a geometrical proof of the irrationality of the number

√
2 = 1, 414 213 562 373 095 048 801 688 724 209 . . .

Starting with a rectangle having sides 1 and 1+
√

2, we split it into two unit
squares and a smaller rectangle. The length of this second rectangle is 1, its
width is

√
2− 1, hence its proportion is

1√
2− 1

= 1 +
√

2.

Therefore the first and second rectangles have the same proportion. Now, if
we repeat the process and split the small rectangle into two squares (of sides√

2 − 1) and a third tiny rectangle, the proportions of this third rectangle
will again be 1 +

√
2. This means that the process will not end, each time

we shall get two squares and a remaining smaller rectangle having the same
proportion.

1This text is available on the internet at the address
http://www.math.jussieu.fr/∼miw/articles/pdf/IMPA2010.pdf
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On the other hand, if we start with a rectangle having integer side–
lengths, if we split it into several squares and if a small rectangle remains,
then clearly the small rectangle while have integer side–lengths(2). Therefore
the process will not continue forever, it will stop when there is no remaining
small rectangle. This proves the irrationality of

√
2.

In algebraic terms, the number x = 1 +
√

2 satisfies

x = 2 +
1

x
,

hence also

x = 2 +
1

2 +
1

x

= 2 +
1

2 +
1

2 +
1

x

= · · · ,

which yields the continued fraction expansion of 1 +
√

2.

1.2 Continued fractions

Here is the definition of the continued fraction expansion of a real number.
Given a real number x, the Euclidean division in R of x by 1 yields a

quotient bxc ∈ Z (the integral part of x) and a remainder {x} in the interval
¡ù( [0, 1) (the fractional part of x) satisfying

x = bxc+ {x}.

Set a0 = bxc. Hence a0 ∈ Z. If x is an integer then x = bxc = a0 and
{x} = 0. In this case we just write x = a0 with a0 ∈ Z. Otherwise we have
{x} > 0 and we set x1 = 1/{x} and a1 = bx1c. Since {x} < 1 we have
x1 > 1 and a1 ≥ 1. Also

x = a0 +
1

a1 + {x1}
·

Again, we consider two cases: if x1 ∈ Z then {x1} = 0, x1 = a1 and

x = a0 +
1

a1

2Starting with a rectangle of side–lengths a and b, the process stops when a square of
side–length d is reached, where d is the gcd of a and b: also d is the largest positive integer
such that the initial rectangle can be covered with square tiles of side length d.
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with two integers a0 and a1, with a1 ≥ 2 (recall x1 > 1). Otherwise we can
define x2 = 1/{x1}, a2 = bx2c and go one step further:

x = a0 +
1

a1 +
1

a2 + {x2}

·

Inductively one obtains a relation

x = a0 +
1

a1 +
1

a2 +
1

. . .
an−1 +

1

an + {xn}

with 0 ≤ {xn} < 1. The connexion with the geometric proof of irrationality
of
√

2 by means of rectangles and squares is now obvious: start with a
positive real number x and consider a rectangle of sides 1 and x. Divide this
rectangle into unit squares and a second rectangle. Then a0 is the number
of unit squares which occur, while the sides of the second rectangle are 1
and {x}. If x is not an integer, meaning {x} > 0, then we split the second
rectangle into squares of sides {x} plus a third rectangle. The number of
squares is now a1 and the third rectangle has sides {x} and 1−a1{x}. Going
one in the same way, one checks that the number of squares we get at the
n-th step is an.

This geometric point of view shows that the process stops after finitely
many steps (meaning that some {xn} is zero, or equivalently that xn is in
Z) if and only if x is rational.

For simplicity of notation, when x0, x1, . . . , xn are real numbers with
x1, . . . , xn positive, we write

x = [x0, x1, . . . , xn] for x0 +
1

x1 +
1

x2 +
1

. . .
xn−1 +

1

xn

·

When a0, a1, . . . , an are integers with a1, . . . , an positive, then [a0, a1, . . . , an]
is a rational number. Conversely, given a rational number x, the previous al-
gorithm produces a finite continued fraction [a0, a1, . . . , an] where a0 = bxc
and ai > 0 (1 ≤ i ≤ n) are integers. If x is a rational integer, then n = 0,
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a0 = x and the continued fraction which is produced by this algorithm is
x = [a0]. If x is not an integer, then n ≥ 1 and an ≥ 2. For any rational
number, there are exactly two finite continued fractions equal to x: one,
say [a0, a1, . . . , an−1, an], is given by the previous algorithm, the other one
is [a0, a1, . . . , an−1, an − 1, 1]. For instance if x is an integer the continued
fraction produced by the algorithm is [x], as we just saw, while the other
continued fraction equal to x is [x−1, 1]. The two continued fractions equal
to 1 are [1] and [0, 1], while any positive rational number distinct from 1 has
one continued fraction expansion with the last term an ≥ 2 and one with
the last term 1.

When x is irrational, we write the continued fraction as [a0, a1, . . . , an, . . . ].
We shall check later that when a0, a1, . . . , an, . . . are integers with a1, . . . , an, . . .
positive, the limit of [a0, a1, . . . , an] exists and is equal to x.

We need a further notation for ultimately periodic continued fraction.
Assume that x is irrational and that for some integers n0 and r > 0 its
continued fraction expansion [a0, a1, . . . , an, . . . ] satisfies

an+r = an for any n ≥ n0.

Then we write

x = [a0, a1, . . . , an0−1, an0 , an0+1, . . . , an0+r−1].

For instance √
2 = [1, 2, 2, 2, . . . ] = [1, 2]

and √
3 = [1, 1, 2, 1, 2, 1, 2, . . . ] = [1, 1, 2].

References on continued fractions are [11, 31, 19, 23, 4]. An interesting
remark [29] on the continued fraction expansion of

√
2 is to relate the A4

paper format 21× 29.7 to the fraction expansion

297

210
=

99

70
= [1, 2, 2, 2, 2, 2].

There is nothing special with the square root of 2: most of the previous
argument extend to the proof of irrationality of

√
n when n is a positive

integer which is not the square of an integer. For instance, a proof of the
irrationality of

√
n when n is not the square of an integer runs as follows.

Write
√
n = a/b where b is the smallest positive integer such that b

√
n is

an integer. Further, denote by m the integral part of
√
n: this means that

m is the positive integer such that m <
√
n < m+ 1. The strict inequality
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m <
√
n is the assumption that n is not a square. From 0 <

√
n −m < 1

one deduces
0 < (

√
n−m)b < b.

Now the number
b′ := (

√
n−m)b = a−mb

is a positive rational integer, the product

b′
√
n = bn− am

is an integer and b′ < b, which contradicts the choice of b minimal.
The irrationality of

√
5 is equivalent to the irrationality of the Golden

ratio Φ = (1 +
√

5)/2, root of the polynomial X2 −X − 1, whose continued
fraction expansion is

Φ = [1, 1, 1, 1 . . . ] = [1].

This continued fraction expansion follows from the relation

Φ = 1 +
1

Φ
·

The geometric irrationality proof using rectangles that we described above
for 1 +

√
2 works in a similar way for the Golden ratio: a rectangle of sides

Φ and 1 splits into a square and a small rectangle of sides 1 and Φ−1, hence
the first and the second rectangles have the same proportion, namely

Φ =
1

Φ− 1
· (1)

Therefore the process continues forever with one square and one smaller
rectangle with the same proportion. Hence Φ and

√
5 are irrational numbers.

Exercise 1. (a) Check that, in the geometric construction of splitting a
rectangle of sides 1 and x into squares and rectangles, the number of suc-
cessive squares is the sequence of integers (an)n≥0 in the continued fraction
expansion of x.
(b) Start with a unit square. Put on top of it another unit square: you get
a rectangle with sides 1 and 2. Next put on the right a square of sides 2,
which produces a rectangle with sides 2 and 3. Continue the process as fol-
lows: when you reach a rectangle of small side a and large side b, complete
it with a square of sides b, so that you get a rectangle with sides b and a+ b.
Which is the sequence of sides of the rectangles you obtain with this process?
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Generalizing this idea, given positive integers a0, a1, . . . , ak, devise a geo-
metrical construction of the positive rational number having the continued
fraction expansion

[a0, a1, . . . , ak].

Another proof of the irrationality of Φ is to deduce from the equation
(1) that a relation Φ = a/b with 0 < b < a yields

Φ =
b

a− b
,

hence a/b is not a rational fraction with minimal denominator.

1.3 Irrational numbers

If k is a positive integer and n a positive integer which is not the k-th power
of a rational integer, then the number n1/k is irrational. This follows, for
instance, from the fact that the roots of Xk − n are algebraic integers, and
algebraic integers which are rational numbers are rational integers.

Other numbers for which it is easy to prove the irrationality are quotients
of logarithms: if m and n are positive integers such that (logm)/(log n) is
rational, say a/b, then mb = na, which means that m and n are multiplica-
tively dependent. Recall that elements x1, . . . , xr in an additive group are
linearly independent if a relation a1x1 + · · ·+arxr = 0 with rational integers
a1, . . . , ar implies a1 = · · · = ar = 0. Similarly, elements x1, . . . , xr in a mul-
tiplicative group are multiplicatively independent if a relation xa1

1 · · ·xarr = 1
with rational integers a1, . . . , ar implies a1 = · · · = ar = 0. Therefore a
quotient like (log 2)/ log 3, and more generally (logm)/ log n where m and
n are multiplicatively independent positive rational numbers, is irrational.

We have seen that a real number is rational if and only if its continued
fraction expansion is finite. There is another criterion of irrationality using
the b-adic expansion when b is an integer ≥ 2 (for b = 10 this is the decimal
expansion, for b = 2 it is the diadic expansion). Indeed any real number x
can be written

x = bxc+ d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · ·

where the integers dn (the digits of x) are in the range 0 ≤ dn < b. There
is unicity of such an expansion, unless x is an integral multiple of some b−n

with n ≥ 0, in which case x has two expansions: one where all sufficiently
large digits vanish, and one for which all sufficiently large digits are b − 1.
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This is due to the equation

b−n =
n∑
k=0

(b− 1)b−n−k−1.

Here is the irrationality criterion using such expansions: fix an integer b ≥ 2.
Then the real number x is rational if and only if the sequence of digits
(dn)n≥1 of x in basis b is ultimately periodic.

Exercise 2. Let b ≥ 2 be an integer.
(a) Show that a real number x is rational if and only if the sequence (dn)n≥1

of digits of x in the expansion in basis b

x = bxc+ d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · · (0 ≤ dn < b)

is ultimately periodic.
(b) Let (un)n≥0 be an increasing sequence of positive integers. Assume there
exists c > 0 such that, for all sufficiently large n,

un − un−1 ≥ cn.

Deduce from (a) that the number

ϑ =
∑
n≥0

b−un

is irrational.

One might be tempted to conclude that it should be easy to decide
whether a given real number is rational or not. However this is not the case
with many constants from analysis, because most often one does not know
any expansion, either in continued fraction or in any basis b ≥ 2. And the
fact is that for many such constants the answer is not known. For instance,
one does not know whether the Euler–Mascheroni constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0, 577 215 664 901 532 860 606 512 090 082 . . .
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is rational or not: one expects that it is an irrational number (and even a
transcendental number - see later). Other formulas for the same number are

γ =

∞∑
k=1

(
1

k
− log

(
1 +

1

k

))
=

∫ ∞
1

(
1

bxc
− 1

x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy

(1− xy) log(xy)
·

J. Sondow uses (a generalization of) the last double integral in [35], he was
inspired by F. Beukers’ work on Apéry’s proof of the irrationality of

ζ(3) =
∑
n≥1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

in 1978. Recall that the values of the Riemann zeta function

ζ(s) =
∑
n≥1

n−s

was considered by Euler for real s and by Riemann for complex s, the series
being convergent for the real part of s greater than 1. Euler proved that
the values ζ(2k) of this function at the even positive integers (k ∈ Z, k ≥ 1)
are rational multiples of π2k. For instance, ζ(2) = π2/6. It is interesting
to notice that Euler’s proof relates the values ζ(2k) at the positive even
integers with the values of the same function at the odd negative integers,
namely ζ(1 − 2k). For Euler this involved divergent series, while Riemann
defined ζ(s) for s ∈ C, s 6= 1, by analytic continuation.

One might be tempted to guess that ζ(2k+1)/π2k+1 is a rational number
when k ≥ 1 is a positive integer. However the folklore conjecture is that
this is not the case. In fact there are good reasons to conjecture that for
any k ≥ 1 and any non-zero polynomial P ∈ Z[X0, X1, . . . , Xk], the number
P (π, ζ(3), ζ(5), . . . , ζ(2k + 1)) is not 0. But one does not know whether

ζ(5) =
∑
n≥1

1

n5
= 1, 036 927 755 143 369 926 331 365 486 457 . . .

is irrational or not. And there is no proof so far that ζ(3)/π3 is irrational.
According to T. Rivoal, among the numbers ζ(2n+ 1) with n ≥ 2, infinitely
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many are irrational. And W. Zudilin proved that one at least of the four
numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. References with more information on this topic are given in
the Bourbaki talk [14] by S. Fischler.

A related open question is the arithmetic nature of Catalan’s constant

G =
∑
n≥1

(−1)n

(2n+ 1)2
= 0, 915 965 594 177 219 015 0 . . .

Other open questions can be asked on the values of Euler’s Gamma
fonction

Γ(z) = e−γzz−1
∞∏
n=1

(
1 +

z

n

)−1
ez/n =

∫ ∞
0

e−ttz · dt
t
·

As an example we do not know how to prove that the number

Γ(1/5) = 4, 590 843 711 998 803 053 204 758 275 929 152 0 . . .

is irrational.
The only rational values of z for which the answer is known (and in fact

one knows the transcendence of the Gamma value in these cases) are

r ∈
{

1

6
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 5

6

}
(mod 1).

The number Γ(1/n) appears when one computes periods of the Fermat curve
Xn + Y n = Zn, and this curve is simpler (in technical terms it has genus
≤ 1) for n = 2, 3, 4 and 6. For n = 5 the genus is 2 and this is related with
the fact that one is not able so far to give the answer for Γ(1/5).

The list of similar open problems is endless. For instance, is the number

e+ π = 5, 859 874 482 048 838 473 822 930 854 632 . . .

rational or not? The answer is not yet known. And the same is true for any
number in the following list

log π, 2π, 2e, πe, ee.
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1.4 History of irrationality

The history of irrationality is closely connected with the history of continued
fractions (see[2, 3]). (Even the first examples of transcendental numbers pro-
duced by Liouville in 1844 involved continued fractions, before he considered
series).

The question of the irrationality of π was raised in India by Nı̄lakan. t.ha
Somayāj̄ı, who was born around 1444 AD. In his comments on the work
of Āryabhat.a, (b. 476 AD) who stated that an approximation for π is π ∼
3.1416, Somayāj̄ı asks(3):

Why then has an approximate value been mentioned here leav-
ing behind the actual value? Because it (exact value) cannot be
expressed.

In 1767, H. Lambert [20] proved that for x rational and non–zero, the
number tanx cannot be rational. Since tanπ/4 = 1 it follows that π is
irrational. Then he produced a continued fraction expansion for ex and
deduced that er is irrational when r is a non–zero rational number. This
is equivalent to the fact that non–zero positive rational numbers have an
irrational logarithm. A detailed description of Lambert’s proof is given in
[12].

Euler gave continued fractions expansions not only for e and e2:

e = [2; 1, 2j, 1]j≥1 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . ],

e2 = [7; 3j − 1, 1, 1, 3j, 12j + 6]j≥1 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, . . . ],

but also for (e + 1)/(e − 1), for (e2 + 1)/(e2 − 1), for e1/n with n > 1, for
e2/n with odd n > 1 and Hurwitz (1896) for 2e and (e+ 1)/3:

e+ 1

e− 1
= [2(2j + 1)]j≥0 = [2; 6, 10, 14, . . . ],

e2 + 1

e2 − 1
= [2j + 1]j≥0 = [1; 3, 5, 7, . . . ],

e1/n = [1, (2j + 1)n− 1, 1]j≥0 for n ≥ 2,

e2/n = [1, (n− 1)/2 + 3jn, 6n+ 12jn, (5n− 1)/2 + 3jn, 1]j≥0 for odd n ≥ 3,

2e = [5, 2, 3, 2j, 3, 1, 2j, 1]j≥1,

e+ 1

3
=

[1, 4, 5, 4j − 3, 1, 1, 36j − 16, 1, 1, 4j − 2, 1, 1, 36j − 4, 1, 1, 4j − 1, 1, 5, 4j, 1]j≥1.

3 K. Ramasubramanian, The Notion of Proof in Indian Science, 13th World Sanskrit
Conference, 2006. http://www.iitb.ac.in/campus/diary/2006/august/tday2.htm
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Hermite proved the irrationality of π and π2 (see [3] p. 207 and p. 247).
Furthermore, A.M. Legendre proved, in 1794, by a modification of Lambert’s
proof, that π2 is also an irrational number (see [3] p. 14).

There are not so many numbers for which one knows the irrationality but
we don’t know whether they are algebraic or transcendental (4). A notable
exception is ζ(3), known to be irrational (Apéry, 1978) and expected to be
transcendental.

1.5 Variation on a proof by Fourier (1815)

That e is not quadratic follows from the fact that the continued fraction
expansion of e, which was known by L. Euler in 1737 [11, 7, 32, 36], is not
periodic:

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

Since this expansion is infinite we deduce that e is irrational. The fact that it
is not ultimately periodic implies also that e is not a quadratic irrationality,
as shown by Lagrange in 1770 – Euler knew already in 1737 that a number
with an ultimately periodic continued fraction expansion is quadratic (see
[11, 4, 31]).

The following easier and well known proof of the irrationality of e was
given by J. Fourier in his course at the École Polytechnique in 1815. Later,
in 1872 , C. Hermite proved that e is transcendental, while the work of
F. Lindemann a dozen of years later led to a proof of the so-called Hermite–
Lindemann Theorem: for any nonzero algebraic number α the number eα is
transcendental. However for this first section we study only weaker state-
ments which are very easy to prove. We also show that Fourier’s argument
can be pushed a little bit further than what is usually done, as pointed out
by J. Liouville in 1840.

1.5.1 Irrationality of e

We truncate the exponential series giving the value of e at some point N :

N ! e−
N∑
n=0

N !

n!
=
∑
k≥1

N !

(N + k)!
· (2)

4Unless one considers complex numbers of the form ix where x is a real number expected
to be transcendental, but for which no proof of irrationality is known: there are plenty of
them!
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The right hand side of (2) is a sum of positive numbers, hence is positive
(not zero). From the lower bound (for the binomial coefficient)

(N + k)!

N !k!
≥ N + 1 for k ≥ 1,

one deduces ∑
k≥1

N !

(N + k)!
≤ 1

N + 1

∑
k≥1

1

k!
=

e− 1

N + 1
·

Therefore the right hand side of (2) tends to 0 when N tends to infinity. In
the left hand side,

∑N
n=0N !/n! is an integer. It follows that for any integer

N ≥ 1 the number N !e is not an integer, hence e is an irrational number.

1.5.2 Irrationality of e−1, following C.L. Siegel

In 1949, in his book on transcendental numbers [34], C.L. Siegel simplified
the proof by Fourier: considering e−1 instead of e yields alternating series,
hence it is no more necessary to estimate the remainder term.

The sequence (1/n!)n≥0 is decreasing and tends to 0, hence for odd N ,

1− 1

1!
+

1

2!
− · · ·+ 1

(N − 1)!
− 1

N !
< e−1 < 1− 1

1!
+

1

2!
− · · ·+ 1

(N + 1)!
·

Multiply by N !; the left hand side becomes

aN := N !− N !

1!
+
N !

2!
− · · ·+ N !

(N − 1)!
− N !

N !
∈ Z,

while the right hand side becomes

aN +
1

N + 1
< aN + 1.

Hence 0 < N !e−1 − aN < 1, and therefore N !e−1 is not an integer.

1.5.3 The number e is not quadratic

.
The fact that e is not a rational number implies that for each m ≥ 1 the

number e1/m is not rational. To prove that e2, for instance, is also irrational
is not so easy (see the comment on this point in [1]).

The proof below is essentially the one given by J. Liouville in 1840 [25]
which is quoted by Ch. Hermite [17] (“ces travaux de l’illustre géomètre”).
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To prove that e does not satisfy a quadratic relation ae2 + be+ c with a,
b and c rational integers, not all zero, requires some new trick. Indeed if we
just mimic the same argument we get

cN ! +

N∑
n=0

(2na+ b)
N !

n!
= −

∑
k≥0

(
2N+1+ka+ b

) N !

(N + 1 + k)!
·

The left hand side is a rational integer, but the right hand side tends to
infinity (and not 0) with N , so we draw no conclusion.

Instead of this approach, Liouville writes the quadratic relation as ae+
b+ ce−1 = 0. This time it works:

bN ! +
N∑
n=0

(a+ (−1)nc)
N !

n!
= −

∑
k≥0

(
a+ (−1)N+1+kc

) N !

(N + 1 + k)!
·

Again the left hand side is a rational integer, but now the right hand side
tends to 0 when N tends to infinity, which is what we expected. However we
need a little more work to conclude: we do not yet get the desired conclusion;
we only deduce that both sides vanish. Now let us look more closely to the
series in the right hand side. Write the two first terms AN for k = 0 and
BN for k = 1:∑

k≥0

(
a+ (−1)N+1+kc

) N !

(N + 1 + k)!
= AN +BN + CN

with

AN =
(
a− (−1)Nc

) 1

N + 1
, BN =

(
a+ (−1)Nc

) 1

(N + 1)(N + 2)

and

CN =
∑
k≥2

(
a+ (−1)N+1+kc

) N !

(N + 1 + k)!
·

The above proof that the sum AN +BN + CN tends to zero as N tends to
infinity shows more: each of the three sequences

AN , (N + 1)BN , (N + 1)(N + 2)CN

tends to 0 as N tends to infinity. Hence, from the fact that the sum AN +
BN+CN vanishes for sufficiently large N , it easily follows that for sufficiently
large N , each of the three terms AN , BN and CN vanishes, hence a−(−1)Nc
and a+ (−1)Nc vanish, therefore a = c = 0, and finally b = 0.
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Exercise 3. Let (an)n≥0 be a bounded sequence of rational integers. Prove
that the following conditions are equivalent:
(i) The number

ϑ1 =
∑
n≥0

an
n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.

1.5.4 The number e2 is not quadratic

The proof below is the one given by J. Liouville in 1840 [24] . See also [8].
We saw in § 1.5.3 that there was a difficulty to prove that e is not

a quadratic number if we were to follow too closely Fourier’s initial idea.
Considering e−1 provided the clue. Now we prove that e2 is not a quadratic
number by truncating the series at carefully selected places. Consider a
relation ae4 + be2 + c = 0 with rational integer coefficients a, b and c. Write
ae2 + b+ ce−2 = 0. Hence

N !b

2N−1
+

N∑
n=0

(a+ (−1)nc)
N !

2N−n−1n!
= −

∑
k≥0

(
a+ (−1)N+1+kc

) 2kN !

(N + 1 + k)!
·

Like in § 1.5.3, the right hand side tends to 0 as N tends to infinity, and if
the two first terms of the series vanish for some value of N , then we conclude
a = c = 0. What remains to be proved is that the numbers

N !

2N−n−1n!
, (0 ≤ n ≤ N)

are integers. For n = 0 this is the coefficient of b, namely 2−N+1N !. The
fact that these numbers are integers is not true for all values of N , it is not
true even for all sufficiently large N ; but we do not need so much, it suffices
that they are integers for infinitely many N , and that much is true.

The exponent vp(N !) of p in the prime decomposition of N ! is given by
the (finite) sum (see, for instance, [16])

vp(N !) =
∑
j≥1

⌊
N

pj

⌋
. (3)

Using the trivial upper bound bm/pjc ≤ m/pj we deduce the upper bound

vp(n!) ≤ n

p− 1

14



for all n ≥ 0. In particular v2(n!) ≤ n. On the other hand, when N is a
power of p, say N = pt, then (3) yields

vp(N !) = pt−1 + pt−2 + · · ·+ p+ 1 =
pt − 1

p− 1
=
N − 1

p− 1
.

Therefore when N is a power of 2 the number N ! is divisible by 2N−1 and
we have, for 0 ≤ m ≤ N ,

v2(N !/n!) ≥ N − n− 1,

which means that the numbers N !/2N−n−1n! are integers.

Exercise 4. (Continuation of exercise 3). Let (an)n≥0 be a bounded se-
quence of rational integers. Prove that these properties are also equivalent
to
(iii) The number

ϑ2 =
∑
n≥0

an2n

n!

is rational.

Exercise 5. Prove that e
√

2 is an irrational number.
Hint. Prove the stronger result that e

√
2 + e−

√
2 is irrational.

Prove also the irrationality of e
√

3.
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2 Irrationality Criteria

2.1 Statement of a criterion

Proposition 4. Let ϑ be a real number. The following conditions are equiv-
alent:
(i) ϑ is irrational.
(ii) For any ε > 0, there exists (p, q) ∈ Z2 such that q > 0 and

0 < |qϑ− p| < ε.

(iii) For any ε > 0, there exist two linearly independent linear forms in two
variables

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

(iv) For any real number Q > 1, there exists an integer q in the range
1 ≤ q < Q and a rational integer p such that

0 < |qϑ− p| < 1

Q
·

(v) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

q2
·

(vi) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·
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The implication (vi) ⇒ (v) is trivial. We shall prove (i) ⇒ (vi) later (in
the section on continued fractions). We now prove the equivalence between
the other conditions of Proposition 4 as follows:

(iv) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (v) and (v) ⇒ (ii).

Notice that given a positive integer q, there is at most one value of p
such that |qϑ− p| < 1/2, namely the nearest integer to qϑ. Hence, when we
approximate ϑ by a rational number p/q, we have only one free parameter
in Z>0, namely q.

In condition (v), there is no need to assume that the left hand side is
not 0: if one p/q ∈ Q produces 0, then all other ones do not, and there are
again infinitely many of them.

Proof of (iv) ⇒ (ii). Using (iv) with Q satisfying Q > 1 and Q ≥ 1/ε, we
get (ii).

Proof of (v) ⇒ (ii). According to (v), there is an infinite sequence of distinct
rational numbers (pi/qi)i≥0 with qi > 0 such that∣∣∣∣ϑ− pi

qi

∣∣∣∣ < 1√
5q2
i

·

For each qi, there is a single value for the numerator pi for which this in-
equality is satisfied. Hence the set of qi is unbounded. Taking qi ≥ 1/ε
yields (ii).

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p, q) ∈
Z× Z with q > 0 and gcd(p, q) = 1 such that

0 < |qϑ− p| < ε.

We use (ii) once more with ε replaced by |qϑ−p|. There exists (p′, q′) ∈ Z×Z
with q′ > 0 such that

0 < |q′ϑ− p′| < |qϑ− p|. (5)

Define L0(X0, X1) = pX0 − qX1 and L1(X0, X1) = p′X0 − q′X1. It only
remains to check that L0(X0, X1) and L1(X0, X1) are linearly independent.
Otherwise, there exists (s, t) ∈ Z2 \ (0, 0) such that sL0 = tL1. Hence
sp = tp′, sq = tq′, and p/q = p′/q′. Since gcd(p, q) = 1, we deduce t = 1,
p′ = sp, q′ = sq and q′ϑ− p′ = s(qϑ− p). This is not compatible with (5).

17



Proof of (iii) ⇒ (i). Assume ϑ ∈ Q, say ϑ = a/b with gcd(a, b) = 1 and b >
0. For any non–zero linear form L ∈ ZX0 + ZX1, the condition L(1, ϑ) 6= 0
implies |L(1, ϑ)| ≥ 1/b, hence for ε = 1/b condition (iii) does not hold.

Proof of (i) ⇒ (iv) using Dirichlet’s box principle. Let Q > 1 be a given
real number. Define N = dQe: this means that N is the integer such
that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

Let ϑ ∈ R \Q. Consider the subset E of the unit interval [0, 1] which
consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N + 1 elements are pairwise distinct. Split the
interval [0, 1] into N intervals

Ij =

[
j

N
,
j + 1

N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j+ 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =

[
1− 1

N
, 1

]
contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤
N − 1. Set p = bqϑc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p−qϑ = bqϑc+1−bqϑc−{qϑ} = 1−{qϑ}, hence 0 < p−qϑ < 1

N
≤ 1

Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = bq2ϑc − bq1ϑc.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.
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Remark. Theorem 1.A in Chap. II of [31] states that for any real number ϑ,
for any real number Q > 1, there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1

qQ
·

The proof given there yields strict inequality |qϑ−p| < 1/Q in case Q is not
an integer. In the case where Q is an integer and ϑ is rational, the result
does not hold with a strict inequality in general. For instance, if ϑ = a/b
with gcd(a, b) = 1 and b ≥ 2, there is a solution p/q to this problem with
strict inequality for Q = b+ 1, but not for Q = b.

However, when Q is an integer and ϑ is irrational, the number |qϑ − p|
is irrational (recall that q > 0), hence not equal to 1/Q.

Proof of (iv) ⇒ (v). Assume (iv). We already know that (iv) ⇒ (i), hence
ϑ is irrational.

Let {q1, . . . , qN} be a finite set of positive integers. We are going to show
that there exists a positive integer q 6∈ {q1, . . . , qN} satisfying the condition
(v). Denote by ‖ · ‖ the distance to the nearest integer: for x ∈ R,

‖x‖ = min
a∈Z
|x− a|.

Since ϑ is irrational, it follows that for 1 ≤ j ≤ N , the number ‖qjϑ‖ is
non–zero. Let Q > 1 satisfy

Q >

(
min

1≤j≤N
‖qjϑ‖

)−1

.

From (iv) we deduce that there exists an integer q in the range 1 ≤ q < Q
such that

0 < ‖qϑi‖ ≤
1

Q
·

The right hand side is < 1/q, and the choice of Q implies q 6∈ {q1, . . . , qN}.

In the next section, we give another proof of (i) ⇒ (iv) which rests on
Minkowski geometry of numbers.
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2.2 Geometry of numbers

Recall that a discrete subgroup of Rn of maximal rank n is called a lattice
of Rn.

Let G be a lattice in Rn. For each basis e = {e1, . . . , en} of G the
parallelogram

Pe = {x1e1 + · · ·+ xnen ; 0 ≤ xi < 1 (1 ≤ i ≤ n)}

is a fundamental domain for G, which means a complete system of repre-
sentative of classes modulo G. We get a partition of Rn as

Rn =
⋃
g∈G

(Pe + g) (6)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant ±1, hence the Lebesgue measure µ(Pe) of Pe does not
depend on e: this number is called the volume of the lattice G and denoted
by v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th
century as an application of his geometry of numbers.

Theorem 7 (Minkowski). Let G be a lattice in Rn and B a measurable
subset of Rn. Assume µ(B) > v(G). Then there exist x 6= y in B such that
x− y ∈ G.

Proof. From (6) we deduce that B is the disjoint union of the B ∩ (Pe + g)
with g running over G. Hence

µ(B) =
∑
g∈G

µ (B ∩ (Pe + g)) .

Since Lebesgue measure is invariant under translation

µ (B ∩ (Pe + g)) = µ ((−g +B) ∩ Pe) .

The sets (−g+B)∩Pe are all contained in Pe and the sum of their measures
is µ(B) > µ(Pe). Therefore they are not all pairwise disjoint – this is one
of the versions of the Dirichlet box principle. There exists g 6= g′ in G such
that

(−g +B) ∩ (−g′ +B) 6= ∅.

Let x and y in B satisfy −g + x = −g′ + y. Then x− y = g − g′ ∈ G \ {0}.
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From Theorem 7 we deduce Minkowski’s convex body Theorem (Theo-
rem 2B, Chapter II of [31]).

Corollary 8. Let G be a lattice in Rn and let B be a measurable subset
of Rn, convex and symmetric with respect to the origin, such that µ(B) >
2nv(G). Then B ∩G 6= {0}.

Proof. We use Theorem 7 with the set

B′ =
1

2
B = {x ∈ Rn ; 2x ∈ B}.

We have µ(B′) = 2−nµ(B) > v(G), hence by Theorem 7 there exists x 6= y
in B′ such that x−y ∈ G. Now 2x and 2y are in B, and since B is symmetric
−2y ∈ B. Finally B is convex, hence (2x− 2y)/2 = x− y ∈ G ∩B \ {0}.

Corollary 9. With the notations of Corollary 8, if B is also compact in Rn,
then the weaker inequality µ(B) ≥ 2nv(G) suffices to reach the conclusion.

Proof. Assume µ(B) = 2nv(G). For ε > 0, set Bε = (1+ε)B = {(1+ε)t ; t ∈
B}. Since µ(Bε) > 2nv(G), we deduce from Corollary 8 Bε∩G 6= {0}. Since
Bε is compact and G discrete, Bε ∩G \ {0} is a finite non–empty set. Also

Bε′ ∩G ⊂ Bε ∩G

for ε′ < ε. Hence there exists t ∈ G \ {0} such that t ∈ Bε for all ε > 0.
Define tε ∈ B by t = (1 + ε)tε. Since B is compact, there is a sequence
εn → 0 such that tεn has a limit in B. But limε→0 tε = t. Hence t ∈ B.

Remark. The example of G = Zn and B =
{

(x1, . . . , xn) ∈ Rn ; |xi| < 1
}

shows how sharp are Corollaries 8 and 9.

Minkowski’s Linear Forms Theorem (see, for instance, [31] Chap. II § 2
Th. 2C) is the following result.

Theorem 10 (Minkowski’s Linear Forms Theorem). Suppose that ϑij (1 ≤
i, j ≤ n) are real numbers with determinant ±1 . Suppose that A1, . . . , An
are positive numbers with A1 · · ·An = 1. Then there exists an integer point
x = (x1, . . . , xn) 6= 0 such that

|ϑi1x1 + · · ·+ ϑinxn| < Ai (1 ≤ i ≤ n− 1)

and
|ϑn1x1 + · · ·+ ϑnnxn| ≤ An.

21



Proof. We apply Corollary 8 with An replaced with An + ε for a sequence
of ε which tends to 0.

Here is a consequence of Theorem 10

Corollary 11. Let ϑ1, . . . , ϑm be real numbers. For any real number Q > 1,
there exist p1, . . . , pm, q in Z such that 1 ≤ q < Q and

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1

qQ1/m
·

Proof of Corollary 11. We apply Theorem 10 to the n × n matrix (with
n = m+ 1) 

1 0 0 · · · 0
−ϑ1 1 0 · · · 0
−ϑ2 0 1 · · · 0

...
...

...
. . .

...
−ϑm 0 0 · · · 1


corresponding to the linear forms X0 and −ϑiX0 + Xi (1 ≤ i ≤ m), and
with A0 = Q, A1 = · · · = Am = Q−1/m.

Proof of (i) ⇒ (iv) in Proposition 4 using Minkowski’s geometry of numbers.
Let ε > 0. The subset

Cε =
{

(x0, x1) ∈ R2 ; |x0| < Q, |x0ϑ− x1| < (1/Q) + ε
}

of R2 is convex, symmetric and has volume > 4. By Minkowski’s Convex
Body Theorem (Corollary 8 below), it contains a non–zero element in Z2.
Since Cε is also bounded, the intersection Cε ∩ Z2 is finite. Consider a non–
zero element (x0, x1) in this intersection with |x0ϑ − x1| minimal. Then
(x0, x1) ∈ Cε for all ε > 0, hence |x0ϑ − x1| ≤ 1/Q + ε for all ε > 0. Since
this is true for all ε > 0, we deduce |x0ϑ − x1| ≤ 1/Q. Finally, since ϑ is
irrational, we also have |x0ϑ− x1| 6= 1/Q.

2.3 Irrationality of at least one number

Proposition 12. Let ϑ1, . . . , ϑm be real numbers. The following conditions
are equivalent:
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0, there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

|qϑi − pi| < ε.
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(iii) For any ε > 0, there exist m + 1 linearly independent linear forms
L0, . . . , Lm in m + 1 variables with coefficients in Z in m + 1 variables
X0, . . . , Xm, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε.

(iv) For any real number Q > 1, there exists p1, . . . , pm, q in Z such that
1 ≤ q < Q and

0 < max
1≤i≤m

|qϑi − pi| ≤
1

Q1/m
·

(v) There is an infinite set of q ∈ Z, q > 0, for which there exist p1, . . . , pm
in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1

q1+1/m
·

We shall prove Proposition 12 in the following way:

(i) ⇒ (iv)
↘

⇑ (v)
↙

(iii) ⇐ (ii)

Proof of (iv) ⇒ (v). We first deduce (i) from (iv). Indeed, if (i) does not
hold and ϑi = ai/b ∈ Q for 1 ≤ i ≤ m, then the condition

max
1≤i≤m

|qϑi − pi| <
1

b

implies qϑi − pi = 0 for 1 ≤ i ≤ m, hence (iv) does not hold as soon as
Q > bm.

Let {q1, . . . , qN} be a finite set of positive integers. Using (iv) again, we
are going to show that there exists a positive integer q 6∈ {q1, . . . , qN} satis-
fying the condition (v). Recall that ‖ · ‖ denotes the distance to the nearest
integer. From (i) it follows that for 1 ≤ j ≤ N , the number max1≤i≤m ‖qjϑi‖
is non–zero. Let Q > 1 be sufficiently large such that

Q−1/m < min
1≤j≤N

max
1≤i≤m

‖qjϑi‖.

We use (iv): there exists an integer q in the range 1 ≤ q < Q such that

0 < max
1≤i≤m

‖qϑi‖ ≤ Q−1/m.
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The right hand side is < q−1/m, and the choice of Q implies q 6∈ {q1, . . . , qN}.

Proof of (v) ⇒ (ii). Given ε > 0, there is a positive integer q > max{1, 1/εm}
satisfying the conclusion of (v). Then (ii) follows.

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p1, . . . , pm, q)
in Zm+1 with q > 0 such that

0 < max
1≤i≤m

|qϑi − pi| < ε.

Without loss of generality we may assume gcd(p1, . . . , pm, q) = 1. Define
L1, . . . , Lm by Li(X0, . . . , Xm) = piX0−qXi for 1 ≤ i ≤ m. Then L1, . . . , Lm
are m linearly independent linear forms in m + 1 variables with rational
integer coefficients satisfying

0 < max
1≤i≤m

|Li(1, ϑ1, . . . , ϑm)| < ε.

We use (ii) once more with ε replaced by

max
1≤i≤m

|Li(1, ϑ1, . . . , ϑm)| = max
1≤i≤m

|qϑi − pi|.

Hence there exists p′1, . . . , p
′
m, q

′ in Z with q′ > 0 such that

0 < max
1≤i≤m

|q′ϑi − p′i| < max
1≤i≤m

|qϑi − pi|. (13)

It remains to check that one at least of the m linear forms

L′i(X0, . . . , Xm) = p′iX0 − q′Xi

for 1 ≤ i ≤ m is linearly independent of L1, . . . , Lm. Otherwise, for 1 ≤ i ≤
m, there exist rational integers si, ti1, . . . , tim, with si 6= 0, such that

si(p
′
iX0 − q′Xi) = ti1L1 + · · ·+ timLm

= (ti1p1 + · · ·+ timpm)X0 − q(ti1X1 + · · ·+ timXm).

These relations imply, for 1 ≤ i ≤ m,

siq
′ = qtii, tki = 0 and sip

′
i = pitii for 1 ≤ k ≤ m, k 6= i,

meaning that the two projective points (p1 : · · · : pm : q) and (p′1 : · · · : p′m :
q′) are the same. Since gcd(p1, . . . , pm, q) = 1, it follows that (p′1, . . . , p

′
m, q

′)
is an integer multiple of (p1, . . . , pm, q). This is not compatible with (13).
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Proof of (iii) ⇒ (i). We proceed by contradiction. Assume (i) is not true:
there exists (a1, . . . , am, b) ∈ Zm+1 with b > 0 such that ϑk = ak/b for
1 ≤ k ≤ m. Use (iii) with ε = 1/b: we get m+ 1 linearly independent linear
forms L0, . . . , Lm in ZX0 + · · ·+ ZXm. One at least of them, say Lk, does
not vanish at (1, ϑ1, . . . , ϑm). Then we have

0 < |Lk(b, a1, . . . , am)| = b|Lk(1, ϑ1, . . . , ϑm)| < bε = 1.

Since Lk(b, a1, . . . , am) is a rational integer, we obtain a contradiction.

Proof of (i) ⇒ (iv). Use Corollary 11. From the assumption (i) we deduce

max
1≤i≤m

|qϑi − pi| 6= 0.

Remark. This proof of the implication (i) ⇒ (iv) in Proposition 12 (com-
pare with [31] Chap. II § 2 p. 35) relies on Minkowski’s linear form Theorem.
Another proof of (i) ⇒ (iv) in the special case where Q1/m is an integer,
by means of Dirichlet’s box principle, can be found in [31] Chap. II Th. 1E
p. 28. A third proof (using again the geometry of numbers, but based on a
result by Blichfeldt) is given in [31] Chap. II § 2 p. 32.

3 Criteria for linear independence

3.1 Hermite’s method

Let ϑ1, . . . , ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. The goal is to prove that, under certain conditions, the
number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.
Hermite’s idea (see [18] and [13] Chap. 2 § 1.3) is to approximate si-

multaneously ϑ1, . . . , ϑm by rational numbers p1/q, . . . , pm/q with the same
denominator q > 0.

Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ k ≤ m set

εk = qϑk − pk.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z
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and
R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.
One of the main difficulties is often to check M 6= 0. This question

gives rise to the so-called zero estimates or non-vanishing lemmas. In the
present situation, we wish to find a (m + 1)–tuple (q, p1, . . . , pm) such that
(p1/q, . . . , pm/q) is a simultaneous rational approximation to (ϑ1, . . . , ϑm),
but we also require that it lies outside the hyperplane a0X0 + a1X1 + · · ·+
amXm = 0 of Qm+1. Our goal is to prove the linear independence over Q
of 1, ϑ1, . . . , ϑm; hence this needs to be checked for all hyperplanes. The
solution to this problem is to construct not only one tuple (q, p1, . . . , pm)
in Zm+1 \ {0}, but m+ 1 such tuples which are linearly independent. This
yields m+ 1 pairs (Mk, Rk) (k = 0, . . . ,m) in place of a single pair (M,R).
From (a0, . . . , am) 6= (0, . . . , 0), one deduces that one at least of M0, . . . ,Mm

is not 0.
It turns out (Proposition 14 below) that nothing is lost by using such

arguments: existence of linearly independent simultaneous rational approx-
imations for ϑ1, . . . , ϑm are characteristic of linearly independent real num-
bers 1, ϑ1, . . . , ϑm.

3.2 Rational approximations

The following criterion is due to M. Laurent [22].

Proposition 14. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following condi-
tions are equivalent:
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0, there exist m+1 linearly independent elements u0,u1, . . . ,um
in Zm+1, say

ui = (qi, p1i, . . . , pmi) (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
(0 ≤ i ≤ m). (15)

The condition of linear independence on the elements u0,u1, . . . ,um
means that the determinant∣∣∣∣∣∣∣

q0 p10 · · · pm0
...

...
. . .

...
qm p1m · · · pmm

∣∣∣∣∣∣∣
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is not 0.
For 0 ≤ i ≤ m, set

ri =

(
p1i

qi
, . . . ,

pmi
qi

)
∈ Qm.

Further define, for x = (x1, . . . , xm) ∈ Rm,

|x| = max
1≤i≤m

|xi|.

Also for x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rm set

x− y = (x1 − y1, . . . , xm − ym),

so that
|x− y| = max

1≤i≤m
|xi − yi|.

Then the relation (15) in Proposition 14 can be written

|ϑ− ri| ≤
ε

qi
, (0 ≤ i ≤ m).

The easy implication (which is also the useful one for Diophantine appli-
cations: linear independence, transcendence and algebraic independence)
is (ii) ⇒ (i) . We shall prove a more explicit version of it by check-
ing that any tuple (q, p1, . . . , pm) ∈ Zm+1, with q > 0, producing a tuple
(p1/q, . . . , pm/q) ∈ Qm of sufficiently good rational approximations to ϑ sat-
isfies the same linear dependence relations as 1, ϑ1, . . . , ϑm.

Lemma 16. Let ϑ1, . . . , ϑm be real numbers. Assume that the numbers
1, ϑ1, . . . , ϑm are linearly dependent over Q: let a, b1, . . . , bm be rational in-
tegers, not all of which are zero, satisfying

a+ b1ϑ1 + · · ·+ bmϑm = 0.

Let ε be a real number satisfying

0 < ε <

(
m∑
k=1

|bk|

)−1

.

Assume further that (q, p1, . . . , pm) ∈ Zm+1 satisfies q > 0 and

max
1≤k≤m

|qϑk − pk| ≤ ε.

Then
aq + b1p1 + · · ·+ bmpm = 0.
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Proof. In the relation

qa+
m∑
k=1

bkpk =
m∑
k=1

bk(pk − qϑk),

the right hand side has absolute value less than 1 and the left hand side is
a rational integer, so it is 0.

Proof of (ii) ⇒ (i) in Proposition 14. Let

aX0 + b1X1 + · · ·+ bmXm

be a non–zero linear form with integer coefficients. For sufficiently small ε,
assumption (ii) show that there exist m + 1 linearly independent elements
ui ∈ Zm+1 such that the corresponding rational approximation satisfy the
assumptions of Lemma 16. Since u0, . . . ,um is a basis of Qm+1, one at least
of the L(ui) is not 0. Hence Lemma 16 implies

a+ b1ϑ1 + · · ·+ bmϑm 6= 0.

Proof of (i) ⇒ (ii) in Proposition 14. Let ε > 0. By Corollary 11, there
exists u = (q, p1, . . . , pm) ∈ Zm+1 with q > 0 such that

max
1≤k≤m

∣∣∣∣ϑk − pk
q

∣∣∣∣ ≤ ε

q
·

Consider the subset Eε ⊂ Zm+1 of these tuples. Let Vε be the Q-vector
subspace of Qm+1 spanned by Eε.

If Vε 6= Qm+1, then there is a hyperplane a0x0 + a1x1 + · · ·+ amxm = 0
containing Eε. Any u = (q, p1, . . . , pm) in Eε has

a0q + a1p1 + · · ·+ ampm = 0.

For each n ≥ 1/ε, let u = (qn, p1n, . . . , pmn) ∈ Eε satisfy

max
1≤k≤m

∣∣∣∣ϑk − pkn
qn

∣∣∣∣ ≤ 1

nqn
·

Then

a0 + a1ϑ1 + · · ·+ amϑm =
m∑
k=1

ak

(
ϑk −

pkn
qn

)
.
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Hence

|a0 + a1ϑ1 + · · ·+ amϑm| ≤
1

nqn

m∑
k=1

|ak|.

The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1, ϑ1, . . . , ϑm are Q–linearly dependent, which means that (i)
does not hold.

Therefore, if (i) holds, then Vε = Qm+1, hence there are m + 1 linearly
independent elements in Eε.

29



Diophantine approximation,
irrationality and transcendence

Michel Waldschmidt

Course N◦3, April 26, 2010

3.3 Linear forms

3.3.1 Siegel’s method: m+ 1 linear forms

For proving linear independence of real numbers, Hermite [18] considered
simultaneous approximation to these numbers by algebraic numbers. The
point of view introduced by Siegel in 1929 [33] is dual (duality in the sense
of convex bodies): he considers simultaneous approximation by means of
independent linear forms.

We define the height of a linear form L = a0X0 + · · · + amXm with
complex coefficients by

H(L) = max{|a0|, . . . , |am|}.

Lemma 17. Let ϑ1, . . . , ϑm be complex numbers. Assume that, for any
ε > 0, there exists m + 1 linearly independent linear forms L0, . . . , Lm in
m+ 1 variables, with coefficients in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε

Hm−1
where H = max

0≤k≤m
H(Lk).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.

The proof is given by C.L. Siegel in [33]; see also [13] Chap. 2 § 1.4 and
[6]. We sketch the argument here, and we expand it below.

Assume 1, ϑ1, . . . , ϑm are linearly dependent over Q: let Λ0 ∈ ZX0 +
ZX1 +· · ·+ZXm be a non–zero linear form in m+1 variables which vanishes
at the point (1, ϑ1, . . . , ϑm). Denote by A the maximum of the absolute
values of the coefficients of Λ0 and use the assumption with ε = 1/m!mA.
Among the m+ 1 linearly independent linear forms which are given by the
assumption of Lemma 17, select m of them, say Λ1, . . . ,Λm, which form with
Λ0 a set of m+ 1 linearly independent linear forms. The (m+ 1)× (m+ 1)
matrix of coefficients of these forms is regular; using the inverse matrix, one
expresses its determinant ∆ as a linear combination with integer coefficients
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of Λk(1, ϑ1, . . . , ϑm)|, 1 ≤ k ≤ m. The choice of ε yields the contradiction
|∆| < 1.

We develop this idea and deduce the following more precise statement.

Proposition 18. Let ϑ1, . . . , ϑm be complex numbers and L0, . . . , Lm be
m+ 1 linearly independent linear forms in m+ 1 variables with coefficients
in Z. Then

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)|
H(Lk)

≥ 1

(m+ 1)!H(L0) · · ·H(Lm)
·

Proof. For 0 ≤ k ≤ m, write

Lk(X0, . . . , Xm) =
m∑
i=0

`kiXi and set λk = Lk(1, ϑ1, . . . , ϑm).

Define ϑ0 = 1. Let L be the regular (m+ 1)× (m+ 1) matrix
(
`ki
)

0≤k,i≤m.
Using the relation ϑ0

...
ϑm

 = L−1

λ0
...
λm

 ,

one can write the product of ϑ0 = 1 by det(L) as a linear combination of
λ0, . . . , λm with rational integer coefficients. In this linear combination, the
absolute value of the coefficient of λk is ≤ m!H(L0) · · ·H(Lm)/H(Lk). We
deduce

1 ≤ |det(L)| ≤ m!

m∑
k=0

H(L0) · · ·H(Lm)
|λk|
H(Lk)

·

Proposition 18 follows.

An straightforward consequence of Proposition 18 is the following:

Corollary 19. Let ϑ1, . . . , ϑm be complex numbers, H be a positive real
number and L0, . . . , Lm be m+ 1 linearly independent linear forms in m+ 1
variables with coefficients in Z of height ≤ H. Then

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| ≥ 1

(m+ 1)!Hm
·

Using either Proposition 18 or Corollary 19, we deduce the following
result (compare with [27] Lemma 2.4):
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Corollary 20. Let ϑ1, . . . , ϑm be complex numbers and κ ≥ 0 be a real
number. Assume that, for any ε > 0, there exists m+1 linearly independent
linear forms L0, . . . , Lm in m+ 1 variables, with coefficients in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε

Hκ
where H = max

0≤k≤m
H(Lk).

Denote by r+1 the dimension of the Q–vector space spanned by 1, ϑ1, . . . , ϑm.
Then r > κ.

Under the assumptions of Corollary 20, since r ≤ m, we deduce κ < m,
which is a plain consequence of Corollary 19.

We recover Lemma 17 by taking κ = m− 1.
Also we recover the implication (iii)⇒ (i) from Proposition 12 by taking

κ = 0.

Proof. We give two slightly different proofs of Corollary 20. For the first
one, we use Proposition 18 as follows: consider m − r linearly independent
linear relations among 1, ϑ1, . . . , ϑm. Denote by L̃r+1, . . . , L̃m these linear
forms and by c their maximal height. Take 0 < ε < 1/((m+1)!cm−r). Select
r+ 1 linear forms L̃0, . . . , L̃r among L0, . . . , Lm to get a maximal system of
m + 1 linearly independent linear forms L̃0, . . . , L̃m. From Proposition 18
one deduces

1

(m+ 1)!cm−rH(L̃0) · · ·H(L̃r)
≤ 1

(m+ 1)!H(L̃0) · · ·H(L̃m)

≤ max
0≤k≤m

|L̃k(1, ϑ1, . . . , ϑm)|
H(L̃k)

≤ max
0≤k≤r

|L̃k(1, ϑ1, . . . , ϑm)|
H(L̃k)

≤ max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)|
H(Lk)

·

From the choice of ε, one concludes Hκ < Hr, hence r > κ.
Our second proof of Corollary 20 rests on Corollary 19. Let 1, ξ1, . . . , ξr

be a basis of the Q–vector space spanned by 1, ϑ1, . . . , ϑm. Define ξ0 = ϑ0 =
1 and write

ϑh =
r∑
j=0

ahjξj (0 ≤ h ≤ m).
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In particular a00 = 1 and a0j = 0 for 1 ≤ j ≤ m. Define

c = max
0≤j≤r

m∑
h=0

|ahj |

and let ε satisfy 0 < ε < 1/(r + 1)!cr. Let L0, . . . , Lm be the m+ 1 linearly
independent linear forms in m + 1 variables with integer coefficients given
by the assumption of Corollary 20. Write

Lk(X0, . . . , Xm) =

m∑
h=0

`khXh (0 ≤ k ≤ m).

By assumption max0≤k,h≤m |`kh| ≤ H. Consider the m + 1 linear forms
Λ0, . . . ,Λm in r + 1 variables Y0, . . . , Yr defined by

Λk(Y0, . . . , Yr) = λk0Y0 + · · ·+ λkrYr (0 ≤ k ≤ m)

with

λkj =
m∑
h=0

`khahj .

The connexion between the linear forms L0, . . . , Lm in ZX0 + · · ·+ ZXm on
the one side and and Λ0, . . . ,Λm in ZY0 + · · ·+ ZYr on the other side is

Λk(Y0, . . . , Yr) = Lk

 r∑
j=0

a0jYj , . . . ,
r∑
j=0

amjYj

 (0 ≤ k ≤ m).

Since 1, ξ1, . . . , ξr are Q–linearly independent, the r+1 columns of the (m+
1)× (r+1) matrix

(
ahj
)

0≤h≤m
0≤j≤r

are linearly independent in Qm+1, hence this

matrix has rank r+1, and therefore the rank of the set of m+1 linear forms
Λ0, . . . ,Λm is r + 1. By construction

Λk(1, ξ1, . . . , ξr) = Lk(1, ϑ1, . . . , ϑm) (0 ≤ k ≤ m).

Applying Corollary 19 to the point (1, ξ1, . . . , ξr) with r + 1 independent
linear forms among Λ0, . . . ,Λm, we deduce

max
0≤k≤m

|Λk(1, ξ1, . . . , ξr)| ≥
1

(r + 1)!H̃r

with
H̃ = max

0≤k≤m
H(Λk) = max

0≤k≤m
0≤j≤r

|λkj | ≤ cH.

Again, from the choice of ε, one concludes Hκ < Hr, hence r > κ.
Corollary 20 follows.
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3.3.2 Nesterenko’s Criterion for linear independence

In 1985, Yu.V. Nesterenko [26], obtained a variant of Proposition 18 (Siegel’s
linear independence criterion). There are two main differences: on the one
hand, Nesterenko does not need m + 1 linearly independent forms, but he
needs only one; at the same time he does not only assume an upper bound
for the value of this linear form at the point (1, ϑ1, . . . , ϑm), but also a
lower bound. On the other hand, for Nesterenko it is not sufficient to have
infinitely many linear forms as in Siegel’s Proposition 18, but he needs a
sequence of such forms (for all sufficiently large n, and not only for infinitely
many n). A simplification of the original proof by Nesterenko was proposed
by F. Amoroso and worked out by P. Colmez. A new approach, which at
the same time simplifies further the argument and yields refinements, is due
to S. Fischler and W. Zudilin [15].

The main reference for this section is [6].

Theorem 21 (Nesterenko linear independence criterion). Let c1, c2, τ1, τ2

be positive real numbers and σ(n) a non–decreasing positive function such
that

lim
n→∞

σ(n) =∞ and lim sup
n→∞

σ(n+ 1)

σ(n)
= 1.

Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Assume that, for all sufficiently large integers
n, there exists a linear form with integer coefficients in m+ 1 variables

Ln(X) = `0nX0 + `1nX1 + · · ·+ `mnXm,

which satisfies the conditions

H(Ln) ≤ eσ(n) and c1e
−τ1σ(n) ≤ |Ln(1, ϑ)| ≤ c2e

−τ2σ(n).

Then dimQ(Q + Qϑ1 + · · ·+ Qϑm) ≥ (1 + τ1)/(1 + τ1 − τ2).

The main result of [6], which relies on the arguments in [15], is the
following.

Theorem 22. Let ξ = (ξi)i≥0 be a sequence of real numbers with ξ0 = 1,
(rn)n≥0 a non–decreasing sequence of positive integers, (Qn)n≥0, (An)n≥0

and (Bn)n≥0 sequences of positive real numbers such that limn→∞A
1/rn
n =∞

and, for all sufficiently large integers n,

QnBn ≤ Qn+1Bn+1.
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Assume that, for any sufficiently large integer n, there exists a linear form
with integer coefficients in rn + 1 variables

Ln(X) = `0nX0 + `1nX1 + · · ·+ `rnnXrn

such that

rn∑
i=0

|`in| ≤ Qn, 0 < |Ln(ξ)| ≤ 1

An
and

|Ln−1(ξ)|
|Ln(ξ)|

≤ Bn.

Then An ≤ 2rn+1(BnQn)rn for all sufficiently large integers n.

One deduces from Theorem 22 a slight refinement of Theorem 21 where
the condition lim supn→∞

σ(n+1)
σ(n) = 1 is relaxed, the cost being to replace

σ(n) by σ(n+ 1) in the upper bound for |Ln(1, ϑ)|.

Corollary 23. Let τ1, τ2 be positive real numbers and σ(n) a non–decreasing
positive function such that limn→∞ σ(n) =∞. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm.
Assume that, for all sufficiently large integers n, there exists a linear form
with integer coefficients in m+ 1 variables

Ln(X) = `0nX0 + `1nX1 + · · ·+ `mnXm

which satisfies the conditions

H(Ln) ≤ eσ(n) and e−(τ1+o(1))σ(n) ≤ |Ln(1, ϑ)| ≤ e−(τ2+o(1))σ(n+1).

Then dimQ(Q + Qϑ1 + · · ·+ Qϑm) ≥ (1 + τ1)/(1 + τ1 − τ2).

Further consequences of Theorem 22 are given in [6]. See also Corollary
33 below.

4 Criteria for transcendence

The main Diophantine tool for proving transcendence results is Liouville’s
inequality.

4.1 Liouville’s inequality

Recall that the ring Z[X] is factorial, its irreducible elements of positive
degree are the non-constant polynomials with integer coefficients which are
irreducible in Q[X] (i.e., not a product of two non-constant polynomials
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in Q[X]) and have content 1. The content of a polynomial in Z[X] is the
greatest common divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irre-
ducible polynomial P ∈ Z[X] which vanishes at α and has a positive leading
coefficient.

The next lemma is one of many variants of Liouville’s inequality (see,
for instance, [21, 31, 37, 28, 27]), which is close to the original one of 1844.

Lemma 24. Let α be an algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(c+ ε)qd
·

Proof. The result is trivial if α is not real: an admissible value for q0 is

q0 = (c|=m(α)|)−1/d.

Assume now α is real. Let q be a sufficiently large positive integer and let
p be the nearest integer to qα. In particular,∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

2q
·

Denote by a0 the leading coefficient of P and by α1, . . . , αd the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
. (25)

Also

P ′(α) = a0

d∏
i=2

(α− αi).

The left hand side of (25) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − α|+ 1

2q
·
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We deduce

1 ≤ qda0

∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1

2q

)
.

For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

The same proof yields the next result.
Define the height H(P ) of a polynomial P with complex coefficients (any

number of variables) as the maximum modulus of its coefficients.

Proposition 26 (Liouville’s inequality). Let α1, . . . , αm be algebraic num-
bers. There exists a constant c = c(α1, . . . , αm) > 0 such that, for any
polynomial P ∈ Z[X1, . . . , Xm] satisfying P (α1, . . . , αm) 6= 0, the inequality

|P (α1, . . . , αm)| ≥ H−ce−cd

holds with H = max{2, H(P )} and d the total degree of P .

The constant c can be explicitly computed (see, for instance, [13, 38]),
but this is not relevant here.

The corollary below (which is [27] Prop. 3.1) is useful for proving tran-
scendence results.

Corollary 27. Let ϑ1, . . . , ϑm be complex numbers C. Let σ(n) and λ(n)
be two non–decreasing positive real functions with limn→∞ σ(n) = ∞ and
limn→∞ λ(n)/σ(n) = ∞. Assume that there exists a sequence (Pn)n≥0 of
polynomials in Z[X1, . . . , Xm], with Pn of degree ≤ σ(n) and height H(Pn) ≤
eσ(n), such that, for infinitely many n,

0 < |Pn(ϑ1, . . . , ϑm)| ≤ e−λ(n).

Then one at least of the numbers ϑ1, . . . , ϑm is transcendental.

4.2 Transcendence criterion of A. Durand

Liouville’s result is not a necessary and sufficient condition for transcen-
dence. One way of extending the irrationality criterion of Proposition 4 into
a transcendence criterion is to replace rational approximation by approxi-
mation by algebraic numbers. For instance, given an integer d, one gets a
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criterion for ϑ not being algebraic of degree ≤ d by considering algebraic
approximation of ϑ by algebraic numbers of degree ≤ d. One may also let d
vary and get a transcendence criterion as follows.

Define the height of a H(α) of an algebraic number α as the height of
its irreducible polynomial in Z[X], and the size s(α) as

s(α) := [Q(α) : Q] + logH(α).

The following result (we shall not use it and we do not include a proof) is
due to A. Durand [9, 10].

Proposition 28. Let ϑ be a complex number. The following conditions are
equivalent:
(i) ϑ is transcendental.
(ii) For any κ > 0 there exists an algebraic number α such that

0 < |ϑ− α| < e−κs(α).

(iii) There exists a sequence (αn)n≥0 of pairwise distinct algebraic numbers
such that

lim
n→∞

log |ϑ− αn|
s(αn)

= −∞.

Another way of getting transcendence criteria for a number ϑ (resp. cri-
teria for ϑ not being of degree ≤ d) is to consider polynomial approximations
|P (ϑ)| by polynomials in Z[X] (resp. by polynomials of degree ≤ d).

5 Criteria for algebraic independence

5.1 Small transcendence degree: Gel’fond’s criterion

Gel’fond’s criterion (see, for instance, [21, 37, 28, 27]) is a powerful tool to
prove the algebraic independence of at least two numbers.

A slightly refined version (due to A. Chantanasiri) is the following one.
Define the size t(P ) of a polynomial P ∈ C[X] as

t(P ) := logH(P ) + (log 2) degP.

Theorem 29 (Gel’fond’s Transcendence Criterion). Let ϑ ∈ C and let γ be
a real number with γ > 1. Let (dn)∞n=1 and (tn)∞n=1 be two non–decreasing
sequences of real numbers with limn→∞ tn =∞. Assume that there exists a
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sequence (Pn)n≥0 of polynomials in Z[X] with Pn of degree ≤ dn and size
t(Pn) ≤ tn such that, for all sufficiently large integer n,

|Pn(ϑ)| ≤ e−γ(dntn+dn+1tn+dntn+1).

Then ϑ is algebraic and Pn(ϑ) = 0 for all sufficiently large n.

A consequence of Theorem 29 is the following variant of Gel’fond’s Cri-
terion (Lemma 3.5 of [27]):

Corollary 30. Let ϑ ∈ C and let σ(n) be a non–decreasing unbounded
positive real function. Assume that there exists a sequence (Pn)n≥0 of poly-
nomials in Z[X] with Pn of size t(Pn) ≤ σ(n) such that, for all sufficiently
large integer n,

|Pn(ϑ)| ≤ e−5σ(n+1)2
.

Then ϑ is algebraic and Pn(ϑ) = 0 for all sufficiently large n.

This result is useful to prove that in some given set of specific numbers,
at least two numbers are algebraically independent ([27] § 3.3 Prop. 3.3).

Corollary 31. Let ϑ1, . . . , ϑm be complex numbers. Let σ(n) and λ(n)
be two non–decreasing positive real function with limn→∞ σ(n) = ∞ and
limn→∞ λ(n)/σ(n+1)2 =∞. Assume that there exists a sequence (Pn)n≥0 of
polynomials in Z[X1, . . . , Xm], with Pn of degree ≤ σ(n) and height H(Pn) ≤
eσ(n), such that, for all sufficiently large n,

0 < |Pn(ϑ1, . . . , ϑm)| ≤ e−λ(n).

Then at least two of the numbers ϑ1, . . . , ϑm are algebraically independent.

One should stress the following differences with Corollary 27: the conclu-
sion of Theorem 29 is that the transcendence degree of the field Q(ϑ1, . . . , ϑm)
is at least 2, while Liouville’s argument shows only that it is at least 1. There
is a price for that. On the one hand, the assumption

lim
n→∞

λ(n)/σ(n+ 1)2 =∞

is stronger than the assumption

lim
n→∞

λ(n)/σ(n) =∞

in Corollary 27 (what is important is the square, not the n + 1 in place of
n). On the other hand, Liouville’s assumption is assumed to be satisfied for
infinitely many n, while Gel’fond requires it for all sufficiently large n.
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5.2 Large transcendence degree

It took some time before Gel’fond’s transcendence criterion could be ex-
tended into a criterion for large transcendence degree. One approach sug-
gested by S. Lang [21] involves his so-called transcendence type (see [27]
§ 7.3): this is an assumption which amounts to avoid Liouville type num-
bers. The idea is to prove algebraic independence by induction, but the
results which are obtained in this way are comparatively weak.

One might hope that assuming limn→∞ λ(n)/σ(n + 1)k = ∞ in Corol-
lary 31 would suffice to prove that the transcendence degree of the field
Q(ϑ1, . . . , ϑm) is at least k. However this is not the case, as an example
from Khinchine (reproduced in Cassels’s book on Diophantine approxima-
tion [5]) shows. The first one to obtain a criterion for large transcendence
degree was G.V. Chudnovskii in 1976. The original criterion was not sharp,
the estimate for the transcendence degree was the logarithm of the expected
one. A few years later Philippon reached the optimal exponent.

One of the main tools, in Nesterenko’s proof of his main result (Theorem
4.2 in [27]), is this criterion for algebraic independence due to Philippon ([27]
Chap. 6). Here is Corollary 6.2 of [27]. See also [30, 28].

Theorem 32. Let ϑ1, . . . , ϑm be complex numbers, σ(n) and S(n) be two
non–decreasing positive real functions and k be a real number in the range
1 ≤ k ≤ m. Assume that the functions

σ(n) and
S(n− 1)

σ(n)k

are non–decreasing and unbounded. Assume, further, that there exists a
constant c0 and a sequence (Pn)n≥0 of polynomials in Z[X] with Pn of size
t(Pn) ≤ σ(n) such that, for all sufficiently large n,

e−c0S(n−1) < |Pn(ϑ1, . . . , ϑm)| ≤ e−S(n).

Then the transcendence degree over Q of the field Q(ϑ1, . . . , ϑm) is > k− 1.

The special case k = 1 of this result is close to (but weaker than) Corol-
lary 27, the special case k = 2 of this result is close to (but weaker than)
Theorem 29 (where no lower bound was requested).

It is interesting to compare with the following criterion for algebraic
independence (Corollary 3.6 of [6]), which is a corollary of Theorem 22.

40



Corollary 33. Let ϑ1, . . . , ϑt be real numbers and (τd)d≥1, (ηd)d≥1 two se-
quences of positive real numbers satisfying

τd
dt−1(1 + ηd)

−→ +∞.

Further, let σ(n) be a non–decreasing unbounded positive real function. As-
sume that for all sufficiently large d, there is a sequence (Pn)n≥n0(d) of poly-

nomials in Z[X1, . . . , Xt], where Pn has degree ≤ d and length ≤ eσ(n), such
that, for n ≥ n0(d),

e−(τd+ηd)σ(n) ≤ |Pn(ϑ1, . . . , ϑt)| ≤ e−τdσ(n+1).

Then ϑ1, . . . , ϑt are algebraically independent.

The proof of Corollary 33 is much easier than the proof of Theorem 32,
since it relies on linear elimination instead of polynomial elimination. Unfor-
tunately, Corollary 33 does not seem to suffice for the proof of Nesterenko’s
algebraic independence Theorem on q, P (q), Q(q) and R(q) (Theorem 4.2
of [27]).
Exercise. Let ϑ1, . . . , ϑm be complex numbers and d a positive integer.
Check that the following conditions are equivalent:
(i) There exists a non–zero polynomial A ∈ Q[X1, . . . , Xm] of degree ≤ d
such that A(ϑ1, . . . , ϑm) = 0.
(ii) The dimension of the Q–vector space spanned by the numbers

ϑi11 · · ·ϑ
im
m (i1 + · · ·+ im ≤ n)

is bounded from above by

d
nm−1

(m− 1)!
+ O(nm−1)

as n→∞.

Appendix: the resultant of two polynomials in one variable

The main tool for the proof of Gel’fond’s criterion is the resultant of two
polynomials in one variable.

Given two linear equations in two unknowns{
a1x+ b1y = c1,
a2x+ b2y = c2,
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in order to compute y, one eliminates x. This amounts to find the projection
on the y axis of the intersection point (x, y) of two lines in the plane. More
generally, linear algebra enables one to find the intersection point (unique
in general) of n hyperplanes in dimension n by means of a determinant.

Given two plane curves

f(x, y) = 0 and g(x, y) = 0

without common components, there are only finitely many intersection points;
the values y of the coordinates (x, y) of these points are roots of a polynomial
R in K0[Y ], where K0 is the base field. This polynomial is computed by
eliminating x between the two equations f(x, y) = 0 and g(x, y) = 0. The
ideal of K0[Y ] which is the intersection of K0[Y ] with the ideal of K0[X,Y ]
generated by f and g is principal, and R is a generator: there is a pair (U, V )
of polynomials in K0[X,Y ] such that R = Uf + V g. If (U, V ) satisfies this
Bézout condition, then so does (U −Wg, V +Wf) for any W in K0[X,Y ].
By Euclidean division in the ring K0[Y ][X] of U by g, one gets a solution
(U, V ) with degU < deg g, and then deg V < deg f . When f and g have no
common factor, such a pair (U, V ) is unique up to a multiplicative constant.
When f and g have their coefficients in a domain A0 in place of a field K0,
one takes for K0 the quotient field of A0 and one multiplies by a denomi-
nator, so that U and V can be taken as polynomials in A0[X,Y ], and then
R ∈ A0.

The multiplicities of intersection of the two curves are reflected by the
multiplicities of zeros of the roots of R as a polynomial in Y .

It is useful to work with a ring A more general than A0[Y ]. Let A be a
commutative ring with unity. Denote by S the ring A[X] of polynomials in
one variable with coefficients in A. For d a non-negative integer, let Sd be
the A–module of elements in S of degree ≤ d. Then Sd is a free A–module
of rank d+ 1 with a basis 1, X, . . . ,Xd.

Let P and Q be polynomials of degrees p and q respectively:

P (X) = a0 + a1X + · · ·+ apX
p, Q(X) = b0 + b1X + · · ·+ bqX

q.

The homomorphism of A–modules

Sq−1 × Sp−1 −→ Sp+q−1

(U, V ) 7−→ UP + V Q
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has the following matrix in the given bases: for q larger than p,

a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
...

...
· · ·

...
...

...
. . .

...
ap−1 ap−2 · · · 0 bp−1 bp−2 · · · b0
ap ap−1 · · · 0 bp bp−1 · · · b1
0 ap · · · 0 bp+1 bp · · · b2
...

...
· · ·

...
...

...
. . .

...
0 0 · · · a0 bq−1 bq−2 · · · bq−p
0 0 · · · a1 bq bq−1 · · · bq−p+1

0 0 · · · a2 0 bq · · · bq−p+2
...

...
· · ·

...
...

...
. . .

...
0 0 · · · ap 0 0 · · · bq


and for p larger than q,

a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
...

...
. . .

...
...

...
· · ·

...
aq−1 aq−2 · · · a0 bq−1 bq−2 · · · 0
aq aq−1 · · · a1 bq bq−1 · · · 0
aq+1 aq · · · a2 0 bq · · · 0

...
...

. . .
...

...
...

· · ·
...

ap−1 ap−2 · · · ap−q 0 0 · · · b0
ap ap−1 · · · ap−q−1 0 0 · · · b1
0 ap · · · ap−q−2 0 0 · · · b2
...

...
. . .

...
...

...
· · ·

...
0 0 · · · ap 0 0 · · · bq


The q first columns are the components, in the basis (1, X, . . . ,Xp+q−1), of
P,XP, . . . ,Xq−1P , while the p last columns are the components, in the same
basis, of Q,XQ, . . . ,Xp−1Q. The main diagonal is (a0, . . . , a0, bq, . . . , bq).

Definition. The resultant of P and Q is the determinant of this matrix. We
denote it by Res(P,Q). The universal resultant is the resultant of the two
polynomials

U0 + U1X + · · ·+ UpX
p and V0 + V1X + · · ·+ VqX

q,
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in the ring Apq = Z[U0, U1, . . . , Up, V0, V1, . . . , Vq] of polynomials with coef-
ficients in Z in p+ q+ 2 variables. One deduces the resultant of P and Q by
specialisation, i.e., as the image under the canonical homomorphism from
Apq to A which maps Ui to ai and Vj to bj . When the characteristic is 0,
this canonical homomorphism is injective.

From the above expression of the resultant as a determinant, one de-
duces:

Proposition 34. The universal resultant is a polynomial in

U0, U1, . . . , Up, V0, V1, . . . , Vq

which is homogeneous of degree q in U0, . . . , Up, and homogeneous of degree
p in V0, . . . , Vq.

Proposition 35. There exist two polynomials U and V in A[X], of degrees
< q and < p respectively, such that the resultant R = Res(P,Q) of P and Q
can be written R = UP + V Q.

It follows that if P and Q have a common zero in some field containing
A, then Res(P,Q) = 0. The converse is true. It uses the following easy
property, whose proof is left as an exercise.

Proposition 36. Let A0 be a ring, A = A0[Y1, . . . , Yn] the ring of polynomi-
als in n variables with coefficients in A0, and P , Q elements in A0[Y0, . . . , Yn],
homogeneous of degrees p and q respectively. Consider P and Q as elements
in A[Y0] and denote by R = ResY0(P,Q) ∈ A their resultant with respect to
Y0. Then R is homogeneous of degree pq in Y1, . . . , Yn.

From these properties we deduce:

Proposition 37. If

P (X) = a0

p∏
i=1

(X − αi) and Q(X) = b0

q∏
j=1

(X − βj),

then
Res(P,Q) = aq0b

p
0

∏p
i=1

∏q
j=1(αi − βj)

= (−1)pqbp0
∏q
j=1 P (βj)

= aq0
∏p
i=1Q(αi).
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Proof. Without loss of generality, one may assume that A is the ring of poly-
nomials with coefficients in Z in the variables a0, b0, α1, . . . , αp, β1, . . . , βq.
In this factorial ring, αi − βj is an irreducible element which divides R =
Res(P,Q) (indeed, if one specializes αi = βj , then the resultant vanishes).
Now

aq0b
p
0

p∏
i=1

q∏
j=1

(αi − βj)

is homogeneous of degree q in the coefficients of P and of degree p in the
coefficients of Q. Therefore it can be written cR with some c ∈ Z. Finally
the coefficient of the monomial ap0b

q
0 is 1, hence c = 1.

Corollary 38. Let K be a field containing A in which P and Q completely
split in factors of degree 1. Then the resultant Res(P,Q) is zero if and only
if P and Q have a common zero in K.

Corollary 39. If the ring A is factorial, then Res(P,Q) = 0 if and only if
P and Q have a common irreducible factor.
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Diophantine approximation,
irrationality and transcendence

Michel Waldschmidt

Course N◦4, April 28, 2010

This course was devoted to Liouville’s inequality (§ 4.1).
The present notes consist of

• Pages 65–85 of [38] (beginning of Chapter 3: Heights).

• Liouville’s inequality for quadratic numbers.

• A short historical survey on Diophantine Approximation.
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4.1.2 Liouville’s inequality for quadratic numbers

Consider Lemma 24 in the special case d = 2 where α is a quadratic algebraic
number. Write its minimal polynomial f(X) = aX2 + bX + c and let ∆ :=
b2 − 4ac be its discriminant. Since we are interested in the approximation
of α by rational numbers, we assume ∆ > 0. If α = (−b ±

√
∆)/2a, then

the other root is α′ = (−b∓
√

∆)/2a and

f ′(α) = a(α− α′) = ±
√

∆.

Lemma 40. Let α be an algebraic number of degree 2 and minimal polyno-
mial P ∈ Z[X]. Define Let ε > 0. Then there exists an integer q0 such that,
for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(
√

∆ + ε)q2
·

The smallest positive discriminant of an irreducible quadratic polynomial
with coefficients in Z is 5, which is the value of the discriminant of X2−X−1,
with roots Φ and −Φ−1 where Φ = 1.6180339887499 . . . denotes the Golden
ratio.

The next result deals with the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Lemma 41. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to
qΦ. From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2

(
p

q
− Φ

)(
p

q
+ Φ−1

)
.

The left hand side is a non-zero rational integer, hence has absolute value
at least 1. We now bound the absolute value of the right hand side from
above. Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 <

√
5 +

1

2q
·
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Hence

1 < q2

∣∣∣∣pq − Φ

∣∣∣∣ (√5 +
1

2q

)
The first part of Lemma 41 follows.

The real vector space of sequences (vn)n≥0 satisfying vn = vn−1+vn−2 has
dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5

(Φn − (−1)nΦ−n)

due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It
follows that Fn is the nearest integer to

1√
5

Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1

satisfies limn→∞ un = Φ.
By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

for n ≥ 1. The left hand side is F 2
n−1(un−Φ)(un + Φ−1), as we already saw.

Hence

F 2
n−1|Φ− un| =

1

Φ−1 + un
,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result
follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1

, (n ≥ 3).

Hence

un = 1 +
1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·
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Remark. It is known (see for instance [31] p. 25) that if k is a positive
integer, if an irrational real number ϑ has a continued fraction expansion
[a0; a1, a2, . . . ] with an ≥ k for infinitely many n, then

lim inf
q→∞

q2

∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1√
4 + k2

·

4.1.3 Diophantine Approximation: historical survey

References for this section are [2, 31, 13, 1].
Definition Given a real irrational number ϑ, a function ϕ = N → R>0 is
an irrationality measure for ϑ if there exists an integer q0 > 0 such that, for
any p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure
for ϑ.

From Dirichlet’s box principle (see (i)⇒ (iv) in Proposition 4) it follows
that any irrationality exponent κ satisfies κ ≥ 2. Irrational quadratic num-
bers have irrationality exponent 2. It is known (see for instance [31] Th. 5F
p. 22) that 2 is an irrationality exponent for an irrational real number ϑ
if and only if the sequence of partial quotients (a0, a1, . . .) in the continued
fraction expansion of ϑ is bounded: these are called the badly approximable
numbers.

From Liouville’s inequality in Lemma 24 it follows that any irrational
algebraic real number α of degree d has a finite irrationality exponent ≤ d.
Liouville numbers are by definition exactly the irrational real numbers which
have no finite irrationality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an
irrationality exponent and is the best: no positive number less than κ is
an irrationality exponent for ϑ. Examples due to Y. Bugeaud in connexion
with the triadic Cantor set (see [3]) are

∞∑
n=0

3−dλκe
n

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the

Norwegian mathematician Axel Thue who proved in 1909:
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Theorem 42 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

The fact that the irrationality exponent is < d has very important corol-
laries in the theory of Diophantine equations. We start with a special ex-
ample. Liouville’s estimate for the rational Diophantine approximation of
3
√

2 is ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q (use Lemma 24 with P (X) = X3 − 2, c = 3 3
√

2 < 9).
Thue was the first to achieve an improvement of the exponent 3. An explicit
estimate was then obtained by A. Baker, namely∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

106q2.955
,

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1

4 q2,5
·

From his own result, Thue deduced that for any fixed k ∈ Z \ {0}, there
are only finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation
x3−2y3 = k. The result of Baker shows more precisely that if (x, y) ∈ Z×Z
is a solution to x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophan-
tine equation x3 − 2y3 = k is explained in the next lemma.

Lemma 43. Let η be a positive real number. The two following properties
are equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1

qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x
3−η.
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Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are
true with η = 3 ((i) is Liouville’s estimate while (ii) is trivial), they are true
also for any η > 2 by Roth’s Theorem. They are not true with η < 2. It is
expected that they are not true with η = 2. The constants are explicit for
η ≥ 2.5 by Bennett’s result, but not yet for η in the range 2 < η < 2.5.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z×Z have x > 0. Set k = x3 − 2y3. Since 2

is not the cube of a rational number we have k 6= 0. If y = 0 assertion (ii)
plainly holds. So assume y 6= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).

The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has
a positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic
form X2 +αXY +α2Y 2 is bounded form below by c0y

2. From (i) we deduce

|k| = |y|3
∣∣∣∣ 3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η
= c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).

We want an upper bound for x: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

x3 ≤ c5|k|3/(3−η) and x3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the
nearest integer to qα, then |qα− p| > 1/2 and the estimate (i) is trivial. So
we assume |qα− p| ≤ 1/2. We need only the weaker estimate c7q < p < c8q
with some positive constants c7 and c8, showing that we may replace p by q
or q by p in our estimates, provided that we adjust the constants. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c10q

3

∣∣∣∣α− p

q

∣∣∣∣ ,
and (i) easily follows.
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Here is the most general result of Thue on Diophantine equations.

Theorem 44 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X,Y ) = Y df(X/Y ).
Then the Diophantine equation F (x, y) = m has only finitely many solutions
(x, y) ∈ Z× Z.

The equation F (x, y) = m in Proposition 44 is called Thue equation.
The connexion between Thue equation and Liouville’s inequality has been
explained in Lemma 43 in the special case 3

√
2; the general case is similar.

Lemma 45. Let α be an algebraic number of degree d ≥ 3 and minimal
polynomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated
homogeneous polynomial. Let 0 < κ ≤ d. The following conditions are
equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1

qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 x
d−κ.

In 1921 C.L. Siegel sharpened Thue’s result 42 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)
is an irrationality exponent for α. With j = [

√
d] it follows that 2

√
d is

an irrationality exponent for α. Dyson and Gel’fond in 1947 independently
refined Siegel’s estimate and replaced the hypothesis in Thue’s Theorem 42
by κ >

√
2d. The essentially best possible estimate has been achieved by

K.F. Roth in 1955: any κ > 2 is an irrationality exponent for a real irrational
algebraic number α.

Theorem 46 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any
real algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| <
q−2−ε is finite.

It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree
at least 3 is badly approximable, but essentially nothing is known on the
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continued fraction of such numbers: we do not know whether there exists an
irrational algebraic number which is not quadratic and has bounded partial
quotient in its continued fraction expansion, but we do not know either
whether there exists a real algebraic number of degree at least 3 whose
sequence of partial quotients is not bounded!

If one restricts the denominators q of the rational approximations p/q
by requesting that their prime factor belong to a given finite set, then the
exponent 2 can be replaced by 1. This has been proved by D. Ridout in
1957.

Let S be a set of prime. A rational number is called a S–integer if it can
be written u/v where all prime factors of the denominator v belong to S.
For instance when a, b and m are rational integers with b 6= 0, the number
a/bm is a S–integer for S the set of prime divisors of b.

Theorem 47 (D. Ridout, 1957). Let S be a finite set of prime numbers.
For any real algebraic number α, for any ε > 0, the set of p/q ∈ Q, with q
a S–integer and |α− p/q| < q−1−ε, is finite.

The theorems of Thue–Siegel–Roth and Ridout are very special cases of
Schmidt’s Subspace Theorem (1972) together with its p-adic extension by
H.P. Schlickewei (1976). We do not state it in full generality but we give
only two special cases.

For x = (x1, . . . , xm) ∈ Zm, define

|x| = max{|x1|, . . . , |xm|}.

Theorem 48 (W.M. Schmidt (1970): simplified form). For m ≥ 2 let
L1, . . . , Lm be independent linear forms in m variables with algebraic coeffi-
cients. Let ε > 0. Then the set

{x = (x1, . . . , xm) ∈ Zm ; |L1(x) · · ·Lm(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 46 follows from Theorem 48 by taking

m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} not Q2 (that is a proper sub-
space) generated by an element (p0, q0) ∈ Q2. There is one such subspace
with q0 = 0, namely Q×{0} generated by (1, 0), the other ones have q0 6= 0.
Mapping such a rational subspace to the rational number p0/q0 yields a 1
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to 1 correspondence. Hence Theorem 48 says that there is only a finite set
of exceptions p/q in Roth’s Theorem.

For x a non–zero rational number, write the decomposition of x into
prime factors

x = ±
∏
p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

For x = (x1, . . . , xm) ∈ Zm and p a prime number, define

|x| = max{|x1|p, . . . , |xm|p}.

Theorem 49 (Schmidt’s Subspace Theorem). Let m ≥ 2 be a positive
integer, S a finite set of prime numbers. Let L1, . . . , Lm be independent
linear forms in m variables with algebraic coefficients. Further, for each
p ∈ S let L1,p, . . . , Lm,p be m independent linear forms in m variables with
rational coefficients. Let ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm such
that

|L1(x) · · ·Lm(x)|
∏
p∈S
|L1,p(x) · · ·Lm,p(x)|p ≤ |x|

−ε

is contained in the union of finitely many proper subspaces of Qm.

Ridout’s Theorem 47 is a corollary of Schmidt’s Subspace Theorem: in
Theorem 49 take m = 2,

L1(x1, x2) = L1,p(x1, x2) = x1,

L2(x1, x2) = αx1 − x2, L2,p(x1, x2) = x2.

For (x1, x2) = (b, a) with b a S–integer and p ∈ S, we have

|L1(x1, x2)| = b, |L2(x1, x2)| = |bα− a|,
|L1p(x1, x2)|p = |b|p, |L2,p(x1, x2)|p = |a|p ≤ 1.

and ∏
p∈S
|b|p = b−1

since b is a S–integer.
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6 Continued fractions

We first consider generalized continued fractions of the form

a0 +
b1

a1 +
b2

a2 +
b3
. . .

,

which we denote by5

a0 +
b1 |
|a1

+
b2 |
|a2

+
b3|
. . .
·

Next we restrict to the special case where b1 = b2 = · · · = 1, which yields
the simple continued fractions

a0 +
1 |
|a1

+
1 |
|a2

+ · · · = [a0, a1, a2, . . . ],

already considered in section § 1.1.

6.1 Generalized continued fractions

To start with, a0, . . . , an, . . . and b1, . . . , bn, . . . will be independent variables.
Later, we shall specialize to positive integers (apart from a0 which may be
negative).

5Another notation for a0 + b1 |
|a1

+ b2 |
|a2

+ · · ·+ bn|
an

introduced by Th. Muir and used by

Perron in [7] Chap. 1 is

K

(
b1, . . . , bn

a0, a1, . . . , an

)
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Consider the three rational fractions

a0, a0 +
b1
a1

and a0 +
b1

a1 +
b2
a2

·

We write them as
A0

B0
,

A1

B1
and

A2

B2

with

A0 = a0, A1 = a0a1 + b1, A2 = a0a1a2 + a0b2 + a2b1,
B0 = 1, B1 = a1, B2 = a1a2 + b2.

Observe that

A2 = a2A1 + b2A0, B2 = a2B1 + b2B0.

Write these relations as(
A2 A1

B2 B1

)
=

(
A1 A0

B1 B0

)(
a2 1
b2 0

)
.

Define inductively two sequences of polynomials with positive rational coef-
ficients An and Bn for n ≥ 3 by(

An An−1

Bn Bn−1

)
=

(
An−1 An−2

Bn−1 Bn−2

)(
an 1
bn 0

)
. (50)

This means

An = anAn−1 + bnAn−2, Bn = anBn−1 + bnBn−2.

This recurrence relation holds for n ≥ 2. It will also hold for n = 1 if we set
A−1 = 1 and B−1 = 0:(

A1 A0

B1 B0

)
=

(
a0 1
1 0

)(
a1 1
b1 0

)
and it will hold also for n = 0 if we set b0 = 1, A−2 = 0 and B−2 = 1:(

A0 A−1

B0 B−1

)
=

(
1 0
0 1

)(
a0 1
b0 0

)
.
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Obviously, an equivalent definition is(
An An−1

Bn Bn−1

)
=

(
a0 1
b0 0

)(
a1 1
b1 0

)
· · ·
(
an−1 1
bn−1 0

)(
an 1
bn 0

)
. (51)

These relations (51) hold for n ≥ −1, with the empty product (for n = −1)
being the identity matrix, as always.

Hence An ∈ Z[a0, . . . , an, b1, . . . , bn] is a polynomial in 2n+ 1 variables,
while Bn ∈ Z[a1 . . . , an, b2, . . . , bn] is a polynomial in 2n− 1 variables.

Exercise 6. Check, for n ≥ −1,

Bn(a1, . . . , an, b2, . . . , bn) = An−1(a1, . . . , an, b2, . . . , bn).

Lemma 52. For n ≥ 0,

a0 +
b1 |
|a1

+ · · ·+ bn |
|an

=
An
Bn
·

Proof. By induction. We have checked the result for n = 0, n = 1 and
n = 2. Assume the formula holds with n− 1 where n ≥ 3. We write

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

= a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

with

x = an−1 +
bn
an
·

We have, by induction hypothesis and by the definition (50),

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

=
An−1

Bn−1
=
an−1An−2 + bn−1An−3

an−1Bn−2 + bn−1Bn−3
·

Since An−2, An−3, Bn−2 and Bn−3 do not depend on the variable an−1, we
deduce

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

=
xAn−2 + bn−1An−3

xBn−2 + bn−1Bn−3
·

The product of the numerator by an is

(anan−1 + bn)An−2 + anbn−1An−3 = an(an−1An−2 + bn−1An−3) + bnAn−2

= anAn−1 + bnAn−2 = An

and similarly, the product of the denominator by an is

(anan−1 + bn)Bn−2 + anbn−1Bn−3 = an(an−1Bn−2 + bn−1Bn−3) + bnBn−2

= anBn−1 + bnBn−2 = Bn.
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From (51), taking the determinant, we deduce, for n ≥ −1,

AnBn−1 −An−1Bn = (−1)n+1b0 · · · bn. (53)

which can be written, for n ≥ 1,

An
Bn
− An−1

Bn−1
=

(−1)n+1b0 · · · bn
Bn−1Bn

· (54)

Adding the telescoping sum, we get, for n ≥ 0,

An
Bn

= A0 +

n∑
k=1

(−1)k+1b0 · · · bk
Bk−1Bk

· (55)

We now substitute for a0, a1, . . . and b1, b2, . . . rational integers, all of
which are ≥ 1, apart from a0 which may be ≤ 0. We denote by pn (resp.
qn) the value of An (resp. Bn) for these special values. Hence pn and qn are
rational integers, with qn > 0 for n ≥ 0. A consequence of Lemma 52 is

pn
qn

= a0 +
b1 |
|a1

+ · · ·+ bn |
|an

for n ≥ 0.

We deduce from (50),

pn = anpn−1 + bnpn−2, qn = anqn−1 + bnqn−2 for n ≥ 0,

and from (53),

pnqn−1 − pn−1qn = (−1)n+1b0 · · · bn for n ≥ −1,

which can be written, for n ≥ 1,

pn
qn
− pn−1

qn−1
=

(−1)n+1b0 · · · bn
qn−1qn

· (56)

Adding the telescoping sum (or using (55)), we get the alternating sum

pn
qn

= a0 +

n∑
k=1

(−1)k+1b0 · · · bk
qk−1qk

· (57)

Recall that for real numbers a, b, c, d, with b and d positive, we have

a

b
<
c

d
=⇒ a

b
<
a+ c

b+ d
<
c

d
· (58)
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Since an and bn are positive for n ≥ 0, we deduce that for n ≥ 2, the rational
number

pn
qn

=
anpn−1 + bnpn−2

anqn−1 + bnqn−2

lies between pn−1/qn−1 and pn−2/qn−2. Therefore we have

p2

q2
<
p4

q4
< · · · < p2n

q2n
< · · · < p2m+1

q2m+1
< · · · < p3

q3
<
p1

q1
· (59)

From (56), we deduce, for n ≥ 3, qn−1 > qn−2, hence qn > (an + bn)qn−2.
The previous discussion was valid without any restriction, now we as-

sume an ≥ bn for all sufficiently large n, say n ≥ n0. Then for n > n0, using
qn > 2bnqn−2, we get∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
b0 · · · bn
qn−1qn

<
bn · · · b0

2n−n0bnbn−1 · · · bn0+1qn0qn0−1
=

bn0 · · · b0
2n−n0qn0qn0−1

and the right hand side tends to 0 as n tends to infinity. Hence the sequence
(pn/qn)n≥0 has a limit, which we denote by

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

From (57), it follows that x is also given by an alternating series

x = a0 +
∞∑
k=1

(−1)k+1b0 · · · bk
qk−1qk

·

We now prove that x is irrational. Define, for n ≥ 0,

xn = an +
bn+1 |
|an+1

+ · · ·

so that x = x0 and, for all n ≥ 0,

xn = an +
bn+1

xn+1
, xn+1 =

bn+1

xn − an
and an < xn < an + 1. Hence for n ≥ 0, xn is rational if and only if
xn+1 is rational, and therefore, if x is rational, then all xn for n ≥ 0 are
also rational. Assume x is rational. Consider the rational numbers xn with
n ≥ n0 and select a value of n for which the denominator v of xn is minimal,
say xn = u/v. From

xn+1 =
bn+1

xn − an
=

bn+1v

u− anv
with 0 < u− anv < v,
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it follows that xn+1 has a denominator strictly less than v, which is a con-
tradiction. Hence x is irrational.

Conversely, given an irrational number x and a sequence b1, b2, . . . of pos-
itive integers, there is a unique integer a0 and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1, such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

Indeed, the unique solution is given inductively as follows: a0 = bxc, x1 =
b1/{x}, and once a0, . . . , an−1 and x1, . . . , xn are known, then an and xn+1

are given by
an = bxnc, xn+1 = bn+1/{xn},

so that for n ≥ 1 we have 0 < xn − an < 1 and

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

Here is what we have proved.

Proposition 60. Given a rational integer a0 and two sequences a0, a1, . . .
and b1, b2, . . . of positive rational integers with an ≥ bn for all sufficiently
large n, the infinite continued fraction

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

exists and is an irrational number.
Conversely, given an irrational number x and a sequence b1, b2, . . . of posi-
tive integers, there is a unique a0 ∈ Z and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1 such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

These results are useful for proving the irrationality of π and er when
r is a non–zero rational number, following the proof by Lambert. See for
instance Chapter 7 (Lambert’s Irrationality Proofs) of David Angell’s course
on Irrationality and Transcendence(6) at the University of New South Wales:

6I found this reference from the website of John Cosgrave
http://staff.spd.dcu.ie/johnbcos/transcendental−numbers.htm.
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The following example is related with Lambert’s proof [20]:

tanh z =
z|
|1

+
z2|
| 3

+
z2|
| 5

+ · · ·+ z2 |
|2n+ 1

+ · · ·

Here, z is a complex number and the right hand side is a complex valued
function. Here are other examples (see Sloane’s Encyclopaedia of Integer
Sequences(7))

1√
e− 1

= 1 +
2|
|3

+
4|
|5

+
6|
|7

+
8|
|9

+ · · · = 1.541 494 082 . . . (A113011)

1

e− 1
=

1|
|1

+
2|
|2

+
3|
|3

+
4|
|4

+ · · · = 0.581 976 706 . . . (A073333)

Remark. A variant of the algorithm of simple continued fractions is the
following. Given two sequences (an)n≥0 and (bn)n≥0 of elements in a field
K and an element x in K, one defines a sequence (possibly finite) (xn)n≥1

of elements in K as follows. If x = a0, the sequence is empty. Otherwise
x1 is defined by x = a0 + (b1/x1). Inductively, once x1, . . . , xn are defined,
there are two cases:

• If xn = an, the algorithm stops.

• Otherwise, xn+1 is defined by

xn+1 =
bn+1

xn − an
, so that xn = an +

bn+1

xn+1
·

If the algorithm does not stop, then for any n ≥ 1, one has

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

In the special case where a0 = a1 = · · · = b1 = b2 = · · · = 1, the set of x such
that the algorithm stops after finitely many steps is the set (Fn+1/Fn)n≥1 of
quotients of consecutive Fibonacci numbers. In this special case, the limit of

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

is the Golden ratio, which is independent of x, of course!

7 http://www.research.att.com/∼njas/sequences/
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6.2 Simple continued fractions

We restrict now the discussion of § 6.1 to the case where b1 = b2 = · · · =
bn = · · · = 1. We keep the notations An and Bn which are now polynomials
in Z[a0, a1, . . . , an] and Z[a1, . . . , an] respectively, and when we specialize to
integers a0, a1, . . . , an . . . with an ≥ 1 for n ≥ 1 we use the notations pn and
qn for the values of An and Bn.

The recurrence relations (50) are now, for n ≥ 0,(
An An−1

Bn Bn−1

)
=

(
An−1 An−2

Bn−1 Bn−2

)(
an 1
1 0

)
, (61)

while (51) becomes, for n ≥ −1,(
An An−1

Bn Bn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
. (62)

From Lemma 52 one deduces, for n ≥ 0,

[a0, . . . , an] =
An
Bn
·

Taking the determinant in (62), we deduce the following special case of (53)

AnBn−1 −An−1Bn = (−1)n+1. (63)

The specialization of these relations to integral values of a0, a1, a2 . . . yields(
pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

)(
an 1
1 0

)
for n ≥ 0, (64)

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
for n ≥ −1,

(65)

[a0, . . . , an] =
pn
qn

for n ≥ 0 (66)

and
pnqn−1 − pn−1qn = (−1)n+1 for n ≥ −1. (67)

From (67), it follows that for n ≥ 0, the fraction pn/qn is in lowest terms:
gcd(pn, qn) = 1.

Transposing (65) yields, for n ≥ −1,(
pn qn
pn−1 qn−1

)
=

(
an 1
1 0

)(
an−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
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from which we deduce, for n ≥ 1,

[an, . . . , a0] =
pn
pn−1

and [an, . . . , a1] =
qn
qn−1

Lemma 68. For n ≥ 0,

pnqn−2 − pn−2qn = (−1)nan.

Proof. We multiply both sides of (64) on the left by the inverse of the matrix(
pn−1 pn−2

qn−1 qn−2

)
which is (−1)n

(
qn−2 −pn−2

−qn−1 pn−1

)
.

We get

(−1)n
(
pnqn−2 − pn−2qn pn−1qn−2 − pn−2qn−1

−pnqn−1 + pn−1qn 0

)
=

(
an 1
1 0

)

6.2.1 Finite simple continued fraction of a rational number

Let u0 and u1 be two integers with u1 positive. The first step in Euclid’s
algorithm to find the gcd of u0 and u1 consists in dividing u0 by u1:

u0 = a0u1 + u2

with a0 ∈ Z and 0 ≤ u2 < u1. This means

u0

u1
= a0 +

u2

u1
,

which amonts to dividing the rational number x0 = u0/u1 by 1 with quotient
a0 and remainder u2/u1 < 1. This algorithms continues with

um = amum+1 + um+2,

where am is the integral part of xm = um/um+1 and 0 ≤ um+2 < um+1,
until some u`+2 is 0, in which case the algorithms stops with

u` = a`u`+1.

Since the gcd of um and um+1 is the same as the gcd of um+1 and um+2, it
follows that the gcd of u0 and u1 is u`+1. This is how one gets the regular
continued fraction expansion x0 = [a0, a1, . . . , a`], where ` = 0 in case x0 is
a rational integer, while a` ≥ 2 if x0 is a rational number which is not an
integer.
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Exercise 7. Compare with the geometrical construction of the continued
fraction given in § 1.1.
Give a variant of this geometrical construction where rectangles are replaced
by segments.

Repeating what was already said in § 1.2, we can state

Proposition 69. Any finite regular continued fraction

[a0, a1, . . . , an],

where a0, a1, . . . , an are rational numbers with ai ≥ 2 for 1 ≤ i ≤ n and
n ≥ 0, represents a rational number. Conversely, any rational number x has
two representations as a continued fraction, the first one, given by Euclid’s
algorithm, is

x = [a0, a1, . . . , an]

and the second one is

x = [a0, a1, . . . , an−1, an − 1, 1].

If x ∈ Z, then n = 0 and the two simple continued fractions representa-
tions of x are [x] and [x− 1, 1], while if x is not an integer, then n ≥ 1 and
an ≥ 2.

We shall use later (in the proof of Lemma 81 in § 6.3.7) the fact that
any rational number has one simple continued fraction expansion with an
odd number of terms and one with an even number of terms.

6.2.2 Infinite simple continued fraction of an irrational number

Given a rational integer a0 and an infinite sequence of positive integers
a1, a2, . . . , the continued fraction

[a0, a1, . . . , an, . . . ]

represents an irrational number. Conversely, given an irrational number x,
there is a unique representation of x as an infinite simple continued fraction

x = [a0, a1, . . . , an, . . . ]

Definitions The numbers an are the partial quotients, the rational numbers

pn
qn

= [a0, a1, . . . , an]
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are the convergents (in French réduites), and the numbers

xn = [an, an+1, . . .]

are the complete quotients.

From these definitions we deduce, for n ≥ 0,

x = [a0, a1, . . . , an, xn+1] =
xn+1pn + pn−1

xn+1qn + qn−1
. (70)

Lemma 71. For n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Proof. From (70) one deduces

x− pn
qn

=
xn+1pn + pn−1

xn+1qn + qn−1
− pn
qn

=
(−1)n

(xn+1qn + qn−1)qn
·

Corollary 72. For n ≥ 0,

1

qn+1 + qn
< |qnx− pn| <

1

qn+1
·

Proof. Since an+1 is the integral part of xn+1, we have

an+1 < xn+1 < an+1 + 1.

Using the recurrence relation qn+1 = an+1qn + qn−1, we deduce

qn+1 < xn+1qn + qn−1 < an+1qn + qn−1 + qn = qn+1 + qn.

In particular, since xn+1 > an+1 and qn−1 > 0, one deduces from Lemma
71

1

(an+1 + 2)q2
n

<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

an+1q2
n

· (73)

Therefore any convergent p/q of x satisfies |x− p/q| < 1/q2 (compare with
(i) ⇒ (v) in Proposition 4). Moreover, if an+1 is large, then the approx-
imation pn/qn is sharp. Hence, large partial quotients yield good rational
approximations by truncating the continued fraction expansion just before
the given partial quotient.
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Diophantine approximation,
irrationality and transcendence

Michel Waldschmidt

Course N◦6, May 5, 2010

6.3 Pell’s equation

Let D be a positive integer which is not the square of an integer. It follows
that

√
D is an irrational number. The Diophantine equation

x2 −Dy2 = ±1, (74)

where the unknowns x and y are in Z, is called Pell’s equation.
An introduction to the subject has been given in the colloquium lecture

on April 15. We refer to
http://seminarios.impa.br/cgi-bin/SEMINAR−palestra.cgi?id=4752

http://www.math.jussieu.fr/∼ miw/articles/pdf/PellFermatEn2010.pdf

and
http://www.math.jussieu.fr/∼ miw/articles/pdf/PellFermatEn2010VI.pdf

Here we supply complete proofs of the results introduced in that lecture.

6.3.1 Examples

The three first examples below are special cases of results initiated by O. Per-
ron and related with real quadratic fields of Richaud-Degert type.
Example 1. Take D = a2b2 + 2b where a and b are positive integers. A
solution to

x2 − (a2b2 + 2b)y2 = 1

is (x, y) = (a2b + 1, a). As we shall see, this is related with the continued
fraction expansion of

√
D which is√

a2b2 + 2b = [ab, a, 2ab]

since

t =
√
a2b2 + 2b⇐⇒ t = ab+

1

a+
1

t+ ab

·
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This includes the examples D = a2 + 2 (take b = 1) and D = b2 + 2b (take
a = 1). For a = 1 and b = c− 1 his includes the example D = c2 − 1.

Example 2. Take D = a2b2 + b where a and b are positive integers. A
solution to

x2 − (a2b2 + b)y2 = 1

is (x, y) = (2a2b+ 1, 2a). The continued fraction expansion of
√
D is√

a2b2 + b = [ab, 2a, 2ab]

since

t =
√
a2b2 + b⇐⇒ t = ab+

1

2a+
1

t+ ab

·

This includes the example D = b2 + b (take a = 1).
The case b = 1, D = a2 + 1 is special: there is an integer solution to

x2 − (a2 + 1)y2 = −1,

namely (x, y) = (a, 1). The continued fraction expansion of
√
D is√

a2 + 1 = [a, 2a]

since

t =
√
a2 + 1⇐⇒ t = a+

1

t+ a
·

Example 3. Let a and b be two positive integers such that b2 + 1 divides
2ab + 1. For instance b = 2 and a ≡ 1 (mod 5). Write 2ab + 1 = k(b2 + 1)
and take D = a2 + k. The continued fraction expansion of

√
D is

[a, b, b, 2a]

since t =
√
D satisfies

t = a+
1

b+
1

b+
1

a+ t

= [a, b, b, a+ z].

A solution to x2 −Dy2 = −1 is x = ab2 + a+ b, y = b2 + 1.
In the case a = 1 and b = 2 (so k = 1), the continued fraction has period

length 1 only: √
5 = [1, 2].
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Example 4. Integers which are Polygonal numbers in two ways are given
by the solutions to quadratic equations.

Triangular numbers are numbers of the form

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for n ≥ 1;

their sequence starts with

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, . . .

http://www.research.att.com/∼njas/sequences/A000217.

Square numbers are numbers of the form

1 + 3 + 5 + · · ·+ (2n+ 1) = n2 for n ≥ 1;

their sequence starts with

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, . . .

http://www.research.att.com/∼njas/sequences/A000290.

Pentagonal numbers are numbers of the form

1 + 4 + 7 + · · ·+ (3n+ 1) =
n(3n− 1)

2
for n ≥ 1;

their sequence starts with

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, . . .

http://www.research.att.com/∼njas/sequences/A000326.

Hexagonal numbers are numbers of the form

1 + 5 + 9 + · · ·+ (4n+ 1) = n(2n− 1) for n ≥ 1;

their sequence starts with

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, . . .

http://www.research.att.com/∼njas/sequences/A000384.
For instance, numbers which are at the same time triangular and squares

are the numbers y2 where (x, y) is a solution to Pell’s equation with D = 8.
Their list starts with

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, . . .
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See http://www.research.att.com/∼njas/sequences/A001110.

Example 5. Integer rectangle triangles having sides of the right angle
as consecutive integers a and a + 1 have an hypothenuse c which satisfies
a2 + (a + 1)2 = c2. The admissible values for the hypothenuse is the set of
positive integer solutions y to Pell’s equation x2 − 2y2 = −1. The list of
these hypothenuses starts with

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965,

See http://www.research.att.com/∼njas/sequences/A001653.

6.3.2 Existence of integer solutions

Let D be a positive integer which is not a square. We show that Pell’s
equation (74) has a non–trivial solution (x, y) ∈ Z × Z, that is a solution
6= (±1, 0).

Proposition 75. Given a positive integer D which is not a square, there
exists (x, y) ∈ Z2 with x > 0 and y > 0 such that x2 −Dy2 = 1.

Proof. The first step of the proof is to show that there exists a non–zero in-
teger k such that the Diophantine equation x2−Dy2 = k has infinitely many
solutions (x, y) ∈ Z×Z. The main idea behind the proof, which will be made
explicit in Lemmas 77, 78 and Corollary 79 below, is to relate the integer
solutions of such a Diophantine equation with rational approximations x/y
of
√
D.

Using the implication (i)⇒ (v) of the irrationality criterion 4 and the fact
that

√
D is irrational, we deduce that there are infinitely many (x, y) ∈ Z×Z

with y > 0 (and hence x > 0) satisfying∣∣∣∣√D − x

y

∣∣∣∣ < 1

y2
·

For such a (x, y), we have 0 < x < y
√
D + 1 < y(

√
D + 1), hence

0 < |x2 −Dy2| = |x− y
√
D| · |x+ y

√
D| < 2

√
D + 1.

Since there are only finitely integers k 6= 0 in the range

−(2
√
D + 1) < k < 2

√
D + 1,

one at least of them is of the form x2 −Dy2 for infinitely many (x, y).
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The second step is to notice that, since the subset of (x, y) (mod k) in
(Z/kZ)2 is finite, there is an infinite subset E ⊂ Z×Z of these solutions to
x2 −Dy2 = k having the same (x (mod k), y (mod k)).

Let (u1, v1) and (u2, v2) be two distinct elements in E. Define (x, y) ∈ Q2

by

x+ y
√
D =

u1 + v1

√
D

u2 + v2

√
D
·

From u2
2 −Dv2

2 = k, one deduces

x+ y
√
D =

1

k
(u1 + v1

√
D)(u2 − v2

√
D),

hence

x =
u1u2 −Dv1v2

k
, y =

−u1v2 + u2v1

k
·

From u1 ≡ u2 (mod k), v1 ≡ v2 (mod k) and

u2
1 −Dv2

1 = k, u2
2 −Dv2

2 = k,

we deduce
u1u2 −Dv1v2 ≡ u2

1 −Dv2
1 ≡ 0 (mod k)

and
−u1v2 + u2v1 ≡ −u1v1 + u1v1 ≡ 0 (mod k),

hence x and y are in Z. Further,

x2 −Dy2 = (x+ y
√
D)(x− y

√
D)

=
(u1 + v1

√
D)(u1 − v1

√
D)

(u2 + v2

√
D)(u2 − v2

√
D)

=
u2

1 −Dv2
1

u2
2 −Dv2

2

= 1.

It remains to check that y 6= 0. If y = 0 then x = ±1, u1v2 = u2v1,
u1u2 −Dv1v2 = ±1, and

ku1 = ±u1(u1u2 −Dv1v2) = ±u2(u2
1 −Dv2

1) = ±ku2,

which implies (u1, u2) = (v1, v2), a contradiction.
Finally, if x < 0 (resp. y < 0) we replace x by −x (resp. y by −y).

Once we have a non–trivial integer solution (x, y) to Pell’s equation, we
have infinitely many of them, obtained by considering the powers of x+y

√
D.
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6.3.3 All integer solutions

There is a natural order for the positive integer solutions to Pell’s equation:
we can order them by increasing values of x, or increasing values of y, or
increasing values of x+y

√
D - it is easily checked that the order is the same.

It follows that there is a minimal positive integer solution8 (x1, y1), which
is called the fundamental solution to Pell’s equation x2 −Dy2 = ±1. In the
same way, there is a fundamental solution to Pell’s equations x2−Dy2 = 1.
Furthermore, when the equation x2 − Dy2 = −1 has an integer solution,
then there is also a fundamental solution.

Proposition 76. Denote by (x1, y1) the fundamental solution to Pell’s equa-
tion x2 − Dy2 = ±1. Then the set of all positive integer solutions to this
equation is the sequence (xn, yn)n≥1, where xn and yn are given by

xn + yn
√
D = (x1 + y1

√
D)n, (n ∈ Z, n ≥ 1).

In other terms, xn and yn are defined by the recurrence formulae

xn+1 = xnx1 +Dyny1 and yn+1 = x1yn + xny1, (n ≥ 1).

More explicitly:
• If x2

1−Dy2
1 = 1, then (x1, y1) is the fundamental solution to Pell’s equation

x2−Dy2 = 1, and there is no integer solution to Pell’s equation x2−Dy2 =
−1.
• If x2

1 − Dy2
1 = −1, then (x1, y1) is the fundamental solution to Pell’s

equation x2 − Dy2 = −1, and the fundamental solution to Pell’s equation
x2 − Dy2 = 1 is (x2, y2). The set of positive integer solutions to Pell’s
equation x2 −Dy2 = 1 is {(xn, yn) ; n ≥ 2 even}, while the set of positive
integer solutions to Pell’s equation x2−Dy2 = −1 is {(xn, yn) ; n ≥ 1 odd}.
The set of all solutions (x, y) ∈ Z× Z to Pell’s equation x2 −Dy2 = ±1 is
the set (±xn, yn)n∈Z, where xn and yn are given by the same formula

xn + yn
√
D = (x1 + y1

√
D)n, (n ∈ Z).

The trivial solution (1, 0) is (x0, y0), the solution (−1, 0) is a torsion element
of order 2 in the group of units of the ring Z[

√
D].

Proof. Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 =
±1. Denote by n ≥ 0 the largest integer such that

(x1 + y1

√
D)n ≤ x+ y

√
D.

8We use the letter x1, which should not be confused with the first complete quotient
in the section § 6.2.2 on continued fractions
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Hence x+ y
√
D < (x1 + y1

√
D)n+1. Define (u, v) ∈ Z× Z by

u+ v
√
D = (x+ y

√
D)(x1 − y1

√
D)n.

From
u2 −Dv2 = ±1 and 1 ≤ u+ v

√
D < x1 + y1

√
D,

we deduce u = 1 and v = 0, hence x = xn, y = yn.

6.3.4 On the group of units of Z[
√
D]

Let D be a positive integer which is not a square. The ring Z[
√
D] is the

subring of R generated by
√
D. The map σ : z = x + y

√
D 7−→ x − y

√
D

is the Galois automorphism of this ring. The norm N : Z[
√
D] −→ Z is

defined by N(z) = zσ(z). Hence

N(x+ y
√
D) = x2 −Dy2.

The restriction of N to the group of unit Z[
√
D]× of the ring Z[

√
D] is a

homomorphism from the multiplicative group Z[
√
D]× to the group of units

Z× of Z. Since Z× = {±1}, it follows that

Z[
√
D]× = {z ∈ Z[

√
D] ; N(z) = ±1},

hence Z[
√
D]× is nothing else than the set of x+y

√
D when (x, y) runs over

the set of integer solutions to Pell’s equation x2 −Dy2 = ±1.
Proposition 75 means that Z[

√
D]× is not reduced to the torsion sub-

group ±1, while Proposition 76 gives the more precise information that this
group Z[

√
D]× is a (multiplicative) abelian group of rank 1: there exists a

so–called fundamental unit u ∈ Z[
√
D]× such that

Z[
√
D]× = {±un ; n ∈ Z}.

The fundamental unit u > 1 is x1 +y1

√
D, where (x1, y1) is the fundamental

solution to Pell’s equation x2 −Dy2 = ±1. Pell’s equation x2 −Dy2 = ±1
has integer solutions if and only if the fundamental unit has norm −1.

That the rank of Z[
√
D]× is at most 1 also follows from the fact that the

image of the map

Z[
√
D]× −→ R2

z 7−→
(
log |z|, log |z′|

)
is discrete in R2 and contained in the line t1 + t2 = 0 of R2. This proof is
not really different from the proof we gave of Proposition 76: the proof that
the discrete subgroups of R have rank ≤ 1 relies on Euclid’s division.
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6.3.5 Connection with rational approximation

Lemma 77. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = 1.

(ii) 0 <
x

y
−
√
D <

1

2y2
√
D
·

(iii) 0 <
x

y
−
√
D <

1

y2
√
D + 1

·

Proof. We have
1

2y2
√
D
<

1

y2
√
D + 1

, hence (ii) implies (iii).

(i) implies x2 > Dy2, hence x > y
√
D, and consequently

0 <
x

y
−
√
D =

1

y(x+ y
√
D)

<
1

2y2
√
D
·

(iii) implies

x < y
√
D +

1

y
√
D
< y
√
D +

2

y
,

and
y(x+ y

√
D) < 2y2

√
D + 2,

hence

0 < x2 −Dy2 = y

(
x

y
−
√
D

)
(x+ y

√
D) < 2.

Since x2 −Dy2 is an integer, it is equal to 1.

The next variant will also be useful.

Lemma 78. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = −1.

(ii) 0 <
√
D − x

y
<

1

2y2
√
D − 1

·

(iii) 0 <
√
D − x

y
<

1

y2
√
D
·

Proof. We have
1

2y2
√
D − 1

<
1

y2
√
D

, hence (ii) implies (iii).

The condition (i) implies y
√
D > x. We use the trivial estimate

2
√
D > 1 + 1/y2
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and write

x2 = Dy2 − 1 > Dy2 − 2
√
D + 1/y2 = (y

√
D − 1/y)2,

hence xy > y2
√
D − 1. From (i) one deduces

1 = Dy2 − x2 = (y
√
D − x)(y

√
D + x)

>

(√
D − x

y

)
(y2
√
D + xy)

>

(√
D − x

y

)
(2y2
√
D − 1).

(iii) implies x < y
√
D and

y(y
√
D + x) < 2y2

√
D,

hence

0 < Dy2 − x2 = y

(√
D − x

y

)
(y
√
D + x) < 2.

Since Dy2 − x2 is an integer, it is 1.

From these two lemmas one deduces:

Corollary 79. Let D be a positive integer which is not a square. Let x and
y be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = ±1.

(ii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

2y2
√
D − 1

·

(iii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

y2
√
D + 1

·

Proof. If y > 1 or D > 3 we have 2y2
√
D − 1 > y2

√
D + 1, which means

that (ii) implies trivially (iii), and we may apply Lemmas 77 and 78.
If D = 2 and y = 1, then each of the conditions (i), (ii) and (iii) is

satisfied if and only if x = 1. This follows from

2−
√

2 >
1

2
√

2− 1
>

1√
2 + 1

>
√

2− 1.

If D = 3 and y = 1, then each of the conditions (i), (ii) and (iii) is
satisfied if and only if x = 2. This follows from

3−
√

3 >
√

3− 1 >
1

2
√

3− 1
>

1√
3 + 1

> 2−
√

3.
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It is instructive to compare with Liouville’s inequality (see § 5.2).

Lemma 80. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. Then∣∣∣∣√D − x

y

∣∣∣∣ > 1

2y2
√
D + 1

·

Proof. If x/y <
√
D, then x ≤ y

√
D and from

1 ≤ Dy2 − x2 = (y
√
D + x)(y

√
D − x) ≤ 2y

√
D(y
√
D − x),

one deduces √
D − x

y
>

1

2y2
√
D
·

We claim that if x/y >
√
D, then

x

y
−
√
D >

1

2y2
√
D + 1

·

Indeed, this estimate is true if x−y
√
D ≥ 1/y, so we may assume x−y

√
D <

1/y. Our claim then follows from

1 ≤ x2 −Dy2 = (x+ y
√
D)(x− y

√
D) ≤ (2y

√
D + 1/y)(x− y

√
D).

This shows that a rational approximation x/y to
√
D, which is only

slightly weaker than the limit given by Liouville’s inequality, will produce a
solution to Pell’s equation x2−Dy2 = ±1. The distance |

√
D−x/y| cannot

be smaller than 1/(2y2
√
D + 1), but it can be as small as 1/(2y2

√
D − 1),

and for that it suffices that it is less than 1/(y2
√
D + 1)
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6.3.6 The main lemma

The theory which follows is well–known (a classical reference is the book
[7] by O. Perron), but the point of view which we develop here is slightly
different from most classical texts on the subject. We follow [2, 3, 9]. An
important role in our presentation of the subject is the following result
(Lemma 4.1 in [8]).

Lemma 81. Let ε = ±1 and let a, b, c, d be rational integers satisfying

ad− bc = ε

and d ≥ 1. Then there is a unique finite sequence of rational integers
a0, . . . , as with s ≥ 1 and a1, . . . , as−1 positive, such that(

a b
c d

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
(82)

These integers are also characterized by

b

d
= [a0, a1, . . . , as−1],

c

d
= [as, . . . , a1], (−1)s+1 = ε. (83)

For instance, when d = 1, for b and c rational integers,(
bc+ 1 b
c 1

)
=

(
b 1
1 0

)(
c 1
1 0

)
and (

bc− 1 b
c 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.

Proof. We start with unicity. If a0, . . . , as satisfy the conclusion of Lemma
81, then by using (82), we find b/d = [a0, a1, . . . , as−1]. Taking the trans-
pose, we also find c/d = [as, . . . , a1]. Next, taking the determinant, we
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obtain (−1)s+1 = ε. The last equality fixes the parity of s, and each of the
rational numbers b/d, c/d has a unique continued fraction expansion whose
length has a given parity (cf. Proposition 69). This proves the unicity of the
factorisation when it exists.

For the existence, we consider the simple continued fraction expansion
of c/d with length of parity given by the last condition in (83), say c/d =
[as, . . . , a1]. Let a0 be a rational integer such that the distance between b/d
and [a0, a1, . . . , as−1] is ≤ 1/2. Define a′, b′, c′, d′ by(

a′ b′

c′ d′

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
.

We have

d′ > 0, a′d′ − b′c′ = ε,
c′

d′
= [as, . . . , a1] =

c

d

and
b′

d′
= [a0, a1, . . . , as−1],

∣∣∣∣ b′d′ − b

d

∣∣∣∣ ≤ 1

2
·

From gcd(c, d) = gcd(c′, d′) = 1, c/d = c′/d′ and d > 0, d′ > 0 we deduce
c′ = c, d′ = d. From the equality between the determinants we deduce
a′ = a+ kc, b′ = b+ kd for some k ∈ Z, and from

b′

d′
− b

d
= k

we conclude k = 0, (a′, b′, c′, d′) = (a, b, c, d). Hence (82) follows.

Corollary 84. Assume the hypotheses of Lemma 81 are satisfied.
(a) If c > d, then as ≥ 1 and

a

c
= [a0, a1, . . . , as].

(b) If b > d, then a0 ≥ 1 and

a

b
= [as, . . . , a1, a0].

The following examples show that the hypotheses of the corollary are
not superfluous: (

1 b
0 1

)
=

(
b 1
1 0

)(
0 1
1 0

)
,
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(
b− 1 b

1 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
0 1
1 0

)
and (

c− 1 1
c 1

)
=

(
0 1
1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.

Proof of Corollary 84. The assumption c > d implies as > 0. This proves
part (a), and part (b) follows by transposition (or repeating the proof).

Another consequence of Lemma 81 is the following classical result (Satz
13 p. 47 of [7]).

Corollary 85. Let a, b, c, d be rational integers with ad − bc = ±1 and
c > d > 0. Let x and y be two irrational numbers satisfying y > 1 and

x =
ay + b

cy + d
·

Let x = [a0, a1, . . .] be the simple continued fraction expansion of x. Then
there exists s ≥ 1 such that

a = ps, b = ps−1, c = qs, r = qs−1, y = xs+1.

Proof. Using lemma 81, we write(
a b
c d

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
with a′1, . . . , a

′
s−1 positive and

b

d
= [a′0, a

′
1, . . . , a

′
s−1],

c

d
= [a′s, . . . , a

′
1].

From c > d and corollary 84, we deduce a′s > 0 and

a

c
= [a′0, a

′
1, . . . , a

′
s] =

p′s
q′s
, x =

p′sy + p′s−1

q′sy + q′s−1

= [a′0, a
′
1, . . . , a

′
s, y].

Since y > 1, it follows that a′i = ai, p
′
i = pi, q

′
i = qi for 0 ≤ i ≤ s and

y = xs+1.
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6.3.7 Simple Continued fraction of
√
D

An infinite sequence (an)n≥1 is periodic if there exists a positive integer s
such that

an+s = an for all n ≥ 1. (86)

In this case, the finite sequence (a1, . . . , as) is called a period of the original
sequence. For the sake of notation, we write

(a1, a2, . . . ) = (a1, . . . , as).

If s0 is the smallest positive integer satisfying (86), then the set of s satisfying
(86) is the set of positive multiples of s0. In this case (a1, . . . , as0) is called
the fundamental period of the original sequence.

Theorem 87. Let D be a positive integer which is not a square. Write the
simple continued fraction of

√
D as [a0, a1, . . .] with a0 = b

√
Dc.

(a) The sequence (a1, a2, . . .) is periodic.
(b) Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 = ±1.
Then there exists s ≥ 1 such that x/y = [a0, . . . , as−1] and

(a1, a2, . . . , as−1, 2a0)

is a period of the sequence (a1, a2, . . .). Further, as−i = ai for 1 ≤ i ≤ s− 1
9.
(c) Let (a1, a2, . . . , as−1, 2a0) be a period of the sequence (a1, a2, . . .). Set
x/y = [a0, . . . , as−1]. Then x2 −Dy2 = (−1)s.
(d) Let s0 be the length of the fundamental period. Then for i ≥ 0 not
multiple of s0, we have ai ≤ a0.

If (a1, a2, . . . , as−1, 2a0) is a period of the sequence (a1, a2, . . .), then
√
D = [a0, a1, . . . , as−1, 2a0] = [a0, a1, . . . , as−1, a0 +

√
D].

9 Note (2016). As kindly pointed out to me by Yoishi Motohashi, the fact that
the word a1, . . . , as−1 is a palindrom is proved in ’Essai sur la théorie des nombres’ by
Legendre (1798).
In his first paper published at the age of 17 by Evariste Galois, it is proved that if the
expansion of a quadratic irrational α is purely periodic, then the same is true for the
conjugate α′ of α, and the continued fraction of α′ is obtained by reversing the order of
the continued fraction of α. Besides, this continued fraction is a palindrom if and only if
αα′ = −1.
É. Galois, Démonstration d’un théorème sur les fractions continues périodiques.
Annales de Mathématiques Pures et Appliquées, 19 (1828-1829), p. 294-301.
http://archive.numdam.org/article/AMPA−1828-1829−−19−−294−0.pdf

For more information on these contributions by Galois, see
https://www.bibnum.education.fr/mathematiques/algebre/demonstration-d-un-theoreme-sur-les-fractions-continues-periodiques
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Consider the fundamental period (a1, a2, . . . , as0−1, as0) of the sequence (a1, a2, . . .).
By part (b) of Theorem 87 we have as0 = 2a0, and by part (d), it follows
that s0 is the smallest index i such that ai > a0.

From (b) and (c) in Theorem 87, it follows that the fundamental solution
(x1, y1) to Pell’s equation x2−Dy2 = ±1 is given by x1/y1 = [a0, . . . , as0−1],
and that x2

1 − Dy2
1 = (−1)s0 . Therefore, if s0 is even, then there is no

solution to the Pell’s equation x2 − Dy2 = −1. If s0 is odd, then (x1, y1)
is the fundamental solution to Pell’s equation x2 − Dy2 = −1, while the
fundamental solution (x2, y2) to Pell’s equation x2 − Dy2 = 1 is given by
x2/y2 = [a0, . . . , a2s−1].

It follows also from Theorem 87 that the (ns0 − 1)-th convergent

xn/yn = [a0, . . . , ans0−1]

satisfies
xn + yn

√
D = (x1 + y1

√
D)n. (88)

We shall check this relation directly (Lemma 92).

Proof. Start with a positive solution (x, y) to Pell’s equation x2−Dy2 = ±1,
which exists according to Proposition 75. Since Dy ≥ x and x > y, we may
use lemma 81 and corollary 84 with

a = Dy, b = c = x, d = y

and write (
Dy x
x y

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
(89)

with positive integers a′0, . . . , a
′
s and with a′0 = b

√
Dc. Then the contin-

ued fraction expansion of Dy/x is [a′0, . . . , a
′
s] and the continued fraction

expansion of x/y is [a′0, . . . , a
′
s−1].

Since the matrix on the left hand side of (89) is symmetric, the word
a′0, . . . , a

′
s is a palindrome. In particular a′s = a′0.

Consider the periodic continued fraction

δ = [a′0, a
′
1, . . . , a

′
s−1, 2a

′
0].

This number δ satisfies

δ = [a′0, a
′
1, . . . , a

′
s−1, a

′
0 + δ].
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Using the inverse of the matrix(
a′0 1
1 0

)
which is

(
0 1
1 −a′0

)
,

we write (
a′0 + δ 1

1 0

)
=

(
a′0 1
1 0

)(
1 0
δ 1

)
Hence the product of matrices associated with the continued fraction of δ(

a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s−1 1

1 0

)(
a′0 + δ 1

1 0

)
is (

Dy x
x y

)(
1 0
δ 1

)
=

(
Dy + δx x
x+ δy y

)
.

It follows that

δ =
Dy + δx

x+ δy
,

hence δ2 = D. As a consequence, a′i = ai for 0 ≤ i ≤ s − 1 while a′s = a0,
as = 2a0.

This proves that if (x, y) is a non–trivial solution to Pell’s equation x2−
Dy2 = ±1, then the continued fraction expansion of

√
D is of the form

√
D = [a0, a1, . . . , as−1, 2a0] (90)

with a1, . . . , as−1 a palindrome, and x/y is given by the convergent

x/y = [a0, a1, . . . , as−1]. (91)

Consider a convergent pn/qn = [a0, a1, . . . , an]. If an+1 = 2a0, then (73)
with x =

√
D implies the upper bound∣∣∣∣√D − pn

qn

∣∣∣∣ ≤ 1

2a0q2
n

,

and it follows from Corollary 79 that (pn, qn) is a solution to Pell’s equation
p2
n − Dq2

n = ±1. This already shows that ai < 2a0 when i + 1 is not the
length of a period. We refine this estimate to ai ≤ a0.

Assume an+1 ≥ a0 + 1. Since the sequence (am)m≥1 is periodic of period
length s0, for any m congruent to n modulo s0, we have am+1 > a0. For
these m we have ∣∣∣∣√D − pm

qm

∣∣∣∣ ≤ 1

(a0 + 1)q2
m

·
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For sufficiently large m congruent to n modulo s we have

(a0 + 1)q2
m > q2

m

√
D + 1.

Corollary 79 implies that (pm, qm) is a solution to Pell’s equation p2
m−Dq2

m =
±1. Finally, Corollary 84 implies that m+ 1 is a multiple of s0, hence n+ 1
also.

6.3.8 Connection between the two formulae for the n-th positive
solution to Pell’s equation

Lemma 92. Let D be a positive integer which is not a square. Consider
the simple continued fraction expansion

√
D = [a0, a1, . . . , as0−1, 2a0] where

s0 is the length of the fundamental period. Then the fundamental solution
(x1, y1) to Pell’s equation x2 −Dy2 = ±1 is given by the continued fraction
expansion x1/y1 = [a0, a1, . . . , as0−1]. Let n ≥ 1 be a positive integer. Define
(xn, yn) by xn/yn = [a0, a1, . . . , ans0−1]. Then xn + yn

√
D = (x1 + y1

√
D)n.

This result is a consequence of the two formulae we gave for the n-th
solution (xn, yn) to Pell’s equation x2 − Dy2 = ±1. We check this result
directly.

Proof. From Lemma 81 and relation (89), one deduces(
Dyn xn
xn yn

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)(
a0 1
1 0

)
.

Since (
Dyn xn
xn yn

)(
0 1
1 −a0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
,

we obtain(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
. (93)

Notice that the determinant is (−1)ns0 = x2
n −Dy2

n. Formula (93) for n+ 1
and the periodicity of the sequence (a1, . . . , an, . . . ) with as0 = 2a0 give :(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
.
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Take first n = 1 in (93) and multiply on the left by(
2a0 1
1 0

)(
0 1
1 −a0

)
=

(
1 a0

0 1

)
.

Since (
1 a0

0 1

)(
x1 Dy1 − a0x1

y1 x1 − a0y1

)
=

(
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.

we deduce(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
=

(
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.

Therefore(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.

The first column gives

xn+1 = xnx1 +Dyny1 and yn+1 = x1yn + xny1,

which was to be proved.

6.3.9 Records

For large D, Pell’s equation may obviously have small integer solutions.
Examples are

For D = m2 − 1 with m ≥ 2 the numbers x = m, y = 1 satisfy
x2 −Dy2 = 1,

for D = m2+1 with m ≥ 1 the numbers x = m, y = 1 satisfy x2−Dy2 =
−1,

for D = m2 ±m with m ≥ 2 the numbers x = 2m ± 1 satisfy y = 2,
x2 −Dy2 = 1,

for D = t2m2 + 2m with m ≥ 1 and t ≥ 1 the numbers x = t2m + 1,
y = t satisfy x2 −Dy2 = 1.

On the other hand, relatively small values of D may lead to large fun-
damental solutions. Tables are available on the internet10.

10For instance:
Tomás Oliveira e Silva: Record-Holder Solutions of Pell’s Equation
http://www.ieeta.pt/∼tos/pell.html.
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For D a positive integer which is not a square, denote by S(D) the base
10 logarithm of x1, when (x1, y1) is the fundamental solution to x2−Dy2 = 1.
The integral part of S(D) is the number of digits of the fundamental solution
x1. For instance, when D = 61, the fundamental solution (x1, y1) is

x1 = 1 766 319 049, y1 = 226 153 980

and S(61) = log10 x1 = 9.247 069 . . .
An integer D is a record holder for S if S(D′) < S(D) for all D′ < D.
Here are the record holders up to 1021:

D 2 5 10 13 29 46 53 61 109

S(D) 0.477 0.954 1.278 2.812 3.991 4.386 4.821 9.247 14.198

D 181 277 397 409 421 541 661 1021

S(D) 18.392 20.201 20.923 22.398 33.588 36.569 37.215 47.298

Some further records with number of digits successive powers of 10:

D 3061 169789 12765349 1021948981 85489307341

S(D) 104.051 1001.282 10191.729 100681.340 1003270.151

6.3.10 A criterion for the existence of a solution to the negative
Pell equation

Here is a recent result on the existence of a solution to Pell’s equation
x2 −Dy2 = −1

Proposition 94 (R.A. Mollin, A. Srinivasan11). Let d be a positive integer
which is not a square. Let (x0, y0) be the fundamental solution to Pell’s
equation x2 − dy2 = 1. Then the equation x2 − dy2 = −1 has a solution if
and only if x0 ≡ −1 (mod 2d).

Proof. If a2 − db2 = −1 is the fundamental solution to x2 − dy2 = −1, then
x0 + y0

√
d = (a+ b

√
d)2, hence

x0 = a2 + db2 = 2db2 − 1 ≡ −1 (mod 2d).

Conversely, if x0 = 2dk − 1, then x2
0 = 4d2k2 − 4dk + 1 = dy2

0 + 1, hence
4dk2 − 4k = y2

0. Therefore y0 is even, y0 = 2z, and k(dk − 1) = z2. Since k
and dk − 1 are relatively prime, both are squares, k = b2 and dk − 1 = a2,
which gives a2 − db2 = −1.

11Pell equation: non-principal Lagrange criteria and central norms; Canadian Math.
Bull., to appear
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6.3.11 Arithmetic varieties

Let D be a positive integer which is not a square. Define G = {(x, y) ∈
R2 ; x2 −Dy2 = 1}.

The map
G −→ R×

(x, y) 7−→ t = x+ y
√
D

is bijective: the inverse of that map is obtained by writing u = 1/t, 2x =
t+ u, 2y

√
D = t− u, so that t = x+ y

√
D and u = x− y

√
D. By transfer

of structure, this endows G with a multiplicative group structure, which is
isomorphic to R×, for which

G −→ GL2(R)

(x, y) 7−→
(
x Dy
y x

)
.

is an injective group homomorphism. Let G(R) be its image, which is
therefore isomorphic to R×.

A matrix

(
a b
c d

)
respects the quadratic form x2 −Dy2 if and only if

(ax+ by)2 −D(cx+ dy)2 = x2 −Dy2,

which can be written

a2 −Dc2 = 1, b2 −Dd2 = D, ab = cdD.

Hence the group of matrices of determinant 1 with coefficients in Z which
respect the quadratic form x2 −Dy2 is the group

G(Z) =

{(
a Dc
c a

)
∈ GL2(Z)

}
.

According to the work of Siegel, Harish–Chandra, Borel and Godement,
the quotient of G(R) by G(Z) is compact. Hence G(Z) is infinite (of rank 1
over Z), which means that there are infinitely many solutions to the equation
a2 −Dc2 = 1.

This is not a new proof of Proposition 75, but an interpretation and a
generalization. Such results are valid for arithmetic varieties12.

12See for instance Nicolas Bergeron, “Sur la forme de certains espaces provenant de
constructions arithmétiques”, Images des Mathématiques, (2004).
http://people.math.jussieu.fr/∼bergeron/Recherche−files/Images.pdf.
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Addition to Lemma 81.
In [1], § 4, there is a variant of the matrix formula (64) for the simple
continued fraction of a real number.

Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0,
as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two
formulae(

1 a0

0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
=

(
pn−1 pn
qn−1 qn

)
if n is even(

1 a0

0 1

)(
1 0
a1 1

)
. · · ·

(
1 0
an 1

)
=

(
pn pn−1

qn qn−1

)
if n is odd

 (95)

Define two matrices U (up) and L (low) in GL2(R) of determinant +1 by

U =

(
1 1
0 1

)
and L =

(
1 0
1 1

)
.

For p and q in Z, we have

Up =

(
1 p
0 1

)
and Lq =

(
1 0
q 1

)
,

so that these formulae (95) are

Ua0La1 · · ·Uan =

(
pn−1 pn
qn−1 qn

)
if n is even

and

Ua0La1 · · ·Lan =

(
pn pn−1

qn qn−1

)
if n is odd.

The connexion with Euclid’s algorithm is

U−p
(
a b
c d

)
=

(
a− pc b− pd
c d

)
and L−q

(
a b
c d

)
=

(
a b

c− qa d− qb

)
.

92



The corresponding variant of Lemma 81 is also given in [1], § 4: If a, b, c,
d are rational integers satisfying b > a > 0, d > c ≥ 0 and ad− bc = 1, then
there exist rational integers a0, . . . , an with n even and a1, . . . , an positive,
such that (

a b
c d

)
=

(
1 a0

0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
These integers are uniquely determined by b/d = [a0, . . . , an] with n even.

6.3.12 Periodic continued fractions

An infinite sequence (an)n≥0 is said to be ultimately periodic if there exists
n0 ≥ 0 and s ≥ 1 such that

an+s = an for all n ≥ n0. (96)

The set of s satisfying this property (6.3.12) is the set of positive multiples
of an integer s0, and (an0 , an0+1, . . . , an0+s0−1) is called the fundamental
period.

A continued fraction with a sequence of partial quotients satisfying (96)
will be written

[a0, a1, . . . , an0−1, an0 , . . . , an0+s−1].

Example. For D a positive integer which is not a square, setting a0 = b
√
Dc,

we have by Theorem 87

a0 +
√
D = [2a0, a1, . . . , as−1] and

1√
D − a0

= [a1, . . . , as−1, 2a0].

Lemma 97 (Euler 1737). If an infinite continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic, then x is a quadratic irrational number.

Proof. Since the continued fraction of x is infinite, x is irrational. Assume
first that the continued fraction is periodic, namely that (96) holds with
n0 = 0:

x = [a0, . . . , as−1].

This can be written
x = [a0, . . . , as−1, x].

Hence

x =
ps−1x+ ps−2

qs−1x+ qs−2
·
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It follows that
qs−1X

2 + (qs−2 − ps−1)X − ps−2

is a non–zero quadratic polynomial with integer coefficients having x as a
root. Since x is irrational, this polynomial is irreducible and x is quadratic.

In the general case where (96) holds with n0 > 0, we write

x = [a0, a1, . . . , an0−1, an0 , . . . , an0+s−1] = [a0, a1, . . . , an0−1, y],

where y = [an0 , . . . , an0+s−1] is a periodic continued fraction, hence is quadratic.
But

x =
pn0−1y + pn0−2

qn0−1y + qn0−2
,

hence x ∈ Q(y) is also quadratic irrational.

Lemma 98 (Lagrange, 1770). If x is a quadratic irrational number, then
its continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic.

Proof. For n ≥ 0, define dn = qnx− pn. According to Corollary 72, we have
|dn| < 1/qn+1.

Let AX2 +BX + C with A > 0 be an irreducible quadratic polynomial
having x as a root. For each n ≥ 2, we deduce from (70) that the convergent
xn is a root of a quadratic polynomial AnX

2 +BnX + Cn, with

An = Ap2
n−1 +Bpn−1qn−1 + Cq2

n−1,

Bn = 2Apn−1pn−2 +B(pn−1qn−2 + pn−2qn−1) + 2Cqn−1qn−2,

Cn = An−1.

Using Ax2 +Bx+ C = 0, we deduce

An = (2Ax+B)dn−1qn−1 +Ad2
n−1,

Bn = (2Ax+B)(dn−1qn−2 + dn−2qn−1) + 2Adn−1dn−2.

There are similar formulae expressing A, B, C as homogeneous linear com-
binations of An, Bn, Cn, and since (A,B,C) 6= (0, 0, 0), it follows that
(An, Bn, Cn) 6= (0, 0, 0). Since xn is irrational, one deduces An 6= 0.

From the inequalities

qn−1|dn−2| < 1, qn−2|dn−1| < 1, qn−1 < qn, |dn−1dn−2| < 1,
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one deduces

max{|An|, |Bn|/2, |Cn|} < A+ |2Ax+B|.

This shows that |An|, |Bn| and |Cn| are bounded independently of n. There-
fore there exists n0 ≥ 0 and s > 0 such that xn0 = xn0+s. From this we
deduce that the continued fraction of xn0 is purely periodic, hence the con-
tinued fraction of x is ultimately periodic.

A reduced quadratic irrational number is an irrational number x > 1
which is a root of a degree 2 polynomial ax2 + bx + c with rational integer
coefficients, such that the other root x′ of this polynomial, which is the
Galois conjugate of x, satisfies −1 < x′ < 0. If x is reduced, then so is
−1/x′.

Lemma 99. A continued fraction

x = [a0, a1, . . . , an . . .]

is purely periodic if and only if x is a reduced quadratic irrational number.
In this case, if x = [a0, a1, . . . , as−1] and if x′ is the Galois conjugate of x,
then

−1/x′ = [as−1, . . . , a1, a0]

Proof. Assume first that the continued fraction of x is purely periodic:

x = [a0, a1, . . . , as−1].

From as = a0 we deduce a0 > 0, hence x > 1. From x = [a0, a1, . . . , as−1, x]
and the unicity of the continued fraction expansion, we deduce

x =
ps−1x+ ps−2

qs−1x+ qs−2
and x = xs.

Therefore x is a root of the quadratic polynomial

Ps(X) = qs−1X
2 + (qs−2 − ps−1)X − ps−2.

This polynomial Ps has a positive root, namely x > 1, and a negative root
x′, with the product xx′ = −ps−2/qs−1. We transpose the relation(

ps−1 ps−2

qs−1 qs−2

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as−1 1

1 0

)

95



and obtain (
ps−1 qs−1

ps−2 qs−2

)
=

(
as−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
.

Define
y = [as−1, . . . , a1, a0],

so that y > 1,

y = [as−1, . . . , a1, a0, y] =
ps−1y + qs−1

ps−2y + qs−2

and y is the positive root of the polynomial

Qs(X) = ps−2X
2 + (qs−2 − ps−1)X − qs−1.

The polynomials Ps and Qs are related by Qs(X) = −X2Ps(−1/X). Hence
y = −1/x′.

For the converse, assume x > 1 and −1 < x′ < 0. Let (xn)n≥1 be the
sequence of complete quotients of x. For n ≥ 1, define x′n as the Galois
conjugate of xn. One deduces by induction that x′n = an + 1/x′n+1, that
−1 < x′n < 0 (hence xn is reduced), and that an is the integral part of
−1/x′n+1.

If the continued fraction expansion of x were not purely periodic, we
would have

x = [a0, . . . , ah−1, ah, . . . , ah+s−1]

with ah−1 6= ah+s−1. By periodicity we have xh = [ah, . . . , ah+s−1, xh], hence
xh = xh+s, x

′
h = x′h+s. From x′h = x′h+s, taking integral parts, we deduce

ah−1 = ah+s−1, a contradiction.

Corollary 100. If r > 1 is a rational number which is not a square, then
the continued fraction expansion of

√
r is of the form

√
r = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome and a0 = [
√
r].

Conversely, if the continued fraction expansion of an irrational number t > 1
is of the form

t = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome, then t2 is a rational number.
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Proof. If t2 = r is rational > 1, then for and a0 = [
√
t] the number x = t+a0

is reduced. Since t′ + t = 0, we have

− 1

x′
=

1

x− 2a0
·

Hence

x = [2a0, a1, . . . , as−1], − 1

x′
= [as−1, . . . , a1, 2a0]

and a1, . . . , as−1 a palindrome.
Conversely, if t = [a0, a1, . . . , as−1, 2a0] with a1, . . . , as−1 a palindrome,

then x = t + a0 is periodic, hence reduced, and its Galois conjugate x′

satisfies

− 1

x′
= [a1, . . . , as−1, 2a0] =

1

x− 2a0
,

which means t+ t′ = 0, hence t2 ∈ Q.

Lemma 101 (Serret, 1878). Let x and y be two irrational numbers with
continued fractions

x = [a0, a1, . . . , an . . .] and y = [b0, b1, . . . , bm . . .]

respectively. Then the two following properties are equivalent.

(i) There exists a matrix

(
a b
c d

)
with rational integer coefficients and de-

terminant ±1 such that

y =
ax+ b

cx+ d
·

(ii) There exists n0 ≥ 0 and m0 ≥ 0 such that an0+k = bm0+k for all k ≥ 0.

Condition (i) means that x and y are equivalent modulo the action of
GL2(Z) by homographies.

Condition (ii) means that there exists integers n0, m0 and a real number
t > 1 such that

x = [a0, a1, . . . , an0−1, t] and y = [b0, b1, . . . , bm0−1, t].

Example.

If x = [a0, a1, x2], then −x =

{
[−a0 − 1, 1, a1 − 1, x2] if a1 ≥ 2,

[−a0 − 1, 1 + x2] if a1 = 1.
(102)
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Proof. We already know by (70) that if xn is a complete quotient of x, then
x and xn are equivalent modulo GL2(Z). Condition (ii) means that there
is a partial quotient of x and a partial quotient of y which are equal. By
transitivity of the GL2(Z) equivalence, (ii) implies (i).

Conversely, assume (i):

y =
ax+ b

cx+ d
·

Let n be a sufficiently large number. From(
a b
c d

)(
pn pn−1

qn qn−1

)
=

(
un un−1

vn vn−1

)
with

un = apn + bqn, un−1 = apn−1 + bqn−1,
vn = cpn + dqn, vn−1 = cpn−1 + dqn−1,

we deduce

y =
unxn+1 + un−1

vnxn+1 + vn−1
·

We have vn = (cx + d)qn + cδn with δn = pn − qnx. We have qn → ∞,
qn ≥ qn−1 + 1 and δn → 0 as n → ∞. Hence, for sufficiently large n, we
have vn > vn−1 > 0. From part 1 of Corollary 84, we deduce(

un un−1

vn vn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
with a0, . . . , as in Z and a1, . . . , as positive. Hence

y = [a0, a1, . . . , as, xn+1].

A computational proof of (i) ⇒ (ii). Another proof is given by Bombieri [2]
(Theorem A.1 p. 209). He uses the fact that GL2(Z) is generated by the
two matrices (

1 1
0 1

)
and

(
0 1
1 0

)
.

The associated fractional linear transformations are K and J defined by

K(x) = x+ 1 and J(x) = 1/x.

We have J2 = 1 and

K([a0, t]) = [a0 + 1, t], K−1([a0, t]) = [a0 − 1, t].
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Also J([a0, t]) = [0, a0, t] if a0 > 0 and J([0, t]) = [t]. According to (102),
the continued fractions of x and −x differ only by the first terms. This
completes the proof. 13

6.4 Diophantine approximation and simple continued frac-
tions

Lemma 103 (Lagrange, 1770). The sequence (|qnx − pn|)n≥0 is strictly
decreasing: for n ≥ 1 we have

|qnx− pn| < |qn−1x− pn−1|.

Proof. We use Lemma 71 twice: on the one hand

|qnx− pn| =
1

xn+1qn + qn−1
<

1

qn + qn−1

because xn+1 > 1, on the other hand

|qn−1x− pn−1| =
1

xnqn−1 + qn−2
>

1

(an + 1)qn−1 + qn−2
=

1

qn + qn−1

because xn < an + 1.

Corollary 104. The sequence (|x − pn/qn|)n≥0 is strictly decreasing: for
n ≥ 1 we have ∣∣∣∣x− pn

qn

∣∣∣∣ < ∣∣∣∣x− pn−1

qn−1

∣∣∣∣ .
Proof. For n ≥ 1, since qn−1 < qn, we have∣∣∣∣x− pn

qn

∣∣∣∣ =
1

qn
|qnx−pn| <

1

qn
|qn−1x−pn−1| =

qn−1

qn

∣∣∣∣x− pn−1

qn−1

∣∣∣∣ < ∣∣∣∣x− pn−1

qn−1

∣∣∣∣ .

Here is the law of best approximation of the simple continued fraction.

13Bombieri in [2] gives formulae for J([a0, t]) when a0 ≤ −1. He distinguishes eight
cases, namely four cases when a0 = −1 (a1 > 2, a1 = 2, a1 = 1 and a3 > 1, a1 = a3 = 1),
two cases when a0 = −2 (a1 > 1, a1 = 1) and two cases when a0 ≤ −3 (a1 > 1, a1 = 1).
Here, (102) enables us to simplify his proof by reducing to the case a0 ≥ 0.
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Lemma 105. Let n ≥ 0 and (p, q) ∈ Z× Z with q > 0 satisfy

|qx− p| < |qnx− pn|.

Then q ≥ qn+1.

Proof. The system of two linear equations in two unknowns u, v{
pnu+ pn+1v = p
qnu+ qn+1v = q

(106)

has determinant ±1, hence there is a solution (u, v) ∈ Z× Z.
Since p/q 6= pn/qn, we have v 6= 0.
If u = 0, then v = q/qn+1 > 0, hence v ≥ 1 and q ≥ qn+1.
We now assume uv 6= 0.
Since q, qn and qn+1 are > 0, it is not possible for u and v to be both

negative. In case u and v are positive, the desired result follows from the
second relation of (106). Hence one may suppose u and v of opposite signs.
Since qnx − pn and qn+1x − pn+1 also have opposite signs, the numbers
u(qnx− pn) and v(qn+1x− pn+1) have same sign, and therefore

|qnx− pn| ≤ |u(qnx− pn)|+ |v(qn+1x− pn+1)| = |qx− p| < |qnx− pn|,

which is a contradiction.

A consequence of Lemma 105 is that the sequence of pn/qn produces
the best rational approximations to x in the following sense: any rational
number p/q with denominator q < qn has |qx − p| > |qnx − pn|. This is
sometimes referred to as best rational approximations of type 0.

Corollary 107. The sequence (qn)n≥0 of denominators of the convergents
of a real irrational number x is the increasing sequence of positive integers
for which

‖qnx‖ < ‖qx‖ for 1 ≤ q < qn.

As a consequence,
‖qnx‖ = min

1≤q≤qn
‖qx‖.

The theory of continued fractions is developed starting from Corollary 107
as a definition of the sequence (qn)n≥0 in Cassels’s book [5].
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Corollary 108. Let n ≥ 0 and p/q ∈ Q with q > 0 satisfy∣∣∣∣x− p

q

∣∣∣∣ < ∣∣∣∣x− pn
qn

∣∣∣∣ .
Then q > qn.

Proof. For q ≤ qn we have∣∣∣∣x− p

q

∣∣∣∣ =
1

q
|qx− p| > 1

q
|qnx− pn|

qn
q

∣∣∣∣x− pn
qn

∣∣∣∣ ≥ ∣∣∣∣x− pn
qn

∣∣∣∣ .

Corollary 108 shows that the denominators qn of the convergents are also
among the best rational approximations of type 1 in the sense that∣∣∣∣x− p

q

∣∣∣∣ > ∣∣∣∣x− pn
qn

∣∣∣∣ for 1 ≤ q < qn,

but they do not produce the full list of them: to get the complete set, one
needs to consider also some of the rational fractions of the form

pn−1 + apn
qn−1 + aqn

with 0 ≤ a ≤ an+1 (semi–convergents) – see for instance [7], Chap. II, § 16.

Lemma 109 (Vahlen, 1895). Among two consecutive convergents pn/qn and
pn+1/qn+1, one at least satisfies |x− p/q| < 1/2q2.

Proof. Since x− pn/qn and x− pn−1/qn−1 have opposite signs,∣∣∣∣x− pn
qn

∣∣∣∣+

∣∣∣∣x− pn−1

qn−1

∣∣∣∣ =

∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
1

qnqn−1
<

1

2q2
n

+
1

2q2
n−1

·

The last inequality is ab < (a2 + b2)/2 for a 6= b with a = 1/qn and b =
1/qn−1. Therefore,

either

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

2q2
n

or

∣∣∣∣x− pn−1

qn−1

∣∣∣∣ < 1

2q2
n−1

·
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Lemma 110 (É. Borel, 1903). Among three consecutive convergents pn−1/qn−1,
pn/qn and pn+1/qn+1, one at least satisfies |x− p/q| < 1/

√
5q2.

This completes the proof of the irrationality criterion Proposition 4 in-
cluding (i) ⇒ (vi) in § 2.1.

The fact that the constant
√

5 cannot be replaced by a larger one was
proved in Lemma 41. This is true for any number with a continued fraction
expansion having all but finitely many partial quotients equal to 1 (which
means the Golden number Φ and all rational numbers which are equivalent
to Φ modulo GL2(Z)).

Proof. Recall Lemma 71: for n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Therefore |qnx−pn| < 1/
√

5qn if and only if |xn+1qn+qn−1| >
√

5qn. Define
rn = qn−1/qn. Then this condition is equivalent to |xn+1 + rn| >

√
5.

Recall the inductive definition of the convergents:

xn+1 = an+1 +
1

xn+2
·

Also, using the definitions of rn, rn+1, and the inductive relation qn+1 =
an+1qn + qn−1, we can write

1

rn+1
= an+1 + rn.

Eliminate an+1:
1

xn+2
+

1

rn+1
= xn+1 + rn.

Assume now

|xn+1 + rn| ≤
√

5 and |xn+2 + rn+1| ≤
√

5.

We deduce

1√
5− rn+1

+
1

rn+1
≤ 1

xn+2
+

1

rn+1
= xn+1 + rn ≤

√
5,

which yields
r2
n+1 −

√
5rn+1 + 1 ≤ 0.
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The roots of the polynomial X2 −
√

5X + 1 are Φ = (1 +
√

5)/2 and Φ−1 =
(
√

5− 1)/2. Hence rn+1 > Φ−1 (the strict inequality is a consequence of the
irrationality of the Golden ratio). .

This estimate follows from the hypotheses |qnx − pn| < 1/
√

5qn and
|qn+1x− pn+1| < 1/

√
5qn+1. If we also had |qn+2x− pn+2| < 1/

√
5qn+2, we

would deduce in the same way rn+2 > Φ−1. This would give

1 = (an+2 + rn+1)rn+2 > (1 + Φ−1)Φ−1 = 1,

which is impossible.

Lemma 111 (Legendre, 1798). If p/q ∈ Q satisfies |x− p/q| ≤ 1/2q2, then
p/q is a convergent of x.

Proof. Let r and s in Z satisfy 1 ≤ s < q. From

1 ≤ |qr−ps| = |s(qx−p)− q(sx− r)| ≤ s|qx−p|+ q|sx− r| ≤ s

2q
+ q|sx− r|

one deduces

q|sx− r| ≥ 1− s

2q
>

1

2
≥ q|qx− p|.

Hence |sx − r| > |qx − p| and therefore Lemma 105 implies that p/q is a
convergent of x.
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Michel Waldschmidt
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This course was devoted to

• Proposition 94 of Mollin and Srinivasan on the negative Pell’s equation
x2 −Dy2 = −1.

• The proof of Legendre’s Theorem 111 according to which an approxi-
mation p/q of an irrational number x satisfying |x − p/q| ≤ 1/q2 is a
convergent of x.

• The proof of Corollary 100 on the continued fraction expansion of the
square root of a rational number.

• An introduction to number fields and the connexion between Pell’s
equation and Dirichlet’s unit Theorem.

Dirichlet’s unit Theorem

A number field is a finite algebraic extension of Q, which means a field
containing Q as a subfield and which is a Q–vector space of finite dimension.

In a finite extension, any element is algebraic.
An example of a number field is Q(α) (the smallest field containing α,

or the field generated by α), when α is an algebraic number. In this case
Q(α) = Q[α], which means that the ring Q[α] generated by α over Q is a
field. According to the Theorem of the primitive element, any number field
can be written Q(α) for some algebraic number α.

Let f ∈ Q[X] be the (monic) irreducible polynomial of α. The degree
d of f is the dimension of the Q–vector space Q(α), it is called the degree
of α over Q and also the degree of the extension Q(α)/Q, it is denoted by
[Q(α) : Q].

When we factorize the polynomial f over R into a product of irreducible
polynomials, we get a certain number, say r1, of degree 1 polynomials, and a
certain number, say r2, of degree 2 polynomials with negative discriminant.
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Hence 0 ≤ r1 ≤ d, 0 ≤ r2 ≤ d/2 and r1 + 2r2 = d. In C, f has d distinct
roots, r1 of which are real, say α1, . . . , αr1 , and 2r2 of which are not real
and pairwise complex conjugates, say αr1+1, . . . , αr1+r2 , αr1+1, . . . , αr1+r2 .
There are exactly d fields homomorphisms (also called embeddings) σi :
Q(α) −→ C, where, for 1 ≤ i ≤ d, σi is uniquely determined by σi(α) = αi.
For γ in Q(α), the elements σi(γ) are the conjugates of γ (that means the
complex roots of the irreducible polynomial of γ), n of them are distinct,
where n = [Q(γ) : Q] divides d, say d = nk, and

d∏
i=1

(X − σi(γ))

is the k–th power of the irreducible polynomial of γ.
Let k be a number field. The norm Nk/Q is the homomorphism between

the multiplicative groups k× = k \ {0} −→ Q× defined by

Nk/Q(γ) = σ1(γ) · · ·σd(γ).

The canonical embedding of k is σ = (σ1, . . . , σr1+r2) : k −→ Rr1 ×Cr2 .
An algebraic number α is called an algebraic integer is it satisfies the

following equivalent conditions.
(i) The irreducible (monic) polynomial of α in Q[X] has its coefficients in
Z.
(ii) There exists a monic polynomial with rational integer coefficients having
α as a root.
(iii) The subring Z[α] of C generated by α is a finitely generated Z–module.
(iii) There exists a ring which contains Z[α] as a subring and which is a
finitely generated Z–module.

For instance, the algebraic integers in Q are the rational integers.
The set of algebraic integers is a subring of C. Its intersection with a

number field k is the ring of integers of k, which we denote by Zk. For
instance, when k = Q(

√
D), where D is a rational integer which is not a

square,

Zk =

{
Z[
√
D] if D ≡ 2 or 3 (mod 4),

Z[(1 +
√
D)/2] if D ≡ 1 (mod 4).

It is easy to check that the image σ(Zk) of the ring of integers of k under
the canonical embedding is discrete in Rr1 ×Cr2 .

The group of units Z×k of Zk is also called the group of units of the number
field k (this terminology is standard but should not yield to a confusion:
recall that the units in a field k are the non–zero elements of k!). An integer
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in k is a unit if and only if it has norm ±1. The torsion elements of Z×k
are the roots of unity in k, it is easy to check that they form a finite cyclic
group k×tors.

The logarithmic embedding is the map λ : k× −→ Rr1+r2 obtained by
composing the restriction of σ to k× with the map

(zn)1≤n≤r1+r2 7−→ (log |zn|)1≤n≤r1+r2

from (R×)r1 × (C×)r2 to Rr1+r2 :

λ(α) = (log |σn(α)|)1≤n≤r1+r2 .

The image λ(Z×k ) of the group of units of k is a subgroup of the additive
group Rr1+r2 , it is contained in the hyperplane H of equation

x1 + · · ·+ xr1+r2 = 0,

and λ(Z×k ) is discrete in H. From these properties , one easily deduces that
as a Z–module, Z×k is finitely generated of rank ≤ r, where r = r1 + r2 − 1
is the dimension of H as a R–vector space.

Dirichlet’s units Theorem states:
Theorem. The group of units of an algebraic number field k of degree d
with r1 real embeddings and 2r2 conjugate complex embeddings is a finitely
generated group of rank r := r1 + r2 − 1.

In other terms, there exists a system of fundamental units (u1, . . . , ur)
in Z×k , such that any unit u ∈ Z×k can be written in a unique way as
ζum1

1 . . . umrr , where ζ ∈ k is a root of unity and m1, . . . ,mr are rational
integers:

Z×k ' k
×
tors × Zr.

In the special case of a real quadratic field Q(
√
D) with D ≡ 2 or 3 (mod 4),

the fact that the group of units is a finitely generated group of rank 1
means that the set of solution of Pell’s equation X2 − Dy2 = ±1 is the
set of ±(xm, ym), m ∈ Z, where xm and ym are defined by xm + ym

√
D =

(x1 + y1

√
D)m, where (x1, y1) denotes the fundamental solution of Pell’s

equation.
The proof of the existence of a system of r fundamental units rests on

Minkowski’s geometry of numbers.
There are plenty of references on this subject. Lists of online number theory

lecture notes and teaching materials are available on the internet. For instance

http://www.numbertheory.org/ntw/lecture−notes.html
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This course was devoted to Markoff’s equation - see

On the Markoff equation x2 + y2 + z2 = 3xyz;

http://www.math.jussieu.fr/∼miw/articles/pdf/MarkoffEn2011.pdf

and

http://www.math.jussieu.fr/∼miw/articles/pdf/MarkoffEn2011VI.pdf
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Recall Hurwitz’s Theorem, which is the implication (i)=⇒(vi) of Propo-
sition 4.

Lemma 112. Let ϑ be a real number. The following conditions are equiva-
lent:
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

We proved it by using continued fractions, as a consequence of Borel’s
Lemma 110: among three consecutive convergents of the continued fraction
of an irrational number ϑ, one at least satisfies property (ii) of Lemma 112.

We give two further proofs of Lemma 112: the first one rests on Farey’s
series, the last one does not involve continued fractions nor Farey series (but
the ideas are very similar). The last proof yields a new irrationality criterion
(Lemma 120).

6.5 Farey series

6.5.1 Definition and properties

For n ≥ 1, the Farey series Fn of order n is the finite increasing sequence
of rational numbers in the range [0, 1] having denominators ≤ n. Each of
them starts with 0 and ends with 1. Here are the first ones

F1 = {0, 1}

F2 =

{
0,

1

2
, 1

}
F3 =

{
0,

1

3
,
1

2
,
2

3
, 1

}
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F4 =

{
0,

1

4
,
1

3
,
1

2
,
2

3
,
3

4
, 1

}
F5 =

{
0,

1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
, 1

}
F6 =

{
0,

1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
, 1

}
F7 =

{
0,

1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
, 1

}
F8 =

{
0,

1

8
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
3

8
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
5

8
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
7

8
, 1

}
The number of elements in Fn is given by the inductive relation

|Fn| = |Fn−1|+ ϕ(n),

with |F1| = 2, where ϕ(n) is Euler’s function (ϕ(n) is the number of integers
in the range 1, . . . , n which are relativey prime to n). Hence

|Fn| = 1 +

n∑
m=1

ϕ(m).

One can deduce the estimate

|Fn| ∼
3n2

π2
·

Proposition 113. If h/k < h′/k′ are successive terms in a Farey series
Fn, then h′k − hk′ = 1.

For the proof, we follow § I.2 of [2]. Other proofs are given in [1], Chap. 3.

Lemma 114. Let x = (x1, x2) and y = (y1, y2) be two elements of Z2. The
following conditions are equivalent:
(i) (x, y) is a basis of Z2 over Z.
(ii) x1y2 − x2y1 = ±1.
(iii) x and y are are linearly independent over R, and the closed parallelo-
gram

P =
{
λx+ µy ; λ ∈ R, µ ∈ R, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1

}
with vertices 0, x, y and x+ y does not contain integer points in Z2 but its
vertices.
(iv) x and y are are linearly independent over R, and the closed triangle

T =
{
λx+ µy ; λ ∈ R≥0, µ ∈ R≥0, λ+ µ ≤ 1

}
with vertices 0, x and y, does not contain integer points in Z2 but its vertices.
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Proof. A change of basis for Z2 has a invertible matrix with determinant a
unit in Z, hence (i) ⇐⇒ (ii).

Assume (i). Any element z in Z2 can be written in a unique way as
λx + µy with λ and µ in R, and these numbers λ and µ are in Z. Hence,
when z ∈ P, we have 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1, and therefore each of λ, µ is 0
or 1. This proves (iii).

Conversely, assume (iii). Let u ∈ Z2. Since (x, y) is a basis of R2 over
R, we can write u = tx+ t′y with t and t′ in R. Define two integers a and a′

by a = btc and a′ = bt′c. From 0 ≤ t− a < 1 and 0 ≤ t′ − a′ < 1 we deduce
u− ax− a′y ∈ Z2 ∩P with u− ax− a′y 6∈ {x, y}, hence u = ax+ a′y. This
proves (i).

Since P contains T , (iii) implies (iv).
Finally, assume (iv). If z ∈ P∩Z2 is distinct from 0, x and y, then z 6∈ T ,

from which we deduce that x + y − z ∈ T ∩ Z2. From z 6= x and z 6= y we
deduce x+ y− z = 0, hence z = x+ y. Therefore P ∩Z2 = {0, x, y, x+ y},
which is (iii).

Proof of Proposition 113. Let h/k < h′/k′ be successive terms in the Farey
series Fn. From (h, k) 6= (h′, k′) and gcd(h, k) = gcd(h′, k′) = 1, we deduce
that the two vectors (h, k) and (h′, k′) of R2 are linearly independent. Since
h′k − hk′ > 0, using Lemma 114, it suffices to check that the triangle T
with vertices 0, x and y does not contain any element of Z2 but the vertices.
Assume z = (h′′, k′′) ∈ T ∩ Z2 with z 6∈ {0, x, y}. We have z = λx + µy
with λ ≥ 0, µ ≥ 0, 0 < λ + µ ≤ 1, (λ, µ) 6∈ {(0, 1) ; (1, 0)}. Then k′′ =
λk + µk′ ≤ n and h/k < h′′/k′′ < h′/k′, which contradicts the assumption
that there is no element between h/k and h′/k′ in Fn.

Corollary 115. if h/k < h′′/k′′ < h′/k′ are successive elements in a Farey
series Fn, then

h′′

k′′
=
h+ h′

k + k′
·

Proof. From Proposition 113 we deduce h′′k − hk′′ = 1, h′k′′ − h′′k′ = 1,
hence h′′(k + k′) = k′′(h+ h′).

Examples in F5 of F6 are 1/3 < 2/5 < 1/2 < 2/5: the fraction (h +
h′)/(k + k′) may or may not be in reduced form.

Here is our second proof of Lemma 112.
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Proposition 116. Let h/k < h′/k′ be successive elements in a Farey series
Fn. Define h′′ = h + h′, k′′ = k + k′. Then h′′/k′′ is in reduced form, and
for any α in the interval h/k ≤ α ≤ h′/k′, at least one of the following
inequalities hold:

α− h

k
<

1√
5k2

,

∣∣∣∣α− h′′

k′′

∣∣∣∣ < 1√
5k′′2

,
h′

k′
− α < 1√

5k′2
·

Proof. From h(k+ k′)− (h+ h′)k = 1, we deduce that k+ k′ and h+ h′ are
relatively prime.

By symmetry we may assume h′′/k′′ < α < h′/k′. If none of the inequal-
ities hold, then

α− h

k
≥ 1√

5k2
, α− h′′

k′′
≥ 1√

5k′′2
,

h′

k′
− α ≥ 1√

5k′2
·

Using h′k − hk′ = 1 and h′k′′ − h′′k′ = 1, we deduce

1

kk′
≥ 1√

5

(
1

k2
+

1

k′2

)
and

1

k′k′′
≥ 1√

5

(
1

k′2
+

1

k′′2

)
·

We deduce

√
5kk′ ≥ k2 + k′

2
and

√
5k′k′′ ≥ k′2 + k′′

2
,

which means that the numbers x = k/k′ and y = k′/k′′ satisfy

x2 −
√

5x+ 1 ≤ 0 and y2 −
√

5y + 1 ≤ 0.

Since the roots of X2 −
√

5X + 1 are Φ and 1/Φ, it follows that x and y lie
in the intervall (1/Φ,Φ). From k′′ = k + k′ we deduce 1/y = x+ 1, hence:

1

Φ
+ 1 ≤ x+ 1 =

1

y
≤ Φ.

Since x and y are rational numbers, this is not compatible with the irra-
tionality of Φ.

Notice that the end of the proof is the same as the proof of Borel’s
Lemma 110.
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We conclude this section by some further remark on Farey sequences,
which we do not plan to use, but which may be interesting to know.

The converse of Corollary 115 is true: If h, k, h′, k′ are positive integers
with 0 < h/k < h′/k′ < 1 which satisfy h′k − kh′ = 1, then h/k and h′/k′

are consecutive elements in the Farey series Fn with n = max{k, k′}.

Here is the proof. Suppose first k ≥ k′. Denote by h′′/k′′ the successor of
h/k in Fk. Then h′′k−k′′h = 1 and 1 ≤ k′′ ≤ k, hence (h′′−h′)k = (k′′−k′)h,
which shows that k′ and k′′ are congruent modulo k. Since they both lie in
the interval [1, k], we deduce k′ = k′′, hence h′ = h′′.

Similarly, if k < k′, we denote by h′′/k′′ the predecessor of h′/k′ in Fk′ .
The same argument gives h/k = h′′/k′′.

It follows that if h/k < h′/k′ are consecutive in the Farey series Fn,
then the smallest m > n such that there is an element h′′/k′′ of Fm in the
interval h/k < h′′/k′′ < h′/k′ is m = k + k′, this element h′′/k′′ is unique
and h′′ = h+ h′, k′′ = k + k′ = m.

Indeed, by definition of m, we have m = k′′. From the inequalities

h

k
<
h+ h′

k + k′
<
h′

k′
,

it follows that m ≤ k + k′. The unicity of an element of Fm in this interval
follows from the fact that two distinct rational numbers with denominator
m are at distance ≥ 1/m, while Proposition 113 yields

h′

k′
− h

k
=

1

kk′
<

1

m
·

We have seen in Proposition 116 that (h + h′)/(k + k′) is in reduced form.
Finally Corollary 115 shows that h′′/k′′ = (h+h′)/(k+k′), hence k′′ = k+k′.

Here is a connection with continued fractions: let p/q be an irreducible
fraction with q ≥ 2; write the continued fraction of p/q which ends with
an ≥ 2 as p/q = [0, a1, . . . , an]. Then the predecessors and successors of
p/q in the Farey series Fq have continued fractions [0, a1, . . . , an − 1] and
[0, a1, . . . , an−1]:

[0, a1, . . . , an−1] <
p

q
= [0, a1, . . . , an] < [0, a1, . . . , an − 1] if n is odd,

[0, a1, . . . , an − 1] <
p

q
= [0, a1, . . . , an] < [0, a1, . . . , an−1] if n is odd.
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Indeed, using the other continued fraction p/q = [0, a1, . . . , an − 1, 1] =
pn+1/qn+1, we write as in (64)(

p pn
q qn

)
=
(
pn−1&pn−2 qn−1 qn−2

)(an − 1 1
1 0

)(
1 1
1 0

)
where pn/qn = [0, a1, . . . , an − 1] and pn−1/qn−1 = [0, a1, . . . , an−1], and we
have qn−1 < qn < q, pqn − pnq = (−1)n, pqn−1 − pn−1q = (−1)n−1 (recall
Lemma 68 with n replaced by n+ 1 and an+1 = 1). Hence the result follows
from the previous remarks.

6.5.2 Hurwitz Theorem

Here is the third proof of of Hurwitz’s Lemma 112.
We start with the next auxiliary result, which also follows from the re-

sults we proved on continued fractions (take for p/q and r/s two consecutive
convergents of ϑ) or on Farey series (take two consecutive elements of a Farey
series such that ϑ is in their interval).

Lemma 117. Let ϑ be a real irrational number. Then there exist infinitely
many pairs (p/q, r/s) of irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

In this statement and the next ones, it is sufficient to prove inequalities
≤ in place of <: this follows from the irrationality of ϑ.

Proof. Let H be a positive integer. Among the irreducible rational fractions
a/b with 1 ≤ b ≤ H, select one for which |ϑ − a/b| is minimal. If a/b < ϑ
rename a/b as p/q, while if a/b > ϑ, then rename a/b as r/s.

First consider the case where a/b < ϑ, hence a/b = p/q. Since gcd(p, q) =
1, using Euclidean’s algorithm, one deduces (Bézout’s Theorem) that there
exist (r, s) ∈ Z2 such that qr − sp = 1 with 1 ≤ s < q and |r| < |p|. Since
1 ≤ s < q ≤ H, from the choice of a/b it follows that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ ∣∣∣ϑ− r

s

∣∣∣
hence r/s does not belong to the interval [p/q, ϑ]. Since qr− sp > 0 we also
have p/q < r/s, hence ϑ < r/s.

In the second case where a/b > ϑ and r/s = a/b we solve qr − sp = 1
by Euclidean algorithm with 1 ≤ q < s and |p| < r, and the argument is
similar.
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We now complete the proof of the existence of infinitely many such pairs.
Once we have a finite set of such pairs (p/q, r/s), we use the fact that there
is a rational number m/n closer to ϑ than any of these rational fractions.
We use the previous argument with H ≥ n. This way we produce a new pair
(p/q, r/s) of rational numbers which is none of the previous ones (because
one at least of the two rational numbers p/q, r/s is a better approximation
than the previous ones). Hence this construction yields infinitely many pairs,
as claimed.

Lemma 118. Let ϑ be a real irrational number. Assume (p/q, r/s) are
irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Then

min

{
q2

(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
<

1

2
·

Proof. Define

δ = min

{
q2

(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
.

From
δ

q2
≤ ϑ− p

q
and

δ

s2
≤ r

s
− ϑ

with qr − ps = 1 one deduces that the number t = s/q satisfies

t+
1

t
≤ 1

δ
·

Since the minimum of the function t 7→ t + 1/t is 2 and since t 6= 1, we
deduce δ < 1/2.

Remark. The inequality t+ (1/t) ≥ 2 for all t > 0 with equality if and only
if t = 1 is equivalent to the arithmetico-geometric inequality

√
xy ≤ x+ y

2
,

when x and y are positive real numbers, with equality if and only if x = y.
The correspondance between both estimates is t =

√
x/y.
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From Lemmas 117 and 118 it follows that for ϑ ∈ R \ Q, there exist
infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

2q2
·

A further step is required in order to complete the proof of Lemma 112.

Lemma 119. Let ϑ be a real irrational number. Assume (p/q, r/s) are
irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Define u = p+ r and v = q + s. Then

min

{
q2

(
ϑ− p

q

)
, s2

(r
s
− ϑ

)
, v2

∣∣∣ϑ− u

v

∣∣∣} <
1√
5
·

Proof. First notice that qu− pv = 1 and rv − su = 1. Hence

p

q
<
u

v
<
r

s
·

We repeat the proof of lemma 118 ; we distinguish two cases according to
whether u/v is larger or smaller than ϑ. Since both cases are quite similar,
let us assume ϑ < u/v. The proof of lemma 118 shows that

s

q
+
q

s
≤ 1

δ
and

v

q
+
q

v
≤ 1

δ
·

Hence each of the four numbers s/q, q/s, v/q, q/v satisfies t+1/t ≤ 1/δ. Now
the function t 7→ t+1/t is decreasing on the interval (0, 1) and increasing on
the interval (1,+∞). It follows that our four numbers all lie in the interval
(1/x, x), where x is the root > 1 of the equation x + 1/x = 1/δ. The two
roots x and 1/x of the quadratic polynomial X2−(1/δ)X+1 are at a mutual
distance equal to the square root of the discriminant ∆ = (1/δ)2 − 4 of this
polynomial. Now

v

q
− s

q
= 1,

hence the length
√

∆ of the interval (1/x, x) is ≥ 1 and therefore δ ≤ 1/
√

5.
This completes the proof of Lemma 119.
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Remark. In the three proofs of Hurwitz’s Theorem, the number
√

5 occurs
as follows: for any x > 1,

max

{
x+

1

x
,

1 + x

x
+

x

1 + x

}
≥
√

5,

with equality if and only if x = Φ (the Golden ratio). Indeed, for x > 1 we
have

x+
1

x
>
√

5⇐⇒ x > Φ

and, with t = (x+ 1)/x,

t+
1

t
>
√

5⇐⇒ t > Φ⇐⇒ x+
1

x
>
√

5⇐⇒ x < Φ.

6.5.3 A further irrationality criterion

Lemma 120. Let ϑ be a real number. The following conditions are equiva-
lent:
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q and r/s in Q such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{qϑ− p ; r − sϑ} < ε.

(iii)There exist infinitely many pairs (p/q, r/s) of rational numbers such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{q(qϑ− p) ; s(r − sϑ)} < 1.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) are easy. For (i)=⇒(iii) we are
going to combine the arguments in the proof of Lemma 117 with results
from the theory of continued fractions.

Since ϑ is irrational, there are infinitely many p/q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

2q2
·
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This is a weak form of Hurwitz Lemma 112. According to Legendre’s Lemma
111, such a p/q is a convergent of ϑ. The best approximation property of
the convergents (Lemma 105) implies that for any a/b ∈ Q with 1 ≤ b ≤ q
and a/b 6= p/q, we have ∣∣∣ϑ− a

b

∣∣∣ > ∣∣∣∣ϑ− p

q

∣∣∣∣ .
Assume first p/q < ϑ. Let r/s be defined by qr − ps = 1 and 1 ≤ s < q,
|r| < |p|. We have

0 <
r

s
− ϑ < r

s
− p

q
=

1

qs
≤ 1

s2
·

Next assume p/q > ϑ. In this case rename it r/s and define p/q by qr−ps = 1
and 1 ≤ q < s, |p| < |r|.

Finally, repeat the argument in the proof of Lemma 117 to get an infinite
set of approximations. Lemma 120 follows.
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7 Approximation of functions

We give Lambert’s proof of the irrationality of π and er for r ∈ Q \ {0},
involving continued fractions of analytic functions. Then we give a very
short introduction to generalized hypergeometric functions.

7.1 Lambert’s proof of the irrationality of π and er for r ∈
Q \ {0}

The fundamental result of Lambert’s paper [3] is:

Theorem 121 (Lambert, 1761). For any r ∈ Q \ {0}, the numbers tan r
and er are irrational. In particular the number π is irrational.

The main tool is continued fractions, and the first goal of Lambert is
to develop tanx = sinx/ cosx and (ex − e−x)/(ex + e−x) into continued
fractions.

Proposition 122. The functions tanx and (ex − e−x)/(ex + e−x) can be
represented as a continued fraction

tanx =
x|
|1

+
−x2|
| 3

+
−x2|
| 5

+ · · ·+ −x2 |
|2k − 1

+ · · ·

and
ex − e−x

ex + e−x
=
x|
|1

+
x2|
| 3

+
x2|
| 5

+ · · ·+ x2 |
|2k − 1

+ · · ·

Each of these continued fractions converges uniformly to the function in the
left hand side on any compact subset of C on which this function is bounded.

These two formulae are related by

tan t =
1

i
· e

it − e−it

eit + e−it
·

The next tool is a criterion for irrationality, by means of such irregular
continued fractions. Here is Proposition 1, § 4.3.3, of [1].
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Proposition 123. Let (an)n≥1 and (bn)n≥1 be two sequences of rational
integers. Assume that the continued fraction

b1 |
|a1

+
b2 |
|a2

+
b3 |
|a3

+ · · ·+ bn |
|an

+ · · ·

converges to some real number x. Assume also that there exists a positive
integer n0 such that, for all n ≥ n0, we have 0 < |bn| < |an|. Then for each
n ≥ 1 the continued fraction

bn |
|an

+
bn+1 |
|an+1

+
bn+2 |
|an+2

+ · · ·+ bn+m |
|an+m

+ · · ·

converges to a limit xn. Further, we have |xn| ≤ 1 for all n ≥ n0. Further-
more, if xn 6= ±1 for all n ≥ n0, then x is irrational.

From
b1 |
|a1

+
b2 |
|a2

+
b3 |
|a3

+ · · ·+ bn |
|an + xn+1

,

using (51), we deduce

x =
An−1 + xnAn−2

Bn−1 + xnBn−2
·

This is an analog of (70) but for generalized continued fractions and with
xn replaced by 1/xn. Therefore, x is rational if and only if xn is rational for
at least one n ≥ 1, if and only if xn is rational for all n ≥ 1.

We assume these two propositions and we complete the proof of the
irrationality of tan r for r ∈ Q non–zero.

We shall use several times the following lemma, which means, in short
terms

a0 +
b1 |
|a1

+
b2 |
|a2

+ · · ·+ bn |
|an

= a0 +
λ1b1 |
|λ1a1

+
λ1λ2b2|
| λ2a2

+ + · · ·+ λn−1λnbn|
| λnan

·

Lemma 124. Consider a generalized finite continued fraction and define,
as usual (cf. (51))(

An An−1

Bn Bn−1

)
=

(
a0 1
1 0

)(
a1 1
b1 0

)
· · ·
(
an−1 1
bn−1 0

)(
an 1
bn 0

)
.

Let λ1, . . . , λn be further variables. Define, for n ≥ 0, a′n = λnan and, for
n ≥ 1, b′n = λn−1λnbn, with λ0 = 1. Then the polynomials A′n and B′n
defined by(

A′n A′n−1

B′n B′n−1

)
=

(
a′0 1
1 0

)(
a′1 1
b′1 0

)
· · ·
(
a′n−1 1
b′n−1 0

)(
a′n 1
b′n 0

)
.
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are
A′n = λ1 · · ·λnAn and B′n = λ1 · · ·λnBn.

In particular
A′n
B′n

=
An
Bn

.

Proof. This is true for n = 0 and n = 1, and by induction this follows from
the recurrence formulae satisfied by An, Bn, A′n and B′n:

A′n = a′nA
′
n−1 + b′nA

′
n−2, B′n = a′nB

′
n−1 + b′nB

′
n−2.

Proof of Lambert’s irrationality result on tan r for r ∈ Q \ {0}. Write r =
p/q with q ≥ 1 and p 6= 0 integers. From proposition 122 we deduce

tan p/q =
p/q|
| 1

+
−p2/q2|
| 3

+
−p2/q2|
| 5

+ · · ·+ −p
2/q2|

| 2n+ 1
+ · · ·

Lemma 124 with a0 = 0, an = 2n− 1 for n ≥ 1, b1 = p/q, bn = −p2/q2 for
n ≥ 2, λn = q for n ≥ 1, yields

tan p/q =
p|
|q

+
−p2|
| 3q

+
−p2|
| 5q

+ · · ·+ −p2 |
|(2n+ 1)q

+ · · ·

For n > max{3, p2/2q}, set

yn =
−p2 |

|(2n+ 1)q
+

−p2 |
|(2n+ 3)q

+ · · ·+ −p2 |
|(2n+m)q

+ · · ·

so that

yn = − p2

(2n+ 1)q + yn−1
·

One deduces from Proposition 123 that |yn| ≤ 1. From the estimate

|yn| =
p2

(2n+ 1)q − |yn−1|
≤ p2

2nq
< 1,

it follows that |yn| < 1. Therefore yn 6= ±1 for all sufficiently large n, hence
again we can apply Proposition 123 and conclude.
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The proof of Proposition 123 is similar to the proof of Proposition 60,
the main difference being that we do not assume the numbers an and bn to
be positive - but here we assume the strict inequality |an| > |bn|.

Proof of Proposition 123. We start with the following remark. Let a, b and
x be real numbers satisfying |a| ≥ |b| + 1, |b| ≥ 1 and |x| < 1. Then a + x
has the sign of a and ∣∣∣∣ b

a+ x

∣∣∣∣ < 1.

When a and b are rational integers, the hypotheses on a and b hold as soon
as |a| > |b| > 0.

From this observation and the assumption 0 < |bn| < |an|, 0 < |bn+1| <
|an+1|, we deduce that for all n ≥ n0,

bn |
|an

+
bn+1 |
|an+1

=
bn

an +
bn+1

an+1

has the same sign as bn/an and has modulus < 1. By induction, one finds
that, for all m ≥ 0,

bn |
|an

+
bn+1 |
|an+1

+ · · ·+ bn+m |
|an+m

has the same sign as bn/an and has modulus < 1. Since the continued
fraction (of x, hence of xn) is convergent, it follows that for all n ≥ n0, xn
has the same sign as an0/bn0 and |xn| ≤ 1.

Assume now that |xn| < 1 for all n ≥ n0 and that x is rational. By
induction, xn is rational for all n ≥ 1; write xn = un/vn with |un| < vn for
n ≥ n0. From xn = bn/(an + xn+1) it follows that

xn+1 = −an +
bn
xn

=
−anun + bnvn

un

is a rational number of modulus < 1 and denominator |un| smaller than the
denominator vn of xn. By infinite descent we reach a contradiction.

Remark. Assume the assumptions of Proposition 123 are satisfied, but xn =
±1 for some n ≥ n0. Once some xn is rational, all xn are rational, therefore
xn = ±1 for all sufficiently large n. Since the xn with n ≥ n0 have constant
sign, we have xn = xn+1, and from xn = bn/(an+ bn+1) with |an| > |bn| > 0
we deduce xn = −1 and an = bn − 1 ≤ −2. An example is

1 =
−1 |
| − 2

+
−1 |
| − 2

+ · · ·+ −1 |
| − 2

+ · · · = [0, 2,−2, 2,−2, . . .].
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It remains to prove Proposition 122.

Proof of Proposition 122. Lambert starts with the power series expansions
of sin and cos:

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

and

cosx = 1− x2 +
x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ · · ·

Divide sin by cos and write tanx = sinx/ cosx = x/(1 + A1). The power
series A1 starts with −x2/3. Next write A1 = −x2/(3 +A2), so that

tanx =
x

1 +A1
=

x

1 +
−x2

3 +A2

·

The first term of A2 is −x2/5. For A2 = −x2/(5 +A3) we have

tanx =
x

1 +
−x2

3 +
−x2

5 +A3

=
x|
|1

+
−x2|
| 3

+
−x2 |
|5 +A3

·

The closed formulae for A1, A2 and A3 are given in [1]. Here is the formula
for Ak which is computed from

tanx =
x|
|1

+
−x2|
| 3

+
−x2|
| 5

+ · · ·+ −x2 |
|2k − 1 +Ak

,

namely

Ak =

∞∑
n=0

(−1)n+1x2n+2 (2n+ 2)(2n+ 4) · · · (2n+ 2k)

(2n+ 2k + 1)!

∞∑
n=0

(−1)nx2n (2n+ 2)(2n+ 4) · · · (2n+ 2k − 2)

(2n+ 2k − 1)!

·

One can write also the coefficients respectively

(2n+ 2)(2n+ 4) · · · (2n+ 2k)

(2n+ 2k + 1)!
=

2k(n+ k)!

n!(2n+ 2k + 1)!
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and
(2n+ 2)(2n+ 4) · · · (2n+ 2k − 2)

(2n+ 2k − 1)!
=

2k−1(n+ k − 1)!

n!(2n+ 2k − 1)!
·

The proof of the convergence of the continued fraction requires to compute
the convergents, which is something done by Lambert. He writes

x|
|1

+
−x2|
| 3

+
−x2|

5
+ · · ·+ −x2 |

|2n− 1
=
Pn
Qn

where

Pn+1 = (2n+ 1)Pn − x2Pn−1, Qn+1 = (2n+ 1)Qn − x2Qn−1

for n ≥ 2, with the initial conditions P1 = x, Q1 = 1, P2 = 3x, Q2 = 3− x2.
By induction, it follows that the polynomial Pn is odd, of degree n if n is
odd and n− 1 is n is even, while Qn is an even polynomial, of degree n if n
is even and n− 1 is n is odd. The explicit formulae are

Pn = cnpn, Qn = cnqn, cn = 1 · 3 · 5 · · · (2n− 1) =
(2n)!

2nn!
,

with

pn =
∑

1≤k≤(n+1)/2

(−1)k−1 x2k−1

(2k − 1)!
· (2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 4)

(2n− 1)(2n− 3) · · · (2n− 2k + 3)

and

qn =
∑

0≤k≤n/2

(−1)k
x2k

(2k)!
· (2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 2)

(2n− 1)(2n− 3) · · · (2n− 2k + 1)
·

As n tends to infinity, pn and qn converge uniformly on any compact subset
of C to sin and cos: the difference between the sums of the first k terms in
the Taylor expansion at the origin of pn and sin (respectively of qn and cos)
is bounded above by

|x|2k+1

(2k + 1)!
+
|x|2k+2

(2k + 2)!
+
|x|2k+3

(2k + 3)!
+ · · ·

and therefore pn/qn converge to tanx uniformly on any compact subset of
C where | tanx| is bounded.
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Remark. In the proof of Theorem 121, we may replace the Lambert’s irra-
tionality criterion (Proposition 123) for continued fractions by our standard
criterion (Proposition 4) involving rational approximations, as follows.

Writing the function f(z) = (1/z) tan z as a continued fraction and using
(54), we obtain, for n > 0,

f(z) =
Pn(z)

Qn(z)
+
∑
m>n

(
Pm(z)

Qm(z)
− Pm+1(z)

Qm+1(z)

)
=
Pn(z)

Qn(z)
+
∑
m≥n

z2m

Qm−1Qm(z)
·

The polynomials Pn and Qn have integral coefficients and degrees ≤ n; for
n tending to infinity, Qn(p/q) grows like 2nn!. One checks that the rational
approximation given by Pn(p/q)/Qn(p/q) is too sharp for f(p/q) to be a
rational number.

From Lemma 124, it follows that the continued fraction for (ex−e−x)/(ex+
e−x) given in Proposition 122 can be written

ex − e−x

ex + e−x
= [0, 1/x, 3/x, 5/x, . . . , (2k − 1)/x, . . . ].

For x = 1/2 this gives

e+ 1

e− 1
= [2, 6, 10, 14, . . . , 4k + 2, . . .]. = [4k + 2]k≥0.

Let us deduce Euler’s continued fraction expansion for e (see § 1.4)

e = [2, 1, 2, 1, 1, 4, 1, 1 . . . ] = [2, 1, 2k, 1]k≥1.

Define pk/qk as the k–th convergent of x = [2, 6, . . . , 4k+2, . . .] and rk/sk
as the k–th convergent of y = [1, 1, 2, 1, 1, 4, . . . , 1, 2k, 1, . . .]. We eliminate
the indices which are not congruent to 1 modulo 3 among the 5 relations
involving 7 symbols

r3k−3 = r3k−4 + r3k−5,

r3k−2 = r3k−3 + r3k−4,

r3k−1 = 2kr3k−2 + r3k−3,

r3k = r3k−1 + r3k−2,

r3k+1 = r3k + r3k−1

and deduce
r3k+1 = (4k + 2)r3k−2 + r3k−5.
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We do the same for sk and get(
r3k+1 r3k−2

s3k+1 s3k−2

)
=

(
r3k−2 r3k−5

s3k−2 s3k−5

)(
4k + 2 1

1 0

)
.

These are the same recurrence relations which are satisfied by pk and qk.
Since

p−2 = 0, p−1 = 1, p0 = 2, q−2 = 1, q−1 = 0, q0 = 1

and

r−2 = 0 = 2q−1, r1 = 2 = 2q0, s−2 = 1 = p−1−q−1, s1 = 1 = p0−q0,

we deduce r3k+1 = 2qk and s3k+1 = pk−qk for all k. From y = limk→∞ r3k/s3k

we deduce y = 2/(x− 1). Since x = (e+ 1)/(e− 1), we get y = e− 1.
The same argument starting from

e2 + 1

e2 − 1
= [2j + 1]j≥0 = [1; 3, 5, 7, . . . ],

yields Euler’s continued fraction expansion for e2 (see § 1.4)

e2 = [7; 3j − 1, 1, 1, 3j, 12j + 6]j≥1 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, . . . ],

7.2 Hypergeometric functions

A (generalized) hypergeometric series is a power series

1 + α1z + α2z
2/2 + · · ·+ αnz

n/n! + · · ·

such that there exists a rational fraction A ∈ C(T ) satisfying, for all n ≥ 0,

αn+1 = αnA(n).

Write this rational fraction as

A(T ) = c
(a1 + T ) · · · (ap + T )

(b1 + T ) · · · (bq + T )
·

We assume that A has no pole on Z≥0, which means bj 6∈ Z≤0 for 1 ≤ j ≤ q,
so that A(n) is defined for all n ≥ 0. Then

αn+1 = c
(a1 + n) · · · (ap + n)

(b1 + n) · · · (bq + n)
αn
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and therefore

αn = cn
(a1)n · · · (ap)n
(b1)n · · · (bq)n

,

where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1) · · · (a+ n− 1) for n ≥ 1 and (a)0 = 1.

It is also called raising factorial: notice that (1)n = n! and satisfies an
number of relations, among which

(a)k+m = (a)k(a+ k)m.

For each n ≥ 0, we have

lim
a→∞

(a)n
an

= 1

and for each a ∈ C \ Z<0, we have

lim
n→∞

(a)n
n!

= 1.

For p and q non–negative integers, we define

pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣ z) =
∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· z
n

n!
·

We shall use also the notation

pFq
(
a1, a2, · · · , ap; b1, b2, · · · , bq; z

)
.

In the case where some ai is in Z≤0, then pFq is a polynomial. Otherwise,
this power series has a radius of convergence which is infinite when q ≥ p,
finite if q = p− 1, and 0 if q < p− 1.

For ap = bq = c we have

pFq

(
a1 a2 · · · ap−1 c
b1 b2 · · · bq−1 c

∣∣∣∣ z) = p−1Fq−1

(
a1 a2 · · · ap−1

b1 b2 · · · bq−1

∣∣∣∣ z)
Examples. The basic example is 0F0(z) = ez. Other examples are

1F0

(
a; z
)

=
∑
n≥0

a(a+ 1) · · · (a+ n− 1)

n!
· zn = (1− z)−a
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and

2F1

(
1, 1; 2; z

)
=
∑
n≥0

zn

n+ 1
= −1

z
log(1− z).

We consider the special case p = 0, q = 1 of Gauss hypergeometric series:

0F1(c; z) =
∑
n≥0

zn

(c)nn!
·

We denote this function by f(c; z).
Since (

1

2

)
n

=

(
1

2

)(
1

2
+ 1

)
· · ·
(

1

2
+ n− 1

)
=

(2n)!

22nn!

and (
3

2

)
n

=

(
3

2

)(
3

2
+ 1

)
· · ·
(

3

2
+ n− 1

)
=

(2n+ 1)!

22nn!
,

special cases are

f(1/2; z2) =
∑
n≥0

(2z)2n

(2n)!
= cosh(2z)

and

f(3/2; z2) =
∑
n≥0

(2z)2n

(2n+ 1)!
=

1

2z
sinh(2z).

From
1

(c)n
=

c+ n

(c)n+1
=

1

(c+ 1)n
+

n

(c)n+1

one deduces

f(c; z) =
∑
n≥0

zn

(c+ 1)nn!
+
∑
n≥1

nzn

(c)n+1n!
·

The first series is f(c+ 1; z), the second is

∑
n≥0

zn+1

(c)n+2n!
=

z

c(c+ 1)

∑
n≥0

zn

(c+ 2)nn!
=

z

c(c+ 1)
f(c+ 2; z).

This is the functional equation relating f(c; z), f(c+ 1; z) and f(c+ 2; z):

f(c; z) = f(c+ 1; z) +
z

c(c+ 1)
f(c+ 2; z).
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Hence the function g(c; z) = f(c; z)/f(c+ 1; z) satisfies

g(c, z) = 1 +
z

c(c+ 1)
· 1

g(c+ 1; z)
·

Next define h(c; z) = (c/z)g(c; z2): we get

h(c; z) =
c

z
+

1

h(c+ 1; z)
·

Therefore, for k ≥ 1,

h(c; z) =

[
c

z
,
c+ 1

z
, . . . ,

c+ k − 1

z
, h(c+ k; z)

]
.

Replacing h by its value in terms of f yields

c

z
· f(c; z2)

f(c+ 1; z2)
=

[
c

z
,
c+ 1

z
, . . . ,

c+ k − 1

z
,
(c+ k)

z
· f(c+ k; z2)

f(c+ k + 1; z2)

]
.

We now take the limit on k:

Lemma 125. For c and z positive real numbers, the infinite continued frac-
tion converges and we have

c

z
· f(c; z2)

f(c+ 1; z2)
=

[
c

z
,
c+ 1

z
, . . . ,

c+ k

z
, · · ·

]
.

Proof. We first check the following auxiliary result:

Let (an)n≥0 be a sequence of real numbers, all ≥ 1. Let x be
a real number. Assume that for all n ≥ 1, there exists a real
number xn ≥ 1 such that

x = [a0, a1, . . . , an−1, xn].

Then the infinite continued fraction [a0, a1, . . . , an, . . . ] converges
to x.

We already proved this result when the an are integers, the proof in the
general case is the same: we write

[a0, a1, . . . , an] =
An
Bn
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with An = anAn−1 +An−2, Bn = anBn−1 +Bn−2, so that

x =
xn+1An +An−1

xn+1Bn +Bn−1
,

we note that Bn ≥ Bn−1 + Bn−2, which implies that Bn tends to infinity,
and we conclude with the estimate∣∣∣∣x− An

Bn

∣∣∣∣ =
1

Bn(xn+1Bn +Bn−1)
≤ 1

B2
n

·

To complete the proof of Lemma 125, we notice that for c and z positive,
we have

f(c+ k + 1; z2) < f(c+ k; z2) and
c+ k

z
≥ 1

for sufficiently large k.

In the special cases c = 1/2, this provides another proof of the continued
fraction expansion from Proposition 122:

ez − e−z

ez + e−z
= [0, 1/z, 3/z, . . . , (2k−1)/z, . . . ] =

z|
|1

+
z2|
| 3

+
z2|
| 5

+· · ·+ z2 |
|2k − 1

+· · ·
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8 Hermite’s method

The proofs given in subsection 1.5 of the irrationality of er for several ra-
tional values of r (namely r ∈ {1, 2,

√
2,
√

3}) are similar: the idea is to
start from the expansion of the exponential function, to truncate it and to
deduce rational approximations to er. In terms of the exponential func-
tion this amounts to approximate ez by a polynomial. The main idea, due
to C. Hermite [3], is to approximate ez by rational functions A(z)/B(z).
The word “approximate” has the following meaning (Hermite-Padé): in a
loose sense, an analytic function is well approximated by a rational function
A(z)/B(z) (where A and B are polynomial) if the first coefficients of the
Taylor expansion of f(z) and A(z)/B(z) at the origin are the same. When
B(0) 6= 0, this amounts to asking that the difference B(z)f(z)−A(z) has a
zero at the origin of high multiplicity.

When we just truncate the series expansion of the exponential function,
we approximate ez by a polynomial in z with rational coefficients; when we
substitute z = a where a is a positive integer, this polynomial produces a
rational number, but the denominator of this number is quite large (unless
a = ±1). A trick gave the result also for a = ±2, but definitely, for a
a larger prime number for instance, there is a problem: if we multiply by
the denominator then the “remainder” is by no means small. As shown
by Hermite, to produce a sufficiently large gap in the power expansion of
B(z)ez will solve this problem.

Our first goal (section § 8.1) is to give, following Hermite, a new proof
of Lambert’s result on the irrationality of er when r is a non-zero rational
number. Next we show how a slight modification implies the irrationality of
π.

This proof serves as an introduction to Hermite’s method. There are
slightly different ways to present it: one is Hermite’s original paper, another
one is Siegel more algebraic point of view [5], and another was derived by
Yu. V.Ñesterenko for [2] (A simple proof of the irrationality of π. Russ. J.
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Math. Phys. 13 (2006), no. 4, 473). See also Robert Breusch, A Proof of
the Irrationality of π, The American Mathematical Monthly, Vol. 61, No.
9 (Nov., 1954), pp. 631-632.

8.1 Irrationality of er and π

8.1.1 Irrationality of er for r ∈ Q

If r = a/b is a rational number such that er is also rational, then e|a| is
also rational, and therefore the irrationality of er for any non-zero rational
number r follows from the irrationality of ea for any positive integer a.
We shall approximate the exponential function ez by a rational function
A(z)/B(z) and show that A(a)/B(a) is a good rational approximation to ea,
sufficiently good in fact so that one may use the usual irrationality criterion
(Proposition 4).

Write

ez =
∑
k≥0

zk

k!
·

We wish to multiply this series by a polynomial so that the Taylor expansion
at the origin of the product B(z)ez has a large gap: the polynomial preceding
the gap will be A(z), the remainder R(z) = B(z)ez − A(z) will have a zero
of high multiplicity at the origin, namely at least the degree of A plus the
length of the gap.

In order to create such a gap, we shall use the differential equation of
the exponential function - hence we introduce derivatives.

8.1.2 Derivative operators

We first explain how to produce, from an analytic function whose Taylor
development at the origin is

f(z) =
∑
k≥0

akz
k, (126)

another analytic function with one given Taylor coefficient, say the coeffi-
cient of zm, is zero. The coefficient of zm for f is am = m!f (m)(0). The
same number am occurs when one computes the Taylor coefficient of zm−1

for the derivative f ′ of f . Writing

mam = m!(zf ′)(m)(0),
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we deduce that the coefficient of zm in the Taylor development of zf ′(z)−
mf(z) is 0, which is what we wanted.

It is the same thing to write

zf ′(z) =
∑
k≥0

kakz
k

so that
zf ′(z)−mf(z) =

∑
k≥0

(k −m)akz
k.

Now we want that several consecutive Taylor coefficients cancel. It will be
convenient to introduce derivative operators.

We denote by D the derivation d/dz. When f is a complex valued
function of one complex variable z, we shall sometimes write D

(
f(z)

)
in

place of Df . We write as usual D2 for D ◦D and D` = D ◦D`−1 for ` ≥ 2.
The Taylor expansion at the origin of an analytic function f is

f(z) =
∑
`≥0

1

`!
D`f(0)z`.

The derivation D and the multiplication by z do not commute:

D(zf) = f + zD(f),

relation which we write Dz = 1 + zD. From this relation it follows that
the non-commutative ring generated by z and D over C is also the ring
of polynomials in D with coefficients in C[z]. In this ring C[z][D] there is
an element which will be very useful for us, namely δ = zd/dz. It satis-
fies δ(zk) = kzk. To any polynomial T ∈ C[t] we associate the derivative
operator T (δ).

By induction on m one checks δmzk = kmzk for all m ≥ 0. By linearity,
one deduces that if T is a polynomial with complex coefficients, then

T (δ)zk = T (k)zk.

Recalling our function f with the Taylor development (126), we have

T (δ)f(z) =
∑
k≥0

akT (k)zk.

Hence, if we want a function with a Taylor expansion having 0 as Taylor
coefficient of zk at the origin, it suffices to consider T (δ)f(z) where T is a
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polynomial satisfying T (k) = 0. For instance, if n0 and n1 are two non-
negative integers and if we take

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t− n0 − n1),

then the series T (δ)f(z) can be written A(z) +R(z) with

A(z) =

n0∑
k=0

T (k)akz
k

and
R(z) =

∑
k≥n0+n1+1

T (k)akz
k.

This means that in the Taylor expansion at the origin of T (δ)f(z), all coef-
ficients of zn0+1, zn0+2, . . . , zn0+n1 are 0.

Let n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1 and

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t−N).

Since T is monic of degree n1 with integer coefficients, it follows from the
differential equation of the exponential function

δ(ez) = zez

that there is a polynomial B ∈ Z[z], which is monic of degree n1, such that
T (δ)ez = B(z)ez.

Set

A(z) =

n0∑
k=0

T (k)
zk

k!
and R(z) =

∑
k≥N+1

T (k)
zk

k!
·

Then
B(z)ez = A(z) +R(z),

where A is a polynomial with rational coefficients of degree n0 and leading
coefficient

T (n0)

n0!
= (−1)n1

n1!

n0!
·

Also the analytic function R has a zero of multiplicity N + 1 at the origin
with leading term T (N + 1)zN+1/(N + 1)!.
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We can explicit these formulae for A and R. For 0 ≤ k ≤ n0 we have

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N)

= (−1)n1(N − k) · · · (n0 + 2− k)(n0 + 1− k)

= (−1)n1
(N − k)!

(n0 − k)!
·

Hence

A(z) = (−1)n1

n0∑
k=0

(N − k)!

(n0 − k)!k!
· zk.

Since
n0!(n0 + n1 − k)!

n1!(n0 − k)!k!
∈ Z,

we deduce (n0!/n1!)A(z) ∈ Z[z].
For k ≥ N + 1 we write in a similar way

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N) =
(k − n0 − 1)!

(k −N − 1)!
·

Hence we have proved:

Proposition 127 (Hermite’s formulae for the exponential function). Let
n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1. Set

A(z) = (−1)n1

n0∑
k=0

(N − k)!

(n0 − k)!k!
· zk and R(z) =

∑
k≥N+1

(k − n0 − 1)!

(k −N − 1)!k!
· zk.

Finally, define B ∈ Z[z] by the condition

(δ − n0 − 1)(δ − n0 − 2) · · · (δ −N)ez = B(z)ez.

Then
B(z)ez = A(z) +R(z).

Further, B is a monic polynomial with integer coefficients of degree n1, A
is a polynomial with rational coefficients of degree n0 and leading coefficient
(−1)n1n1!/n0!, and the analytic function R has a zero of multiplicity N + 1
at the origin.
Furthermore, the polynomial (n0!/n1!)A has integer coefficients.

Remark. For n1 < n0 the leading coefficient (−1)n1n1!/n0! of A is not an
integer, but for n1 ≥ n0 the coefficients of A are integers.
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We check the following elementary estimate for the remainder.

Lemma 128. Let z ∈ C. Then

|R(z)| ≤ |z|
N+1

n0!
e|z|.

Proof. We have

R(z) =
∑

k≥N+1

(k − n0 − 1)!

(k −N − 1)!k!
· zk =

∑
`≥0

(`+ n1)!

(`+N + 1)!
· z

`+N+1

`!
·

The trivial estimate

(`+N + 1)!

(`+ n1)!
= (`+ n0 + n1 + 1)(`+ n0 + n1) · · · (`+ n1 + 1) ≥ n0!

yields the conclusion of Lemma 128.

We are now able to complete the proof of the irrationality of ea for a a
positive integer (hence, for er when r ∈ Q, r 6= 0). We take a large positive
integer n and we select n0 = n1 = n. We write also

Tn(z) = (z − n− 1)(z − n− 2) · · · (z − 2n)

and we denote byAn, Bn andRn the Hermite polynomials and the remainder
in Hermite’s Proposition 127. for n0 = n1 = n.

Replace z by a in the previous formulae; we deduce

Bn(a)ea −An(a) = Rn(a).

All coefficients in Rn are positive, hence Rn(a) > 0. Therefore Bn(a)ea −
An(a) 6= 0. Lemma 128 shows that Rn(a) tends to 0 when n tends to infinity.
Since Bn(a) and An(a) are rational integers, we may use the implication
(ii)⇒(i) in (Proposition 4): we deduce that the number ea is irrational.

8.1.3 Irrationality of π

The irrationality of er for r ∈ Q \ {0} is equivalent to the irrationality of
log s for s ∈ Q>0. We extend this proof to s = −1 (so to speak) and get the
irrationality of π.

Assume π is a rational number, π = a/b. Substitute z = ia = iπb in the
previous formulae. Notice that ez = (−1)b:

Bn(ia)(−1)b −An(ia) = Rn(ia),
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and that the two complex numbers An(ia) and Bn(ia) are in Z[i]. The left
hand side is in Z[i], the right hand side tends to 0 as n tends to infinity,
hence both sides are 0.

In the proof of § 8.1.1, we used the positivity of the coefficients of Rn and
we deduced that Rn(a) was not 0 (this is a simple example of the so-called
“zero estimate” in transcendental number theory). Here we need another
argument.

The last step of the proof of the irrationality of π is achieved by using two
consecutive indices n and n+ 1. We eliminate ez among the two relations

Bn(z)ez −An(z) = Rn(z) and Bn+1(z)ez −An+1(z) = Rn+1(z).

We deduce that the polynomial

∆n = BnAn+1 −Bn+1An (129)

can be written
∆n = −BnRn+1 +Bn+1Rn. (130)

As we have seen, the polynomial Bn is monic of degree n; the polynomial
An also has degree n, its highest degree term is (−1)nzn. It follows from
(129) that ∆n is a polynomial of degree 2n + 1 and highest degree term
(−1)n2z2n+1. On the other hand since Rn has a zero of multiplicity at least
2n+ 1, the relation (130) shows that it is the same for ∆n. Consequently

∆n(z) = (−1)n2z2n+1.

We deduce that ∆n does not vanish outside 0. From (130) we deduce that
Rn and Rn+1 have no common zero apart from 0. This completes the proof
of the irrationality of π.

8.2 Padé approximation to the exponential function

For h ≥ 0, the h-th derivative DhR(z) of the remainder in Proposition 146
is given by

DhR(z) =
∑

k≥N+1

(k − n0 − 1)!

(k −N − 1)!
· zk−h

(k − h)!
·

In particular for h = n0 + 1 the formula becomes

Dn0+1R =
∑

k≥N+1

zk−n0−1

(k −N − 1)!
= zn1ez. (131)

This relations determines R since R has a zero of multiplicity ≥ n0 + 1 at
the origin.
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8.2.1 Siegel’s point of view

Theorem 132. Given two integers n0 ≥ 0, n1 ≥ 0, there exist two polyno-
mials A and B in C[z] with A of degree ≤ n0 and B 6= 0 of degree ≤ n1

such that the function R(z) = B(z)ez − A(z) has a zero at the origin of
multiplicity ≥ N + 1 with N = n0 + n1. This solution (A,B,R) is unique if
we require B to be monic. Further, A has degree n0, B has degree n1 and
R has multiplicity N + 1 at the origin. Furthermore, when B is monic, we
have Dn0+1R = zn1ez.

Proof. We first prove the existence of a non-trivial solution (A,B,R). For
n ≥ 0 denote by C[z]≤n the C–vector space of polynomials of degree ≤ n.
Its dimension is n+ 1. Consider the linear mapping

L : C[z]≤n1 −→ Cn1

B(z) 7−→
(
D`
(
B(z)ez

)
z=0

)
n0<`≤N

This map is not injective, its kernel has dimension ≥ 1. Let B ∈ kerL.
Define

A(z) =

n0∑
`=0

D`
(
B(z)ez

)
z=0

z`

`!

and

R(z) =
∑

`≥N+1

D`
(
B(z)ez

)
z=0

z`

`!
·

Then (A,B,R) is a solution to the problem:

B(z)ez = A(z) +R(z). (133)

There is an alternative proof of the existence as follows [5]. Consider the
linear mapping

C[z]≤n0 ×C[z]≤n1 −→ CN+1(
A(z), B(z)

)
7−→

(
D`
(
B(z)ez

)
z=0

)
0≤`≤N

This map is not injective, its kernel has dimension ≥ 1. If (A,B) is a
non-zero element in the kernel, then B 6= 0.

We now check that the kernel of L has dimension 1. Let B ∈ kerL,
B 6= 0 and let (A,B,R) be the corresponding solution to (133).

Since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),
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hence it is the product of ez with a polynomial of the same degree as the
degree of B and same leading coefficient. Now R has a zero at the origin of
multiplicity ≥ n0 +n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1

at the origin. Therefore
Dn0+1R = czn1ez (134)

where c is the leading coefficient of B; it follows also that B has degree n1.
This proves that kerL has dimension 1.

Since Dn0+1R has a zero of multiplicity exactly n1, it follows that R has
a zero at the origin of multiplicity exactly N + 1, so that R is the unique
function satisfying Dn0+1R = czn1ez with a zero of multiplicity n0 at 0.

It remains to check that A has degree n0. Multiplying (133) by e−z, we
deduce

A(z)e−z = B(z)−R(z)e−z.

We replace z by −z:

A(−z)ez = B(−z)−R(−z)ez. (135)

It follows that
(
B(−z), A(−z),−R(−z)ez

)
is a solution to the Padé problem

(133) for the parameters (n1, n0). Therefore A has degree n0.

Denote by (An0,n1 , Bn0,n1 , Rn0,n1) the solution to the Padé problem
(133) for the parameters (n0, n1): the polynomial A has degree n0 and
leading term n1!/n0!, the polynomial B is monic of degree n1, and R has a
zero of multiplicity N + 1 at the origin with leading term n1!zN+1/(N + 1)!.
As before N = n0 + n1. Then we have

An1,n0(z) = (−1)N
n0!

n1
Bn0,n1(−z),

Bn1,n0(z) = (−1)N
n0!

n1
An0,n1(−z), (136)

Rn1,n0(z) = (−1)N+1n0!

n1
Rn0,n1(−z)ez.

Following [5], we give formulae for A, B and R.
Consider the operator J defined by

J(ϕ) =

∫ z

0
ϕ(t)dt.

It satisfies
DJϕ = ϕ and JDf = f(z)− f(0).
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Hence the restriction of the operator of D to the functions vanishing at the
origin is a one-to-one map with inverse J .

Lemma 137. For n ≥ 0,

Jn+1ϕ =
1

n!

∫ z

0
(z − t)nϕ(t)dt.

Proof. The formula is valid for n = 0. We first check it for n = 1. The
derivative of the function∫ z

0
(z − t)ϕ(t)dt = z

∫ z

0
ϕ(t)dt−

∫ z

0
tϕ(t)dt

is ∫ z

0
ϕ(t)dt+ zϕ(z)− zϕ(z) =

∫ z

0
ϕ(t)dt.

We now proceed by induction. For n ≥ 1, the derivative of the function of z

1

n!

∫ z

0
(z − t)nϕ(t)dt =

n∑
k=0

(−1)n−k

k!(n− k)!
· zk

∫ z

0
tn−kϕ(t)dt

is
n∑
k=0

(−1)n−k

k!(n− k)!

(
kzk−1

∫ z

0
tn−kϕ(t)dt+ znϕ(z)

)
. (138)

Since n ≥ 1, we have
n∑
k=0

(−1)n−k

k!(n− k)!
= 0,

and equation (138) is nothing else than

n∑
k=1

(−1)n−k

(k − 1)!(n− k)!
· zk−1

∫ z

0
tn−kϕ(t)dt =

1

(n− 1)!

∫ z

0
(z − t)n−1ϕ(t)dt.
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From (134) with c = 1 and Lemma 137 we deduce that the remainder
R(z) in Hermite’s fomula with parameters n0 and n1 and B monic is given
by

R(z) =
1

n0!

∫ z

0
(z − t)n0tn1etdt.

Replacing t by tz yields:

Lemma 139. The remainder R(z) in Hermite’s fomula with parameters n0

and n1 (and B monic) is given by

R(z) =
zN+1

n0!

∫ 1

0
(1− t)n0tn1etzdt.

An easy consequence of Lemma 139 is the estimate for the remainder
term given in Lemma 128.

We now recover the explicit formulae for A and B which we derived in
Proposition 127 in the context of Theorem 132.

When S ∈ C[[t]] is a power series, say

S(t) =
∑
i≥0

sit
i,

and f an analytic complex valued function, we define

S(D)f =
∑
i≥0

siD
if,

and we shall use this notation only when the sum is finite: either S is a
polynomial in C[t] or f is a polynomial in C[z].

We reproduce [5], Chap.I § 1: for two power series S1 and S2 and an
analytic function f we have

(S1 + S2)(D)f = S1(D)f + S2(D)f
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and
(S1S2)(D)f = S1(D)

(
S2(D)f

)
.

Also if s0 6= 0 then the series S has an inverse in the ring C[[t]], say

S−1(t) =
∑
i≥0

σit
i, (t0 = 1/s0)

and
S−1(D)

(
S(D)f

)
= S(D)

(
S−1(D)f

)
= f.

For instance with S(t) = 1− t and S−1(t) = 1 + t+ t2 + · · · ,

(1−D)
∑
n≥0

Dnf =
∑
n≥0

Dn(1−D)f = f.

If the power series S and the polynomial f have integer coefficients, then
S(D)f is also a polynomial with integer coefficients. The same holds also
for S−1(D)f if, further, s0 = ±1.

For λ ∈ C and P ∈ C[z], we have

D(eλzP ) = eλz(λ+D)P.

Hence for n ≥ 1,
Dn(eλzP ) = eλz(λ+D)nP

and (λ+D)nP is again a polynomial; further, it has the same degree as P
when λ 6= 0. Conversely, assuming λ 6= 0, given a polynomial Q ∈ C[z], the
unique solution P ∈ C[z] to the differential equation

(λ+D)nP = Q

is
P = (λ+D)−nQ

and this solution P is a polynomial of the same degree as Q. In the case
λ = ±1, when Q has integer coefficients, then so does P .

We come back now to the solution (A,B,R) to the Padé problem (133)
in Theorem 132, where B ∈ C[z] is monic of degree n1 and A ∈ C[z] has
degree n0, while R ∈ C[[z]] has a zero of multiplicity N + 1 at 0.

From
Dn0+1

(
B(z)ez

)
= zn1ez

we deduce
B(z) = (1 +D)−n0−1zn1 .
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From this formula it follows that B has integer coefficients. It is easy to
explicit the polynomial B. From

(1 +D)−n0−1 =
∑
`≥0

(−1)`
(
n0 + `

`

)
D`,

we deduce

B(z) =

n1∑
`=0

(−1)`
(
n0 + `

`

)
n1!

(n1 − `)!
zn1−`,

which can be written also as

B(z) = (−1)n1
n1!

n0!

n1∑
k=0

(−1)k
(N − k)!

(n1 − k)!k!
zk. (140)

One checks that B is monic of degree n1. This formula matches with Propo-
sition 127 and the duality (136) between (n0, n1) and (n1, n0).

We can also check the formula for A starting from

Dn1+1
(
A(z)e−z

)
= −Dn1+1

(
R(z)e−z

)
,

where the left hand side is the product of e−z with a polynomial of degree
≤ n0, while the right hand side has a multiplicity ≥ n0 at the origin. We
deduce

Dn1+1
(
A(z)e−z

)
= azn0e−z

where a is the leading coefficient of A. From

Dn1+1
(
A(z)e−z

)
= e−z(−1 +D)n1+1A(z)

we deduce
(−1 +D)n1+1A(z) = −azn0

and
A(z) = −a(−1 +D)−n1−1zn0 .

Hence the same computation as was done before for B will give the formula
for A.

Thanks to these explicit formulae, we can express A and B in terms of
hypergeometric series:
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Lemma 141. The numerator An0,n1 and the denominator Bn0,n1 of the
Padé approximant of index (n0, n1) for the exponential function are given
by hypergeometric polynomials

An0,n1(z) = (−1)n1
N !

n0!
1F1(−n0;−N ; z)

and

Bn0,n1(z) = (−1)n1
N !

n0!
1F1(−n1;−N ;−z).

Proof. The proofs for both formulae are similar – in fact (136) shows that
they are equivalent. Consider

An0,n1(z) = (−1)n1

n0∑
k=0

(N − k)!

(n0 − k)!k!
· zk

and write

(−n0)k = (−1)k
n0!

(n0 − k)!
and (−N)k = (−1)k

N !

(N − k)!
·

Then

An0,n1(z) = (−1)n1
N !

n0!

n0∑
k=0

(−n0)k
(−N)kk!

· zk = (−1)n1
N !

n0!
1F1(−n0;−N ; z).

One can find the explicit values of these polynomials on the internet by
looking for Padé table for the exponential function. Here is the table for
Bn0,n1 – the table for An0,n1 is easy to deduce from (136).

n1

n0
0 1 2 3

0 1 z − 1 z2 − 2z + 2 z3 − 3z2 + 6z − 6

1 1 z − 2 z2 − 4z + 6 z3 − 6z2 + 18z − 24

2 1 z − 3 z2 − 6z + 12 z3 − 9z2 + 36z − 60

3 1 z − 4 z2 − 8z + 20 z3 − 12z2 + 60z − 120

These polynomials are also useful for giving continued fractions expressions
for the exponential function.
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8.3 Hermite’s transcendence proof

In 1873 C. Hermite [3] proved that the number e is transcendental. In his
paper he explains in a very clear way how he found his proof. He starts
with an analogy between simultaneous diophantine approximation of real
numbers on the one hand and analytic complex functions of one variable
on the other. He first solves the analytic problem by constructing explicitly
what is now called Padé approximants for the exponential function. In fact
there are two types of such approximants, they are now called type I and
type II, and what Hermite did in 1873 was to compute Padé approximants of
type II. He also found those of type I in 1873 and studied them later in 1893.
K. Mahler was the first in the mid’s 1930 to relate the properties of the two
types of Padé’s approximants and to use those of type I in order to get a new
proof of Hermite’s transcendence Theorem (and also of the generalisation
by Lindemann and Weierstraß as well as quantitative refinements). See [2]
Chap. 2 § 3.

In the analogy with number theory, Padé approximants of type II are
related with the simultaneous approximation of real numbers ϑ1, . . . , ϑm by
rational numbers pi/q with the same denominator q (one does not require
that the fractions are irreducible), which means that we wish to estimate

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣
in terms of q, while type I is related with the study of estimates for linear
combinations

|a0 + a1ϑ1 + · · ·+ amϑm|

when a0, . . . , am are rational integers, not all of which are 0, in terms of the
number max0≤i≤m |ai|.

We explained Hermite’s strategy in § 3.1: in order to apply the criterion
for linear independence Proposition 14 and obtain the linear independence
over Q of 1, e, e2, . . . (and therefore the transcendence of e), Hermite first
“approximates” simultaneously the functions ez, e2z, . . . by rational fractions
P1/Q, Pm/Q, and then substitutes z = 1.

8.3.1 Padé approximants

Henri Eugène Padé (1863–1953), who was a student of Charles Hermite
(1822–1901), gave his name to the following objects which he studied thor-
oughly in his thesis in 1892 (for a complete historical survey of the theory,
see [1]).
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Lemma 142. Let f1, . . . , fm be analytic functions of one complex variable
near the origin. Let n0, n1, . . . , nm be non-negative integers. Set

N = n0 + n1 + · · ·+ nm.

Then there exists a tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying
the following properties:
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree ≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x 7→ Q(x)fµ(x)− Pµ(x) has a zero at the
origin of multiplicity ≥ N + 1.

Definition. A tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the
condition of Lemma 142 is called a Padé system of the second type for
(f1, . . . , fm) attached to the parameters n0, n1, . . . , nm.

Proof. The polynomial Q of Lemma 142 should have degree ≤ N − n0,
so we have to find (or rather to prove the existence of) its N − n0 + 1
coefficients, not all being zero. We consider these coefficients as unknowns.
The property we require is that for 1 ≤ µ ≤ m, the Taylor expansion at
the origin of Q(x)fµ(x) has zero coefficients for xN−nµ+1, xN−nµ+1, . . . , xN .
If this property holds for 1 ≤ µ ≤ m, we shall define Pµ by truncating the
Taylor series at the origin of Q(x)fµ(x) at the rank xN−nµ , hence Pµ will
have degree ≤ N − nµ, while the remainder Q(x)fµ(x) − Pµ(x) will have a
mutiplicity ≥ N + 1 at the origin.

Now for each given µ the condition we stated amounts to require that
our unknowns (the coefficients of Q) satisfy nµ homogeneous linear relations,
namely (

d

dx

)k
[Q(x)fµ(x)]x=0 = 0 for N − nµ < k ≤ N.

Therefore altogether we get n1 + · · · + nm = N − n0 homogeneous linear
equations, and since the number N − n0 + 1 of unknowns (the coefficients
of Q) is larger, linear algebra tells us that a non-trivial solution exists.

There is no unicity, because of the homogeneity of the problem: the set
of solutions (together with the trivial solution 0) is a vector space over C,
and Lemma 142 tells us that it has positive dimension. In the case where
this dimension is 1 (which means that there is unicity up to a multiplicative
factor), the system of approximants is called perfect. An example is with
m = 1 and f(x) = ex, as shown by Hermite’s work.

Here is the definition of the Padé approximants of type I:
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Lemma 143. Let f1, . . . , fm be analytic functions of one complex variable
near the origin. Let d0, d1, . . . , dm be non-negative integers. Set

M = d0 + d1 + · · ·+ dm +m.

Then there exists a tuple (A0, . . . , Am) of polynomials in C[X], not all of
which are zero, where Ai has degree ≤ di, such that the function

A0 +A1f1 + · · ·+Amfm

has a zero at the origin of multiplicity ≥M .

Definition. A tuple (A0, A1, . . . , Am) of polynomials in C[X] satisfying
the condition of Lemma 143 is called a Padé system of the first type for
(f1, . . . , fm) attached to the parameters n0, n1, . . . , nm.

Proof. The map from the product of linear spaces C[z]≤n0 × · · ·C[z]≤nm to
CM which sends a tuple (A0, . . . , Am) to(

Dj(A0 +A1f1 + · · ·+Amfm)(0)
)

0≤j<M

is not injective, and any non–zero element in the kernel satisfies the required
property.

In the case m = 1, the notions of Padé approximants of type I and II
coincide – and an explicit solution has been given in the previous courses
when f1(x) = ex.

Most often it is not easy to find explicit solutions: we only know their
existence. As we are going to show, Hermite succeeded to produce explicit
solutions for the systems of Padé approximants of type II for the functions
(ex, e2x, . . . , emx).

8.3.2 Hermite’s identity

FromLemma 139 we deduce the value of the integral∫ 1

0
(1− t)n0tn1etzdt.

One can compute similar more general integrals, where f(t) = (1 − t)n0tn1

is replaced by any polynomial. We start with a simple example.
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Lemma 144. Let f be a polynomial of degree ≤ N . Define

F = f +Df +D2 + · · ·+DNf.

Then for z ∈ C ∫ z

0
e−tf(t)dt = F (0)− e−zF (z).

We can also write the definition of F as

F = (1−D)−1f where (1−D)−1 =
∑
k≥0

Dk.

The series in the right hand side is infinite, but when we apply the operator
to a polynomial only finitely many Dkf are not 0: when f is a polynomial
of degree ≤ N then Dkf = 0 for k > N .

Proof. More generally, if f is a complex function which is analytic at the
origin and N is a positive integer, if we set

F = f +Df +D2 + · · ·+DNf,

then the derivative of e−tF (t) is −e−tf(t) + e−tDN+1f(t).

A change of variables in Lemma 144 leads to a formula for∫ u

0
e−xtf(t)dt

when x and u are complex numbers. Here, in place of using Lemma 144, we
repeat the proof. Integrate by part e−xtf(t) between 0 and u:∫ u

0
e−xtf(t)dt = −

[
1

x
e−xtf(t)

]u
0

+
1

x

∫ u

0
e−xtf ′(t)dt.

By induction we deduce∫ u

0
e−xtf(t)dt = −

m∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

+
1

xm+1

∫ u

0
e−xtDm+1f(t)dt.

Let N be an upper bound for the degree of f . For m = N the last integral
vanishes and∫ u

0
e−xtf(t)dt = −

N∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

=

N∑
k=0

1

xk+1
Dkf(0)− e−xu

N∑
k=0

1

xk+1
Dkf(u).

Multipling by xN+1eux yields:
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Lemma 145. Let f be a polynomial of degree ≤ N and let x, u be complex
numbers. Then

exu
N∑
k=0

xN−kDkf(0) =

N∑
k=0

xN−kDkf(u) + xN+1exu
∫ u

0
e−xtf(t)dt.

With the notation of Lemma 145, the function

x 7→
∫ u

0
e−xtf(t)dt

is analytic at x = 0, hence its product with xN+1 has a mutiplicity ≥ N + 1
at the origin. Moreover

Q(x) =

N∑
k=0

xN−kDkf(0) and P (x) =

N∑
k=0

xN−kDkf(u)

are polynomials in x.
If the polynomial f has a zero of multiplicity ≥ n0 at the origin, then Q

has degree ≤ N − n0. If the polynomial f has a zero of multiplicity ≥ n1 at
u, then P has degree ≤ N − n1.

For instance, in the case u = 1, N = n0 + n1, f(t) = tn0(t − 1)n1 , the
two polynomials

Q(x) =

N∑
k=n0

xN−kDkf(0) and P (x) =

N∑
k=n1

xN−kDkf(1)

satisfy the properties which were required in section §8.1.1 (see Proposition
127), namely R(z) = Q(z)ez − P (z) has a zero of multiplicity > n0 + n1 at
the origin, P has degree ≤ n0 and Q has degree ≤ n1.

Lemma 145 is a powerful tool to go much further.

Proposition 146. Let m be a positive integer, n0, . . . , nm be non-negative
integers. Set N = n0 + · · · + nm. Define the polynomial f ∈ Z[t] of degree
N by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =

N∑
k=n0

xN−kDkf(0), Pµ(x) =

N∑
k=nµ

xN−kDkf(µ)
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and

Rµ(x) = xN+1exµ
∫ µ

0
e−xtf(t)dt.

Then the polynomial Q has exact degree N − n0, while Pµ has exact degree
N − nµ, and Rµ is an analytic function having at the origin a multiplicity
≥ N + 1. Further, for 1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q,P1, . . . , Pm) is a Padé system of the second type for the m-tuple
of functions (ex, e2x, . . . , emx), attached to the parameters n0, n1, . . . , nm.
Furthermore, the polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have
integral coefficients.

These polynomials Q,P1, . . . , Pm are called the Hermite-Padé polynomi-
als attached to the parameters n0, n1, . . . , nm.
Remark. If one wants to compare the formulae of § 8.1 with the special case
m = 1 of Proposition 146, one should be aware that we shifted somewhat the
notations: in § 8.1 we worked with f(t) = tn1(1− t)n0 , while in Proposition
146 with m = 1 the polynomial which occurs is f(t) = tn0(t− 1)n1 .

Proof. The coefficient of xN−n0 in the polynomial Q is Dn0f(0), so it is not
zero since f has mutiplicity exactly n0 at the origin. Similarly for 1 ≤ µ ≤ m
the coefficient of xN−nµ in Pµ is Dn0f(µ) 6= 0.

The assertion on the integrality of the coefficients follows from the next
lemma.

Lemma 147. Let f be a polynomial with integer coefficients and let k be
a non-negative integer. Then the polynomial (1/k!)Dkf has integer coeffi-
cients.

Proof. If f(X) =
∑

n≥0 anX
n then

1

k!
Dkf =

∑
n≥0

an

(
n

k

)
Xn with

(
n

k

)
=

n!

k!(n− k)!
,

and the binomial coefficients are rational integers.

From Lemma 147 it follows that for any polynomial f ∈ Z[X] and for
any integers k and n with n ≥ k, the polynomial (1/k!)Dnf also belongs to
Z[X]. This completes the proof of Proposition 146.
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We complete the proof of the transcendence of e, following Hermite.
We shall substitute 1 to x in the relations

Q(x)eµx = Pµ(x) +Rµ(x)

and deduce simultaneous rational approximations (p1/q, p2/q, . . . , pm/q) to
the numbers e, e2, . . . , em. In order to use Proposition 14, we need to have
independent such approximations. This is a subtle point which Hermite did
not find easy to overcome, according to his owns comments: we quote from
p. 77 of [3]

Mais une autre voie conduira à une démonstration plus rigoureuse

The following approach is due to K. Mahler, we can view it as an exten-
sion of the simple non-vanishing argument used in § 8.1.3 for the irrationality
of π.

We fix integers n0, . . . , n1, all ≥ 1. We set N = n0 + · · · + nm. For
j = 0, 1, . . . ,m we denote by Qj , Pj1, . . . , Pjm the Hermite-Padé polynomials
attached to the parameters

n0 − δj0, n1 − δj1, . . . , nm − δjm,

where δji is Kronecker’s symbol

δji =

{
1 if j = i,

0 if j 6= i.

These parameters are said to be contiguous to n0, n1, . . . , nm. They are the
rows of the matrix

n0 − 1 n1 n2 · · · nm
n0 n1 − 1 n2 · · · nm
...

...
. . .

...
n0 n1 n2 · · · nm − 1

 .

We are going to use the previous results, but one should notice that the sum
of the parameters on each row is now N ′ = N − 1, not N as before.
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Proposition 148. There exists a non-zero constant c such that the deter-
minant

∆ =

∣∣∣∣∣∣∣
Q0 P10 · · · Pm0
...

...
. . .

...
Qm P1m · · · Pmm

∣∣∣∣∣∣∣
is the monomial cxmN .

Proof. The matrix of degrees of the entries in the determinant defining ∆ is
N − n0 N − n1 − 1 · · · N − nm − 1

N − n0 − 1 N − n1 · · · N − nm − 1
...

...
. . .

...
N − n0 − 1 N − n1 − 1 · · · N − nm

 .

Therefore ∆ is a polynomial of exact degree N − n0 +N − n1 + · · ·+N −
nm = mN , the leading coefficient arising from the diagonal. This leading
coefficient is c = c0c1 · · · cm, where c0 is the leading coefficient of Q0 and cµ
is the leading coefficient of Pµµ, 1 ≤ µ ≤ m.

It remains to check that ∆ has a multiplicity at least mN at the origin.
Linear combinations of the columns yield

∆(x) =

∣∣∣∣∣∣∣
Q0(x) P10(x)− exQ0(x) · · · Pm0(x)− emxQ0(x)

...
...

. . .
...

Qm(x) P1m(x)− exQm(x) · · · Pmm(x)− emxQm(x)

∣∣∣∣∣∣∣ .
Each Pµj(x)− eµxQj(x), 1 ≤ µ ≤ m, 0 ≤ j ≤ m, has multiplicity at least N
at the origin, because for each contiguous triple (1 ≤ j ≤ m) we have

m∑
i=0

(ni − δji) = n0 + n1 + · · ·+ nm − 1 = N − 1.

Looking at the multiplicity at the origin, we can write

∆(x) =

∣∣∣∣∣∣∣
Q0(x) O(xN ) · · · O(xN )

...
...

. . .
...

Qm(x) O(xN ) · · · O(xN )

∣∣∣∣∣∣∣ .
This completes the proof of Proposition 148.
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Now we fix a sufficiently large integer n and we use the previous results
for n0 = n1 = · · · = nm = n with N = (m+ 1)n. We define, for 0 ≤ j ≤ m,
the integers qj , p1j , . . . , pnj by

(n− 1)!qj = Qj(1), (n− 1)!pµj = Pµj(1), (1 ≤ µ ≤ m).

Proposition 149. There exists a constant κ > 0 independent on n such
that

max
1≤µ≤m

max
0≤j≤m

|qieµ − pµj | ≤
κn

n!
·

Further, the determinant ∣∣∣∣∣∣∣
q0 p10 · · · pm0
...

...
. . .

...
qm p1m · · · pmm

∣∣∣∣∣∣∣
is not zero.

Proof. Recall Hermite’s formulae in Proposition 146:

Qj(x)eµx − Pµj(X) = xmneµx
∫ µ

0
e−xtfj(t)dt, (1 ≤ µ ≤ m, 0 ≤ j ≤ m),

where

fj(t) = (t− j)−1
(
t(t− 1) · · · (t−m)

)n
= (t− j)n−1

∏
1≤i≤m
i 6=j

(t− i)n.

We substitute 1 to x and we divide by (n− 1)!:

qje
µ − pµj =

1

(n− 1)!

(
Qj(1)eµ − Pµj(1)

)
=

eµ

(n− 1)!

∫ µ

0
e−tfj(t)dt.

Now the integral is bounded from above by∫ µ

0
e−t|fj(t)|dt ≤ m sup

0≤t≤m
|fj(t)| ≤ m1+(m+1)n.

Finally the determinant in the statement of Proposition 149 is

∆(1)

(n− 1)!m+1
,

where ∆ is the determinant of Proposition 148. Hence it does not vanish
since ∆(1) 6= 0.
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Since κn/n! tends to 0 as n tends to infinity, we may apply the criterion
for linear independence Proposition 14. Therefore the numbers 1, e, e2, . . . , em

are linearly independent, and since this is true for all integers m, Hermite’s
Theorem on the transcendence of e follows.

Exercise 8. Using Hermite’s method as explained in § 8.3, prove that for
any non-zero r ∈ Q(i), the number er is transcendental.

Exercise 9. Let m be a positive integer and ε > 0 a real number. Show
that there exists q0 > 0 such that, for any tuple (q, p1, . . . , pm) of rational
integers with q > q0,

max
1≤µ≤m

∣∣∣∣eµ − pµ
q

∣∣∣∣ ≥ 1

q1+(1/m)+ε
·

Check that it is not possible to replace the exponent 1 + (1/m) by a smaller
number.
Hint. Consider Hermite’s proof of the transcendence of e (§ 8.3.2), espe-
cially Proposition 149. First check (for instance, using Cauchy’s formulae)

max
0≤j≤m

1

k!
|Dkfj(µ)| ≤ cn1 ,

where c1 is a positive real number which does not depend on n. Next, check
that the numbers pj and qµj satisfy

max{qj , |pµj |} ≤ (n!)mcm2

for 1 ≤ µ ≤ m and 0 ≤ j ≤ n, where again c2 > 0 does not depend on n.
Then repeat the proof of Hermite in § 8.3 with n satisfying

(n!)mc−2mn
3 ≤ q <

(
(n+ 1)!

)m
c
−2m(n+1)
3 ,

where c3 > 0 is a suitable constant independent on n. One does not need to
compute c1, c2 and c3 in terms of m, one only needs to show their existence
so that the proof yields the desired estimate.
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9 Interpolation

9.1 Weierstraß question

Weierstraß (see [3]) initiated the question of investigating the set of alge-
braic numbers where a given transcendental entire function f takes algebraic
values.

Denote by Q the field of algebraic numbers (algebraic closure of Q in
C). For an entire function f , we define the exceptional set Sf of f as the
set of algebraic numbers α such that f(α) is algebraic:

Sf :=
{
α ∈ Q ; f(α) ∈ Q

}
.

For instance, the Hermite–Lindemann’s Theorem on the transcendence of
logα and eβ for α and β algebraic numbers is the fact that the exceptional
set of the function ez is {0}. Also, the exceptional set of ez + e1+z is empty,
by the Theorem of Lindemann–Weierstrass. The exceptional set of functions
like 2z or eiπz is Q, as shown by the Theorem of Gel’fond and Schneider.

The exceptional set of a polynomial is Q if the polynomial has algebraic
coefficients, otherwise it is finite. Also, any finite set of algebraic numbers is
the exceptional set of some entire function: for s ≥ 1 the set {α1, . . . , αs} is
the exceptional set of the polynomial π(z − α1) · · · (z − αs) ∈ C[z] and also
of the transcendental entire function (z − α2) · · · (z − αs)ez−α1 . Assuming
Schanuel’s conjecture, further explicit examples of exceptional sets for entire
functions can be produced, for instance Z≥0 or Z.

The study of exceptional sets started in 1886 with a letter of Weierstrass
to Strauss. This study was later developed by Strauss, Stäckel, Faber –
see [3]. Further results are due to van der Poorten, Gramain, Surroca and
others (see [1, 5]).

Among the results which were obtained, a typical one is the following:
if A is a countable subset of C and if E is a dense subset of C, there exist
transcendental entire functions f mapping A into E.

Also, van der Poorten noticed in [4] that there are transcendental entire
functions f such that Dkf(α) ∈ Q(α) for all k ≥ 0 and all algebraic α.

The question of possible sets Sf has been solved in [2]: any set of al-
gebraic numbers is the exceptional set of some transcendental entire func-
tion. Also multiplicities can be included, as follows: define the exceptional
set with multiplicity of a transcendental entire function f as the subset of
(α, t) ∈ Q × Z≥0 such that f (t)(α) ∈ Q. Here, f (t) stands for the t-th
derivative of f , which we denote also by Dtf .
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Then any subset of Q× Z≥0 is the exceptional set with multiplicities of
some transcendental entire function f . More generally, the main result of
[2] is the following:

Let A be a countable subset of C. For each pair (α, s) with α ∈ A,
and s ∈ Z≥0, let Eα,s be a dense subset of C. Then there exists
a transcendental entire function f such that(

d

dz

)s
f(α) ∈ Eα,s (150)

for all (α, s) ∈ A× Z≥0.

One may replace C by R: it means that one may take for the sets Eα,s
dense subsets of R, provided that one requires A to be a countable subset
of R.

The proof is a construction of an interpolation series on a sequence where
each w occurs infinitely often. The coefficients of the interpolation series are
selected recursively to be sufficiently small (and nonzero), so that the sum
f of the series is a transcendental entire function.

This process yields uncountably many such functions. Further, one may
also require that they are algebraically independent over C(z) together with
their derivatives. Furthermore, at the same time, one may request further
restrictions on each of these functions f . For instance, given any transcen-
dental function g with g(0) 6= 0, one may require |f |R ≤ |g|R for all R ≥ 0.

As a very special case of 150 (selecting A to be the set Q of algebraic
numbers and each Eα,s to be either Q or its complement in C), one deduces
the existence of uncountably many algebraic independent transcendental
entire functions f such that any Taylor coefficient at any algebraic point α
takes a prescribed value, either algebraic or transcendental.

Exercise 10. . Check that a consequence of the main result (150) of [2] is
the following.
Let A be a countable subset of C. For any non negative integer s and any
α ∈ A, let Eαs be a dense subset in C. Let g be a transcendental entire func-
tion with g(0) 6= 0. Then there exists a set {fi i ∈ I} of entire functions,
with I a set having the power of continuum, with the following properties.

• For any i ∈ I, any α ∈ A and any integer s ≥ 0, f
(s)
i (α) ∈ Eαs.

• For any i ∈ I and any real number r ≥ 0, |fi|r ≤ |g|r.
• The functions f

(s)
i , (i ∈ I, s ≥ 0) are algebraically independent over C(z).
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Hint. Use (150) with A replaced by A ∪ {z1, z2}, where z1, z2 are two al-
gebraically independent complex numbers which do not belong to A. For
s ≥ 0, set Ez1,s = Q. If there is a non–trivial relation of algebraic depen-

dence among some of the functions f
(s)
i , then there is such a relation with

coefficients in Q(z1). Next select a set of numbers xi,s, i ∈ I, s ≥ 0, having
the power of continuum, which are algebraically independent over Q(z1, z2)
– it is easy to give explicit examples with Liouville numbers. To produce fi,
set Ez2,s = Qxi,s \ {0}.
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9.2 Integer valued entire functions

We have seen in § 9.1 that there is no hope to prove a general transcendence
theorem on the values of entire functions. One needs to be less ambitious,
and the most natural thing to do is to put restrictions on the functions.
For instance the functions produced in § 9.1 with large exceptional sets
do not satisfy differential equations (more precisely, as we have seen, it is
possible to produce such functions which do not satisfy differential equations
– it is another challenge to prove that none of them satisfies a differential
equation!). We shall see, with the Schneider–Lang Theorem, that general
transcendence results can be proved for functions satisfying some differential
equations.

However, one of the earliest progresses in the theory came from adding
restrictions not on the functions, but on the numbers. We were considering
in § 9.1 algebraic values of transcendental functions at algebraic points. A
much more restricted question is to investigate integer values at integral
points. This is the story that we are telling now. We even start with a more
specific topic by looking at zero values. Next we consider Pólya’s pioneer
work on integer valued entire functions, we pursue with Gel’fond’s extension
to Gaussian integers, and then with his proof of the transcendence of eπ.

When f is a complex function which is bounded on a disc |z| ≤ r, we set

|f |r = sup
|z|=r
|f(z)|.

9.2.1 Weierstraß canonical products

Recall that if f is an analytic function on a simply connected open subset
D of C without zero in D, then there exists a analytic function g in D such
that f = eg. If f has only finitely many zeros, then f(z) = A(z)eg(z), where
A is a polynomial (having the same zeros as f) and g is analytic in D. We
are interested in having a similar decomposition when f has infinitely many
zeroes - recall that if f is not the zero function, then the zeroes are isolated.
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We assume D = C (hence f is an entire function). Its zeros form a
discrete set, one can order them by non–decreasing modulus: let (α0, α1, . . .)
be this sequence of zeros of f , counting multiplicities. It will be convenient
to assume f(0) 6= 0, hence |α0| > 0.

We further assume that f has finite order of growth %, namely (cf [10]
Chap. X § 3):

% = lim sup
r→∞

log log |f |r
log r

.

Recall the Taylor expansion at the origin of log(1− z):

log(1− z) = −z − z2

2
− z3

3
− · · · z

m

m
− · · ·

For m ≥ 0, one defines the Weierstraß factor ([10] Chap. X § 2) as:

E(z,m) = (1− z)ez+z2/2+z3/3+···+zm/m;

in particular E(z, 0) = 1 − z. This function is very close to 1 (especially
when m is large) for |z| not too large: according to [10] Chap. X § 2 Lemma
2.2, for |z| ≤ 1/2 one has | logE(z,m)| ≤ 2|z|m+1.

A classical result (see [10] Chap. X § 3 Th. 3.5) is that there exist an
integer m ≤ % and a polynomial P of degree ≤ % such that

f(z) = eP (z)
∏
n≥0

E(z/αn,m).

The integer m is the integral part of % if % is not an integer, it is % or %− 1
if % is an integer.

Conversely, given a discrete sequence of non–zero complex numbers (αn)n≥0,
ordered with non–decreasing modulus, there exists a sequence of non–negative
numbers (mn)n≥0 such that the product∏

n≥0

E(z/αn,mn)

is normally convergent over any compact subset of C (see [16] Chap. VII
§ 7.6 and [10] Chap. X § 2 Th. 2.3). When this property is true for a constant
sequence mn = m, (n ≥ 0), and when m is the smallest integer such that
the product ∏

n≥0

E(z/αn,m)
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is convergent, then this product is called the canonical product of Weierstraß
associated with the sequence (αn)n≥0.
Examples.
• (See [16] Chap. XII and [10] Chap. XII § 2).
The canonical product of Weierstraß associated with the non–negative inte-
gers Z≥0 is

z
∏
n≥1

(
1− z

n

)
ez/n = − eγz

Γ(−z)
·

• (see [16] Chap. XII § 12.4 and [10] Chap. X § 2).
The canonical product of Weierstraß associated with the rational integers
Z, is

z
∏

n∈Z\{0}

(
1− z

n

)
ez/n = π−1 sin(πz) =

−z
Γ(z)Γ(1− z)

·

• (see [16] Chap. XX and [10] Chap. XI § 4). and [1, 9, 14]. Let Ω =
Zω1 + Zω2 be a lattice in C. The Weierstraß canonical product attached
to Ω is the Weierstraß sigma function σΩ defined by

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
e
z
ω

+ z2

2ω2 ·

Exercise 11. Show that the function

g(z) =
∑
n≥0

(−1)n
π2n

22n(2n)!
zn

has the infinite product expansion

g(z) =
∏
n∈Z

(
1− z

(2n+ 1)2

)
·

Hint: Check g(t2) = cos(πt/2).

An entire function f is said to be of finite exponential type if the number

α = lim sup
r→∞

log |f |r
r

is finite. In this case f is said to be of exponential type α. Notice that a
function of finite exponential type has order ≤ 1; if the order is < 1, then
the type α is zero.
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Lemma 151. A function of exponential type < 1 which vanishes for all
n = 0, 1, . . . is the zero function.

The proof relies on the following auxiliary result:

Lemma 152 (Jensen’s Formula). If g is an analytic function in an open
set containing the closed disk disc |z| ≤ r with zeros (aj)1≤j≤k in this disc
and if g(0) 6= 0, then

log |g(0)|+
k∑
j=1

log
r

|aj |
=

1

2π

∫ 2π

0
log |g(reiθ)|dθ.

Sketch of proof of Jensen’s Formula 152. Assume first that g has no zero in
the closed disk disc |z| ≤ r. Then there is an open disk containing this
closed disk, where g has no zero, and therefore there is an analytic function
h in a neighborhood of the disc |z| ≤ r such that g = eh. Since |g| = e<eh,
the formula follows by taking the real part of

h(0) =
1

2iπ

∫
|z|=r

h(z)
dz

z
=

1

2π

∫ 2π

0
h(reiθ)dθ.

In the general case, one can write g(z) = (z−a1) · · · (z−ak)eh(z), where h is
analytic. By multiplicativity of both sides of the conclusion of Lemma 152,
the formula reduces to the following one: for any complex number α,∫ 1

0
log |e2iπt − α|dt = log max{1, |α|}.

(See for instance [11], pp. 5–6, or [10] Chap. IX Th. 1.3).

Proof of Lemma 151. Assume f is not the zero function and vanishes at all
the non–negative integers n = 0, 1, . . . Since the zeroes of f are isolated,
there exists z0 ∈ (0, 1) such that f(z0) 6= 0. Use Jensen’s formula 152 for
the function g(z) = f(z0 + z) with r = N − z0, where N is a large integer.
The set of zeroes of g in the disc |z| ≤ r contains the elements n − z0,
1 ≤ n ≤ N − z0. For 1 ≤ n ≤ N − z0 we have (N − z0)/(n− z0) ≥ N/n. For
the other zeros we use the trivial estimate log(r/|aj |) ≥ 0. Also |g|r ≤ |f |N .
We deduce an upper bound of the right hand side of Jensen’s Formula by
using the assumption: there exists c > 0 and λ < 1 such that |f |N ≤ ceλN :

1

2π

∫ 2π

0
log |g(reiθ)|dθ ≤ log |g|r ≤ log |f |N ≤ λN + log c.
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Hence

log |f(z0)| ≤ λN −
N∑
n=1

log(N/n) + log c = λN −N logN + logN ! + log c.

Since λ < 1, it follows from Stirling’s formula:

N ! ' NNe−N
√

2πN (153)

that λN − N logN + logN ! tends to −∞ as N tends to infinity, which
contradicts f(z0) 6= 0.

Remark on Jensen’s Formula. In many situations, one can replace
Jensen’s formula (Lemma 152) by Schwarz’s Lemma (see § 10.4), which
gives an upper bound for |f |r when f has N zeroes (counting multiplicities)
in |z| ≤ r: for R > r one has

|f |r ≤
(
R2 + r2

2rR

)−N
|f |R. (154)

However, here, it would give a weaker result: in order to reach the conclusion
of Lemma 151, using (154), one needs to assume that f has exponential type
≤ γ where γ satisfies

γ < sup
λ>1

1

λ
log

(
λ2 + 1

2λ

)
<

1

5
.

Remark on Stirling’s Formula (153). We needed only a weak form of
Stirling’s formula. Asymptotic expansions (see the definition in Chap. VIII
of [16]) for the logarithm of the Gamma function are known:

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log(2π)−

∫ +∞

0

P1(t)

z + t
dt

for
−π + δ < arg z < π + δ with 0 < δ < π,

where P1(t) = t − btc − 1/2. Denote by (Bn)n≥0 the sequence of Bernoulli
numbers, which are defined by ([16] § 7.1)

x

ex − 1
=
∑
n≥0

Bn
xn

n!
·
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The first non–zero values are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
·

For z with argument ≤ (π/2)−δ with δ > 0, we have (see Chap. XII § 12.33
of [16]):

log Γ(z) =

(
z − 1

2

)
log z−z+

1

2
log(2π)+

B2

1 · 2 · z
+

B4

3 · 4 · z2
+

B6

5 · 6 · z3
+ · · ·

9.2.2 Pólya and 2z

Satz I in [12] is the following result.

Theorem 155 (Pólya). If an entire function f satisfies f(n) ∈ Z for all
n = 0, 1, . . . , and

lim
r→∞

r1/2|f |r
2r

= 0,

then f is a polynomial.

A consequence of Pólya’s Theorem 155 is that an entire function of ex-
ponential type < log 2 is a polynomial. In loose terms, it means that the
function 2z is the transcendental function mapping Z≥0 to Z which grows
the least rapidly.

In his 1929 paper [12], Pólya also considered entire functions mapping Z
to Z: he proved that the smallest such transcendental function is

1√
5

((
3 +
√

5

2

)z
−

(
3−
√

5

2

)z)
.

After Pólya’s work, a number of papers have been written on the sub-
ject. In particular Ch. Pisot used the Laplace–Borel transform to prove
that an entire function mapping Z≥0 to Z of exponential type ≤ log 2 =
0.69314718 . . . is of the form A(z) +B(z)2z, where A and B are polynomi-
als. See [6, 7].

Pólya’s proof involves the calculus of finite differences [4] which we now
introduce.
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9.2.3 Calculus of finite differences

Given a function f and points x0, x1, . . . , xm where f is analytic, one defines
inductively analytic functions f1, f2, . . . as follows:

f1(z) =
f(z)− f(z0)

z − z0
, f2(z) =

f1(z)− f1(z1)

z − z1
, f3(z) =

f2(z)− f2(z2)

z − z2
, . . .

so that

f(z) = f(z0) + (z − z0)f1(z),

f1(z) = f1(z1) + (z − z1)f2(z),

f2(z) = f2(z2) + (z − z2)f3(z), . . .

This gives the expansion

f(z) = c0 + c1(z − z0) + c2(z − z0)(z − z1) + c3(z − z0)(z − z1)(z − z2) + · · ·
+ cm(z − z0)(z − z1) · · · (z − zm−1) + (z − z0)(z − z1) · · · (z − zm)fm+1(z)

with c0 = f(z0), c1 = f1(z1), . . . , cm = fm(zm).
Here is a first set of formulae for the coefficients c0, c1, . . . cm. For sim-

plicity we assume that the points x0, x1, . . . , xm are pairwise distinct. Define
first

[x0] = f(x0), [x1] = f(x1), . . . , [xm] = f(xm),

and next set

[x0, x1] =
[x0]− [x1]

x0 − x1
, [x1, x2] =

[x1]− [x2]

x1 − x2
, . . . , [xm−1, xm] =

[xm−1]− [xm]

xm−1 − xm
,

[x0, x1, x2] =
[x0, x1]− [x1, x2]

x0 − x2
, [x1, x2, x3] =

[x1, x2]− [x2, x3]

x1 − x3
, . . . ,

and so on, up to

[x0, x1, . . . , xm] =
[x0, x1, . . . , xm−1]− [x1, x2, . . . , xm]

x0 − xm
·

Then
c0 = [x0], c1 = [x0, x1], . . . , cm = [x0, . . . , xm].

We now explain another way of getting such an expansion, by means of
an identity due to Ch. Hermite (see [13]):

1

x− z
=

1

x− x0
+
z − x0

x− x0
· 1

x− z
·

164



We replace the last factor 1/(x− z) by repeating the same formula with x0

replaced by x1:

1

x− z
=

1

x− x0
+
z − x0

x− x0
·
(

1

x− x1
+
z − x1

x− x1
· 1

x− z

)
·

Inductively we deduce

1

x− z
=

m∑
j=0

(z − x0)(z − x1) · · · (z − xj−1)

(x− x0)(x− x1) · · · (x− xj)

+
(z − x0)(z − x1) · · · (z − xm)

(x− x0)(x− x1) · · · (x− xm)
· 1

x− z
·

Now we multiply by (1/2iπ)f(x) and integrate along a simple contour C
which contains all the xi as well as z: this produces Newton interpolation
expansion

f(z) =
m∑
j=0

cj(z − x0) · · · (z − xj−1) +Rm(z)

with

cj =
1

2iπ

∫
C

f(x)dx

(x− x0)(x− x1) · · · (x− xj)
(0 ≤ j ≤ m− 1)

and

Rm(z) = (z−x0)(z−x1) · · · (z−xm)· 1

2iπ

∫
C

f(x)dx

(x− x0)(x− x1) · · · (x− xm)(x− z)
·

Similar formulae exist when the points xi are not distinct: when one repeats
m times the same xi, one considers the values f (s)(xi) of the successive
derivatives of f at xi, for s = 0, . . . ,m − 1. See § 9.2.8 and [10] Chap. IX
§ 2.

9.2.4 Proof of Pólya’s Theorem

Proof. The Newton’s interpolation series introduced in § 9.2.3 associated
with the function f and the points xj = j for j ≥ 0 is the formal series

F (z) =
∑
n≥0

cnz(z − 1) · · · (z − n+ 1),
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where, for n ≥ 0,

cn =

n∑
k=0

f(k)∏
0≤j≤n
j 6=k

(k − j)
·

Since∏
0≤j≤n
j 6=k

(k − j) = k(k − 1) · · · 2 · 1 · (−1)(−2) · · · (k − n) = (−1)n−kk!(n− k)!,

we deduce

cn =
1

n!

n∑
k=0

(−1)n−k
(
n

k

)
f(k).

Hence cn is a rational number and more precisely n!cn is a rational integer.
We are going to prove that cn vanishes for sufficiently large n. In order to do
so, we produce an upper bound for |cn| by using the hypothesis of Theorem
155, namely

|f |r = ε(r)r−1/22r

where ε(r)→ 0 as r →∞. From the integral formula

cn =
1

2iπ

∫
|z|=rn

f(z)dz

z(z − 1) · · · (z − n)

which is valid for any rn > n, we deduce

|cn| ≤ ε(rn)r−1/2
n 2rn

1

(rn − 1)(rn − 2) · · · (rn − n)
·

The best choice [12] is rn = 2n. Using Stirling’s formula (153) we obtain

n!|cn| ≤
ε(2n)√

2n
22nn!(n− 1)!

(2n− 1)!

=
ε(2n)√

2n
22n+1 n!2

(2n)!

∼ ε(2n)√
2n

22n+1 (nne−n
√

2πn)2

(2n)2ne−2n
√

4πn
= ε(2n)

√
2π.

Hence |cn| < 1/n! for sufficiently large n, and therefore cn = 0 for sufficiently
large n, which means that the interpolation series F is a polynomial. Since
f − F vanishes for all n = 0, 1, . . . (by the construction of the interpolation
series) and has exponential type < log 2 < 1, it follows from Lemma 151
that f = F , hence f is a polynomial.
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Remark. In [12], Pólya explains his choice of rn = 2n by letting rn = n/ξ
with 0 < ξ < 1, and by performing all the details of the computation with
ξ. He shows that the optimal value for ξ is obtained when the function
ξξ(1 − ξ)1−ξ assumes its minimal value, which is at ξ = 1/2, and then he
completes the proof with this choice.

9.2.5 Integer valued entire functions on Gaussian integers

In 1926, S. Fukasawa extended Pólya’s result to the Gaussian integers: he
proved that if f is an entire function mapping Z[i] to Z[i] and if, for any
ε > 0, there exists θε > 0 such that

|f |r ≤ eθεr
σ−ε

with σ =
1440

919 + 27
√

5
= 1.470 . . . ,

then f is a polynomial. In 1929, A.O. Gel’fond [3] refined the result and
obtained the right exponent 2 in place of σ − ε: he proved that an entire
function f mapping Z[i] to Z[i] and satisfying

|f |r ≤ eγr
2

with γ <
π

2(1 + e164/π)2
' 0.7 · 10−45

is a polynomial.
The proofs by Fukasawa and Gel’fond rely on Newton’s interpolation

series at the points in Z[i].
That the exponent 2 cannot be improved is shown by the Weierstraß

sigma function associated to Z[i]. Gel’fond wrote that his estimate for the
constant γ is not the right limit for the problem. In 1980, D.W. Masser
showed that the result cannot hold with γ replaced by a constant larger
than π/(2e). In 1981, F. Gramain [5] proved that the result holds with
π/(2e), which is therefore best possible:

If f is an entire function which is not a polynomial and maps
Z[i] to Z[i], then

lim sup
r→∞

1

r2
log |f |r ≥

π

2e
·

9.2.6 The constant of Gramain–Weber

The work by Masser and Gramain on entire functions mapping Z[i] to Z[i]
gave rise to the following problem, which is still unsolved. For each integer
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k ≥ 2, let rk be the minimal radius of a closed disk in R2 containing at least
k points of Z2, and for n ≥ 2 define

δn = − log n+

n∑
k=2

1

πr2
k

·

The limit δ = limn→∞ δn exists (it is an analogue in dimension 2 of the Euler
constant), and the best known estimates for it are [8]

1.811 · · · < δ < 1.897 . . .

(see also [2]). F. Gramain conjectures that

δ = 1 +
4

π

(
γL(1) + L′(1)

)
,

where γ is Euler’s constant and

L(s) =
∑
n≥0

(−1)n(2n+ 1)−s

is the L function of the quadratic field Q(i) (Dirichlet beta function). Since
L(1) = π/4 and

L′(1) =
∑
n≥0

(−1)n+1 · log(2n+ 1)

2n+ 1
=
π

4

(
3 log π + 2 log 2 + γ − 4 log Γ(1/4)

)
,

Gramain’s conjecture is equivalent to

δ = 1 + 3 log π + 2 log 2 + 2γ − 4 log Γ(1/4) = 1.822825 . . .

Other problems related to the lattice Z[i] are described in the section “On
the borders of geometry and arithmetic” of [15].
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The work by Fukasawa on integer valued entire functions at the points
of Z[i] requires estimates on the number of points of Z[i] into a disc. More
generally, Fukasawa showed that if A is a domain bounded by finitely many
curves of finite length, if we set

A =

∫ ∫
(D)

dxdy, B =

∫ ∫
(D)

log
√
x2 + y2dxdy,

then the number of points in Dt ∩ Z[i] satisfies

At2 log t+Bt2 +O(t log t) as t→∞.

For the unit disc D = {z ∈ C ; |z| ≤ 1}, one has A = π and B = −π/2.
One deduces

log
∏

0 6=ω∈Z[i]
|ω|≤t

|ω| =
∑

0 6=ω∈Z[i]
|ω|≤t

log |ω| = πr2 log r − π

2
r2 + o(r2).

This yields

Lemma 156. An entire function f satisfying f(Z[i]) = {0} and, for all
sufficiently large r,

|f |r ≤ eκr
2

with κ < π/2, is a polynomial.

Proof. Like in the proof of Lemma 151, this follows from Jensen’s formula,
but here one replaces Stirling’s formula by the estimates∑

|ω|≤r

1 = πr2 + o(r2)

and∑
0 6=ω∈Z[i]
|ω|≤t

log(|ω|/r) = πr2 log r − π

2
r2 − πr2 log r + o(r2) = −π

2
r2 + o(r2).
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9.2.7 Transcendence of eπ

In [2], just after his paper [1] on integer valued entire functions on Z[i],
A.O. Gel’fond extended his proof and obtained the following outstanding
result:

Theorem 157 (Ge’lfond). The number

eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is transcendental.

This was the first step towards a solution of the seventh of the 23 prob-
lems raised by D. Hilbert at the International Congress of Mathematicians
in Paris in 1900: for algebraic α and β with α 6= 0, α 6= 1 and β irrational,
the number αβ is transcendental.

The number αβ is defined as αβ = exp(β logα), where logα is any
logarithm of α. The condition α 6= 1 may be replaced by logα 6= 0, both
statements are equivalent.

Taking α = −1, logα = iπ, β = −i gives αβ = eπ.

Proof of Theorem 157. . Gel’fond starts by ordering Z[i] by non–decreasing
modulus, and for those of the same modulus by increasing arguments in
[0, 2π):

Z[i] =
{
x0, x1, x2, . . . , xn, . . .

}
with x0 = 0. Hence{

x0, x1, x2, . . .
}

= {0, 1, i, −1, −i, 1 + i, −1 + i, −1− i, 2, 2i, . . . }.

If the disc |z| ≤ rn contains the points xi for 0 ≤ i ≤ n, then the number
n+ 1 of these points is

n+ 1 = πr2
n + αrn + o(rn)

with α < 2
√

2π, hence |xn| =
√
n/π + o(

√
n).

For n ≥ 1, define Pn(z) = z(z− x1) · · · (z− xn−1). Gel’fond expands the
function eπz into a series of Pn:

eπz =

n∑
k=0

AkPk(z) +Rn(z),

where, following 9.2.3,

Ak =
1

2iπ

∫
|ζ|=n

eπζdζ

Pk+1(ζ)
and Rn(z) =

Pn+1(z)

2iπ

∫
|ζ|=n

eπζ

Pk+1(ζ)
· dζ

ζ − z
·
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Since the zeroes of Pk+1 are simple, the residue formula gives, for n ≥ 0,

An =

n∑
k=0

eπxk

ωn,k
, with ωn,k =

∏
0≤j≤n
j 6=k

(xk − xj).

The number eπxk is ±eπ<e(xk) and <e(xk) is a rational integer of absolute
value ≤

√
n/π + o(

√
n). Hence An is a polynomial in eπ and e−π of degree

≤
√
n/π+o(

√
n) and coefficients in Q(i). The integral over the circle |ζ| = n

yields the upper bound

|An| ≤
eπn∏

0≤j≤n
(n− |xj |)

≤ e−n logn+πn+O(
√
n).

In his previous work [1], Gel’fond proved that the least common multiple
Ωn of the numbers ωn,k for 0 ≤ k ≤ n (which is also the least common
denominator of the numbers 1/ωn,k for 0 ≤ k ≤ n) satisfies

Ωn ≤ e
1
2
n logn+163n+o(n).

The product ΩnAn is in Z[i][eπ, e−π]:

ΩnAn =

n∑
k=0

Bkne
πxk with Bkn = Ωn/ωn,k ∈ Z[i]

and
max

0≤k≤n
|Bkn| ≤ e

1
2
n logn+163n− 1

2
n logn+3πn+o(n) ≤ e173n+o(n).

Assuming eπ is algebraic, Liouville’s inequality (Lemma 26) implies An =
0 for all sufficiently large n, and therefore the interpolation series

F (z) =
∑
n≥0

AnPn(z)

is a polynomial. This polynomial F , by construction, takes the value eπxk

at z = xk, which means that the entire function eπz−F (z) vanishes on Z[i].
But this function has exponential type π, hence order 1, and Lemma 156
implies that this function is the zero function. This is a contradiction with
the fact that eπz is a transcendental function.
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9.2.8 Interpolation formulae

In the easiest case where there are no multiplicities, the interpolation prob-
lem is to find a function f taking given values at distinct points. When
xi and yi are m given points (0 ≤ i ≤ m − 1), with xi pairwise distinct,
there is a unique polynomial P of degree < m satisfying P (xi) = yi for
0 ≤ i ≤ m− 1. This polynomial is

f(z) =

m−1∑
j=0

yjfj(z),

where fj is the solution of the same problem for the special case where
yi = δij (Kronecker symbol, which is 1 for i = j and 0 otherwise). Explicitly,

fj(z) =
∏

0≤i≤m−1
i6=j

z − xi
xj − xi

·

Similar formulae exist when the xi may be repeated. As a simple example,
if xi = x0 for 0 ≤ i ≤ m, then the condition on f becomes f (j)(x0) = yj
(0 ≤ j < m), and the solution is given by the Taylor’s expansion

f(z) =

m−1∑
j=0

yjfj(z) with fj(z) =
1

j!
(z − x0)j ·

In the very general case, one way to produce such formulae is to introduce
integral formulae.

Let Q(z) be a monic polynomial with roots z1, . . . , zn, and for 1 ≤ i ≤ n
let mi ≥ 1 be the multiplicity of zi as a root of Q:

Q(z) =
n∏
i=1

(z − zi)mi .

Let R be a real number with R > max1≤i≤n |zi], so that the disc |z| < R
contains all points zi. We denote by Γ the circle |z| = R. Further, for
1 ≤ i ≤ n, let ri be a real number in the range

0 < ri < min
1≤k≤n
k 6=i

|zi − zk|.

We denote by Γi the circle |zi| ≤ ri: it contains zi, but no zk for k 6= i.
The following formula is due to Hermite: for f analytic in an open domain
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containing the disc |z| ≤ R and for z in the open disc |z| < R distinct from
all zi,

f(z)

Q(z)
=

1

2iπ

∫
Γ

f(ζ)

Q(ζ)
· dζ

ζ − z
− 1

2iπ

n∑
i=1

mi−1∑
j=0

f (j)(zi)

j!

∫
Γi

(ζ − zi)j

Q(ζ)
· dζ

ζ − z
·

The proof is a simple application of the residue formula (see for instance [3]
Chap. IX § 2): the first integral divided by 2iπ is the sum of the residues of
the function

ϕ(ζ) =
f(ζ)

Q(ζ)
· 1

ζ − z
at the poles in |z| < R. The pole ζ = z is simple, and the residue is
f(z)/Q(z), which gives the left hand side. Also, each sum

mi−1∑
j=0

f (j)(zi)

j!

∫
Γj

(ζ − zi)j

Q(ζ)
· dζ

ζ − z

in the right hand side is 2iπ times the residue at ζ = zi of ϕ(ζ). Hence the
formula drops out.

If f is a polynomial of degree < M where M = m1 + · · ·+mn, then the
first integral vanishes.

For 1 ≤ i0 ≤ n and 0 ≤ j0 < mi, define the function fi0,j0(z) on the open
set |z − zi0 | > ri0 by

fi0,j0(z) = − 1

j!
· 1

2iπ
Q(z)

∫
|ζ−zi0 |=ri0

(ζ − zi0)j0

Q(ζ)
· dζ

ζ − z
·

Here, ri0 is any number satisfying 0 < ri0 < mini 6=i0 |zi−zi0 |. Computing the
integral by means of the residue Theorem shows that the integral extends
to a meromorphic function in C with a single pole at z = zi0 of order ≤ mi.
Also, letting |z| tend to infinity shows that fi0,j0(z) is a polynomial of degree
< M . Hence fi0,j0 is the unique polynomial of degree < M satisfying

f
(j)
i0,j0

(zi) = δ(i0,j0),(i,j) where δ(i0,j0),(i,j) =

{
1 if i = i0 and j = j0,

0 otherwise.

It follows that, given distinct points z1, . . . , zn, positive integers m1, . . . ,mn

and complex numbers yij (1 ≤ i ≤ n, 0 ≤ j ≤ mi − 1), there is a unique
polynomial of degree < M , where M = m1 + · · · + mn, satisfying the M
conditions f (j)(zi) = yij for 1 ≤ i ≤ n and 0 ≤ j ≤ mi− 1. This polynomial
is given by

n∑
i=1

mi−1∑
j=0

yijfij .
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9.2.9 Rational interpolation

We just mention another kind of interpolation formula, which was intro-
duced by René Lagrange in 1935, and used more recently by Tanguy Rivoal
[4] for producing Diophantine results, including a new proof of Apéry’s the-
orem on the irrationality of ζ(3).

One starts with the formula

1

x− z
=

α− β
(x− α)(x− β)

+
x− β
x− α

· z − α
z − β

· 1

x− z
·

Iterating and integrating yields

f(z) =

N−1∑
n=0

Bn
(z − α1) · · · (z − αn)

(z − β1) · · · (z − βn)
+ R̃N (z).

This is an expansion of f into rational fractions, with given zeroes and poles.
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10 The Schneider–Lang Theorem

The Theorem of Schneider-Lang is a general statement dealing with values
of meromorphic functions of one or several complex variables, satisfying
differential equations.

The first general result dealing with analytic or meromorphic functions
of one variable and containing the solution to Hilbert’s seventh problem
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appears in [4]. In fact one can deduce the transcendence of αβ (Gel’fond-
Schneider Theorem 1.4) from this theorem, either by using the two functions
z and αz without derivatives (Schneider’s method), or else ez and eβz with
derivatives (Gel’fond’s method). The statement is rather complicated, and
Th. Schneider made successful attempts to simplify it [5]. Schneider’s crite-
ria in [5], Chap. II, § 3, Th.12 and 13 deal only with Gel’fond’s method, i.e.
involve derivatives. Further simplifications have been introduced by S. Lang
later: either for Schneider’s method (see [1], Chap. III, § 1, Th.1), or else
for Gel’fond’s method and functions satisfying differential equations (see [1],
Chap. III, § 1, Th.1 and [3], Appendix 1). This last result is known as the
Theorem of Schneider-Lang.

10.1 Statement and first corollaries

Content of the course: Theorem of Schneider–Lang, corollaries: theo-
rem of Hermite–Lindemann, Theorem of Gel’fond–Schneider.
Outline of the proof.
References: [6] (Chap. 3, § 3.7) and [7] (§ 2.2).
See also [5] (Chap. II, § 3, Th.12 and 13); [1] (Chap. III, § 1, Th.1); [3]
(Appendix 1).
There is also a proof in [2] (Chap. IX § 3) for the special case where the
number field is Q: this allows to avoid any use of algebraic number theory.
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10.2 Siegel’s Lemma

References: [2] Chap. 1 Lemme 1.3.1 and [3] § 1.2.

10.3 Liouville’s inequality

Reference: [2] Chap. 1 § 1.2. See also Proposition 26.

10.4 Schwarz’s Lemma

See (154).
References: [3] § 1.3 and [4] Chap. 7.

10.5 Differential equations

Reference: Lemma 2.2.5 of [3].

10.6 Proof of the Schneider–Lang Theorem

Reference: [2] Chap. 3. See also [1] Chap. III.

References

[1] S. Lang, Introduction to transcendental numbers, Addison-Wesley Pub-
lishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.

[2] M. Waldschmidt, Nombres transcendants, Springer-Verlag, Berlin,
1974. Lecture Notes in Mathematics, Vol. 402.
http://www.springerlink.com/content/110312/

[3] , Transcendence methods, vol. 52 of Queen’s Papers in Pure and
Applied Mathematics, Queen’s University, Kingston, Ont., 1979.
http://www.math.jussieu.fr/ miw/articles/pdf/QueensPaper52.pdf

179

http://www.springerlink.com/content/110312/
http://www.math.jussieu.fr/~miw/articles/pdf/QueensPaper52.pdf


[4] , Nombres transcendants et groupes algébriques, Astérisque, (1987),
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10.7 Elliptic functions

10.7.1 Introduction to elliptic functions

Among many references for this section are the books by Chandrasekharan
[4], Chap. 1–6; by S. Lang [16], Chap. 1–6 and [14], § 1–6; by Alain Robert,
[20], Chap I; by J. Silverman [23, 24], and by M. Hindry and J. Silverman
[9].

The text below is taken from [29] § 2 and § 3.

An elliptic curve may be defined as

• y2 = C(x) for a squarefree cubic polynomial C(x),

• a connected compact Lie group of dimension 1,

• a complex torus C/Ω where Ω is a lattice in C,

• a Riemann surface of genus 1,

• a non-singular cubic in P2(C) (together with a point at infinity),

• an algebraic group of dimension 1, with underlying projective algebraic
variety.

We shall use the Weierstraß form

E =
{

(t : x : y) ; y2t = 4x3 − g2xt
2 − g3t

3
}
⊂ P2.

Here g2 and g3 are complex numbers, with the only assumption g3
2 6=

27g2
3, which means that the discriminant of the polynomial 4X3− g2X − g3

does not vanish.
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An analytic parametrization of the complex points E(C) of E is given by
means of the Weierstraß elliptic function ℘, which satisfies the differential
equation

℘′2 = 4℘3 − g2℘− g3. (158)

It has a double pole at the origin with principal part 1/z2 and also satisfies
an addition formula

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4
·
(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

. (159)

The exponential map of the Lie group E(C) is

expE : C → E(C)
z 7→

(
1 : ℘(z) : ℘′(z)

)
.

The kernel of this map is a lattice in C (that is a discrete rank 2 subgroup),

Ω = ker expE = {ω ∈ C ; ℘(z + ω) = ℘(z)} = Zω1 + Zω2.

Hence expE induces an isomorphism between the quotient additive group
C/Ω and E(C) with the law given by (159). The elements of Ω are the
periods of ℘. A pair (ω1, ω2) of fundamental periods is given by (cf. [30]
§ 20.32 Example 1)

ωi = 2

∫ ∞
ei

dx√
4x3 − g2x− g3

, (i = 1, 2),

where
4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

Indeed, since ℘′ is periodic and odd, it vanishes at ω1/2, ω2/2 and (ω1 +
ω2)/2, hence the values of ℘ at these points are the three distinct complex
numbers e1, e2 and e3 (recall that the discriminant of 4x3 − g2x− g3 is not
0).

Conversely, given a lattice Ω, there is a unique Weierstraß elliptic func-
tion ℘Ω whose period lattice is Ω (see § 10.7.5). We denote its invariants in
the differential equation (158) by g2(Ω) and g3(Ω).

We shall be interested mainly (but not only) with elliptic curves which
are defined over the field of algebraic numbers: they have a Weierstraß
equation with algebraic g2 and g3. However we shall also use the Weier-
straß elliptic function associated with the lattice λΩ where λ ∈ C× may be
transcendental; the relations are

℘λΩ(λz) = λ−2℘Ω(z), g2(λΩ) = λ−4g2(Ω), g3(λΩ) = λ−6g3(Ω).
(160)
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The lattice Ω = Z + Zτ , where τ is a complex number with positive
imaginary part, satisfies

g2(Z + Zτ) = 60G2(τ) and g3(Z + Zτ) = 140G3(τ),

where, for Gk(τ) (with k ≥ 2) are the Eisenstein series (see, for instance, [22]
Chap. VII, § 2.3, [11] Chap. III § 2 or [23] Chap. VI § 3— the normalization
in [31] p. 240 is different):

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

(m+ nτ)−2k. (161)

10.7.2 Morphisms between elliptic curves. The modular invari-
ant

If Ω and Ω′ are two lattices in C and if f : C/Ω→ C/Ω′ is an analytic homo-
morphism, then the map C → C/Ω → C/Ω′ factors through a homothecy
C→ C given by some λ ∈ C such that λΩ ⊂ Ω′:

C
λ−−−→ C

↓ ↓
C/Ω −−−→

f
C/Ω′

If f 6= 0, then λ ∈ C× and f is surjective.
Conversely, if there exists λ ∈ C such that λΩ ⊂ Ω′, then fλ(x + Ω) =

λx+ Ω′ defines an analytic surjective homomorphism fλ : C/Ω→ C/Ω′. In
this case λΩ is a subgroup of finite index in Ω′, hence the kernel of fλ is
finite and there exists µ ∈ C× with µΩ′ ⊂ Ω: the two elliptic curves C/Ω
and C/Ω′ are isogeneous.

If Ω and Ω∗ are two lattices, ℘ and ℘∗ the associated Weierstraß elliptic
functions and g2, g3 the invariants of ℘, the following statements are equiv-
alent:
(i) There is a 2 × 2 matrix with rational coefficients which maps a basis of
Ω to a basis of Ω∗.
(ii) There exists λ ∈ Q× such that λΩ ⊂ Ω∗.
(iii) There exists λ ∈ Z \ {0} such that λΩ ⊂ Ω∗.
(iv) The two functions ℘ and ℘∗ are algebraically dependent over the field
Q(g2, g3).
(v) The two functions ℘ and ℘∗ are algebraically dependent over C.

The map fλ is an isomorphism if and only if λΩ = Ω′.
The number

j =
1728g3

2

g3
2 − 27g2

3
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is the modular invariant of the elliptic curve E. Two elliptic curves over C
are isomorphic if and only if they have the same modular invariant.

Set τ = ω2/ω1, q = e2πiτ and J(e2πiτ ) = j(τ). Then

J(q) = q−1

(
1 + 240

∞∑
m=1

m3 qm

1− qm

)3 ∞∏
n=1

(1− qn)−24

=
1

q
+ 744 + 196884 q + 21493760 q2 + · · ·

— see [19] § 4.12 or [22] Chap. VII § 3.3 and § 4.

10.7.3 Endomorphisms of an elliptic curve; complex multiplica-
tions

Let Ω be a lattice in C. The set of analytic endomorphisms of C/Ω is the
subring

End(C/Ω) =
{
fλ ; λ ∈ C with λΩ ⊂ Ω

}
of C. We also call it the ring of endomorphisms of the associated elliptic
curve, or of the corresponding Weierstraß ℘ function and we identify it with
the subring {

λ ∈ C ; λΩ ⊂ Ω
}

of C. The field of endomorphisms is the quotient field End(C/Ω)⊗Z Q of
this ring.

If λ ∈ C satisfies λΩ ⊂ Ω, then λ is either a rational integer or else an
algebraic integer in an imaginary quadratic field. For such a λ, ℘Ω(λz) is a
rational function of ℘Ω(z); the degree of the numerator is λ2 if λ ∈ Z and
N(λ) otherwise (here, N is the norm of the imaginary quadratic field); the
degree of the denominator is λ2 − 1 if λ ∈ Z and N(λ)− 1 otherwise.

Let E be the elliptic curve attached to the Weierstraß ℘ function. The
ring of endomorphisms End(E) of E is either Z or else an order in an imag-
inary quadratic field k. The latter case arises if and only if the quotient
τ = ω2/ω1 of a pair of fundamental periods is a quadratic number; in this
case the field of endomorphisms of E is k = Q(τ) and the curve E has
complex multiplications – this is the so-called CM case. This means also
that the two functions ℘(z) and ℘(τz) are algebraically dependent. In this
case, the value j(τ) of the modular invariant j is an algebraic integer whose
degree is the class number of the quadratic field k = Q(τ).

Remark. From Gel’fond–Schneider Theorem (§ 10.1) one deduces the tran-
scendence of the number

eπ
√

163 = 262 537 412 640 768 743.999 999 999 999 250 072 59 . . .
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If we set

τ =
1 + i

√
163

2
, q = e2πiτ = −e−π

√
163,

then the class number of the imaginary quadratic field Q(τ) is 1, we have
j(τ) = −(640 320)3 and ∣∣∣∣j(τ)− 1

q
− 744

∣∣∣∣ < 10−12.

Also ([6] § 2.4)(
eπ
√

163 − 744
)1/3

= 640 319.999 999 999 999 999 999 999 999 390 31 . . .

Let ℘ be a Weierstraß elliptic function with field of endomorphisms k.
Hence k = Q if the associated elliptic curve has no complex multiplica-
tion, while in the other case k is an imaginary quadratic field, namely
k = Q(τ), where τ is the quotient of two linearly independent periods
of ℘. Let u1, . . . , ud be non-zero complex numbers. Then the functions
℘(u1z), . . . , ℘(udz) are algebraically independent (over C or over Q(g2, g3),
this is equivalent) if and only if the numbers u1, . . . , ud are linearly inde-
pendent over k. This generalizes the fact that ℘(z) and ℘(τz) are alge-
braically dependent if and only if the elliptic curve has complex multiplica-
tions. Much more general and deeper results of algebraic independence of
functions (exponential and elliptic functions, zeta functions. . . ) were proved
by W.D. Brownawell and K.K. Kubota [3].

If ℘ is a Weierstraß elliptic function with algebraic invariants g2 and g3, if
E is the associated elliptic curve and if k denotes its field of endomorphisms,
then the set

LE = Ω ∪
{
u ∈ C \ Ω ; ℘(u) ∈ Q}

is a k-vector subspace of C: this is the set of elliptic logarithms of algebraic
points on E. It plays a role with respect to E similar to the role of L for
the multiplicative group Gm.

Let k = Q(
√
−d) be an imaginary quadratic field with class number

h(−d) = h. There are h non-isomorphic elliptic curves E1, . . . , Eh with ring
of endomorphisms the ring of integers of k. The numbers j(Ei) are conjugate
algebraic integers of degree h; each of them generates the Hilbert class field
H of k (maximal unramified abelian extension of k). The Galois group of
H/k is isomorphic to the ideal class group of k.

Since the group of roots of units of an imaginary quadratic field is
{−1,+1} except for Q(i) and Q(%), where % = e2πi/3, it follows that there
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are exactly two elliptic curves over Q (up to isomorphism) having an au-
tomorphism group bigger than {−1,+1}. They correspond to Weierstraß
elliptic functions ℘ for which there exists a complex number λ 6= ±1 with
λ2℘(λz) = ℘(z).

The first one has g3 = 0 and j = 1728. An explicit value for a pair of
fundamental periods of the elliptic curve

y2t = 4x3 − 4xt2

follows from computations by Legendre using Gauss’s lemniscate function
([30] § 22.8) and yields (see [1], as well as Appendix 1 of [28])

ω1 =

∫ ∞
1

dx√
x3 − x

=
1

2
B(1/4, 1/2) =

Γ(1/4)2

23/2π1/2
and ω2 = iω1. (162)

The lattice Z[i] has g2 = 4ω4
1, thus∑

(m,n)∈Z2\{(0,0)}

(m+ ni)−4 =
Γ(1/4)8

26 · 3 · 5 · π2
·

The second one has g2 = 0 and j = 0. Again from computations by Legendre
([30] § 22.81 II) one deduces that a pair of fundamental periods of the elliptic
curve

y2t = 4x3 − 4t3

is (see once more [1] and Appendice 1 of [28])

ω1 =

∫ ∞
1

dx√
x3 − 1

=
1

3
B(1/6, 1/2) =

Γ(1/3)3

24/3π
and ω2 = %ω1. (163)

The lattice Z[%] has g3 = 4ω6
1, thus∑

(m,n)∈Z2\{(0,0)}

(m+ n%)−6 =
Γ(1/3)18

28 · 5 · 7 · π6
·

These two examples involve special values of Euler’s Gamma function

Γ(z) =

∫ ∞
0

e−ttz · dt
t

= e−γzz−1
∞∏
n=1

(
1 +

z

n

)−1
ez/n, (164)

where

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
= 0.577 215 664 901 532 860 606 512 09 . . .
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is Euler’s constant (§ 12.1 in [30]), while Euler’s Beta function is

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
xa−1(1− x)b−1dx.

More generally, the formula of Chowla and Selberg (1966) [5] (see also [2,
7, 8, 10, 12, 26] for related results) expresses periods of elliptic curves with
complex multiplications as products of Gamma values: if k is an imaginary
quadratic field and O an order in k, if E is an elliptic curve with complex
multiplications by O, then the corresponding lattice Ω determines a vector
space Ω⊗ZQ which is invariant under the action of k and thus has the form
k · ω for some ω ∈ C× defined up to elements in k×. In particular, if O is
the ring of integers Zk of k, then

ω = α
√
π
∏

0<a<d
(a,d)=1

Γ(a/d)wε(a)/4h,

where α is a non-zero algebraic number, w is the number of roots of unity
in k, h is the class number of k, ε is the Dirichlet character modulo the
discriminant d of k.

10.7.4 Standard relations among Gamma values

Euler’s Gamma function satisfies the following relations ([30] Chap. XII):
(Translation)

Γ(z + 1) = zΓ(z);

(Reflection)

Γ(z)Γ(1− z) =
π

sin(πz)
;

(Multiplication) For any positive integer n,

n−1∏
k=0

Γ

(
z +

k

n

)
= (2π)(n−1)/2n−nz+(1/2)Γ(nz).

D. Rohrlich conjectured that any multiplicative relation among Gamma val-
ues is a consequence of these standard relations, while S. Lang was more
optimistic (see [15], [17] I Chap. 2 Appendix p. 66 and [2] Chap. 24):
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Conjecture 165 (D. Rohrlich). Any multiplicative relation

πb/2
∏
a∈Q

Γ(a)ma ∈ Q

with b and ma in Z is a consequence of the standard relations.

Conjecture 166 (S. Lang). Any algebraic dependence relation with alge-
braic coefficients among the numbers (2π)−1/2Γ(a) with a ∈ Q is in the ideal
generated by the standard relations.

10.7.5 Quasi-periods of elliptic curves and elliptic integrals of the
second kind

Let Ω = Zω1 + Zω2 be a lattice in C. The Weierstraß canonical product
attached to this lattice is the entire function σΩ defined by ([30] § 20.42)

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
e
z
ω

+ z2

2ω2 ·

It has a simple zero at any point of Ω.
Hence the Weierstraß sigma function plays, for the lattice Ω, the role

which is played by the function

z
∏
n≥1

(
1− z

n

)
ez/n = −eγzΓ(−z)−1

for the set of positive integers N \ {0} = {1, 2, . . . } (see the infinite product
(164) for Euler’s Gamma function), and also by the function

π−1 sin(πz) = z
∏

n∈Z\{0}

(
1− z

n

)
ez/n

for the set Z of rational integers ([4] Chap. IV § 2).

The Weierstraß sigma function σ associated with a lattice in C is an
entire function of order 2:

lim sup
r→∞

1

log r
· log log sup

|z|=r
|σ(z)| = 2;

the product σ2℘ is also an entire function of order 2 (this can be checked by
using infinite products, but it is easier to use the quasi-periodicity of σ, see
formula (167) below).
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The logarithmic derivative of the sigma function is the Weierstraß zeta
function ζ = σ′/σ whose Laurent expansion at the origin is

ζ(z) =
1

z
−
∑
k≥2

skz
2k−1,

where, for k ∈ Z, k ≥ 2,

sk = sk(Ω) =
∑
ω∈Ω
ω 6=0

ω−2k = ω−2k
1 Gk(τ)

The derivative of ζ is −℘. From

℘′′ = 6℘2 − (g2/2)

one deduces that sk(Ω) is a homogenous polynomial in Q[g2, g3] of weight
2k for the graduation of Q[g2, g3] determined by assigning to g2 the degree
4 and to g3 the degree 6.

As a side remark, we notice that for any u ∈ C \ Ω we have

Q(g2, g3) ⊂ Q
(
℘(u), ℘′(u), ℘′′(u)

)
.

Since its derivative is periodic, the function ζ is quasi-periodic: for each
ω ∈ Ω there is a complex number η = η(ω) such that

ζ(z + ω) = ζ(z) + η.

These numbers η are the quasi-periods of the elliptic curve. If (ω1, ω2) is a
pair of fundamental periods and if we set η1 = η(ω1) and η2 = η(ω2), then,
for (a, b) ∈ Z2,

η(aω1 + bω2) = aη1 + bη2.

Coming back to the sigma function, one deduces that

σ(z + ωi) = −σ(z) exp
(
ηi
(
z + (ωi/2)

))
(i = 1, 2). (167)

The zeta function also satisfies an addition formula:

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1

2
· ℘
′(z1)− ℘′(z2)

℘(z1)− ℘(z2)
·

The Legendre relation relating the periods and the quasi-periods

ω2η1 − ω1η2 = 2πi,
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when ω2/ω1 has positive imaginary part, can be obtained by integrating
ζ(z) along the boundary of a fundamental parallelogram.

In the case of complex multiplication, if τ is the quotient of a pair of
fundamental periods of ℘, then the function ζ(τz) is algebraic over the field
Q
(
g2, g3, z, ℘(z), ζ(z)

)
.

Examples For the curve y2t = 4x3 − 4xt2 the quasi-periods attached to the
pair of fundamental periods (162) are

η1 =
π

ω1
=

(2π)3/2

Γ(1/4)2
, η2 = −iη1; (168)

it follows that the fields Q(ω1, ω2, η1, η2) and Q
(
π,Γ(1/4)

)
have the same

algebraic closure over Q, hence the same transcendence degree. For the
curve y2t = 4x3 − 4t3 with periods (163), they are

η1 =
2π√
3ω1

=
27/3π2

31/2Γ(1/3)3
, η2 = %2η1. (169)

In this case the fields Q(ω1, ω2, η1, η2) and Q
(
π,Γ(1/3)

)
have the same al-

gebraic closure over Q, hence the same transcendence degree.

10.7.6 Elliptic integrals

Let
E = {(t : x : y) ∈ P2; y2t = 4x3 − g2xt

2 − g3t
3}

be an elliptic curve. The field of rational (meromorphic) functions on E over
C is C(E) = C(℘, ℘′) = C(x, y) where x and y are related by the cubic
equation y2 = 4x3 − g2x − g3. Under the isomorphism C/Ω → E(C) given
by (1 : ℘ : ℘′), the differential form dz is mapped to dx/y. The holomorphic
differential forms on C/Ω are λdz with λ ∈ C.

The differential form dζ = ζ ′/ζ is mapped to −xdx/y. The differential
forms of second kind on E(C) are adz+bdζ+dχ, where a and b are complex
numbers and χ ∈ C(x, y) is a meromorphic function on E .

Assume that the elliptic curve E is defined over Q: the invariants g2 and
g3 are algebraic. We shall be interested with differential forms which are
defined over Q. Those of second kind are adz+ bdζ + dχ, where a and b are
algebraic numbers and χ ∈ Q(x, y).

An elliptic integral is an integral∫
R(x, y)dx
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where R is a rational function of x and y, while y2 is a polynomial in x
of degree 3 or 4 without multiple roots, with the proviso that the integral
cannot be integrated by means of elementary functions. One may transform
this integral as follows: one reduces it to an integral of dx/

√
P (x) where P

is a polynomial of 3rd or 4th degree; in case P has degree 4 one replaces
it with a degree 3 polynomial by sending one root to infinity; finally one
reduces it to a Weierstraß equation by means of a birational transformation.
The value of the integral is not modified.

For transcendence purposes, if the initial differential form is defined over
Q, then all these transformations involve only algebraic numbers.

10.7.7 Transcendence results of numbers related with elliptic func-
tions

The main references for this section are [13, 21, 27, 29].
The first transcendence result on periods of elliptic functions was proved

by C.L. Siegel as early as 1932.

Theorem 170 (Siegel, 1932). Let ℘ be a Weierstraß elliptic function with
period lattice Zω1 + Zω2. Assume that the invariants g2 and g3 of ℘ are
algebraic. Then at least one of the two numbers ω1, ω2 is transcendental.

In the case of complex multiplication, it follows from Theorem 170 that
any non-zero period of ℘ is transcendental.

From formulae (162) and (163) it follows as a consequence of Siegel’s 1932
result that both numbers Γ(1/4)4/π and Γ(1/3)3/π are transcendental.

Other consequences of Siegel’s result concern the transcendence of the
length of an arc of an ellipse [21]

2

∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx

for algebraic a and b, as well as the transcendence of an arc of the lemniscate
(x2 + y2)2 = 2a2(x2 − y2) with a algebraic.

A further example of application of Siegel’s Theorem is the transcendence
of values of hypergeometric series related with elliptic integrals

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

=
π

2
· 2F1

(
1/2, 1/2 ; 1

∣∣ z2
)
,
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where 2F1 denotes Gauss hypergeometric series

2F1

(
a, b ; c

∣∣ z) =
∞∑
n=0

(a)n(b)n
(c)n

· z
n

n!

with (a)n = a(a+ 1) · · · (a+ n− 1).
Further results on this topic were obtained by Th. Schneider in 1934 and

in a joint work by K. Mahler and J. Popken in 1935 using Siegel’s method.
These results were superseded by Th. Schneider’s work in 1936 where he
proved a number of definitive results on the subject, including:

Theorem 171 (Schneider, 1936). Assume that the invariants g2 and g3 of
℘ are algebraic. Then for any non-zero period ω of ℘, the numbers ω and
η(ω) are transcendental.

It follows from Theorem 171 that any non-zero period of an elliptic
integral of the first or second kind is transcendental:

Corollary 172. Let E be an elliptic curve over Q, p1 and p2 two algebraic
points on E(Q), w a differential form of first or second kind on E which is
defined over Q, holomorphic at p1 and p2 and which is not the differential
of a rational function. Let γ be a path on E from p1 to p2. In case p1 = p2

one assumes that γ is not homologous to 0. Then the number∫
γ
w

is transcendental.

Examples: Using Corollary 172 and formulae (168) and (169), one deduces
that the numbers

Γ(1/4)4/π3 and Γ(1/3)3/π2

are transcendental.
The main results of Schneider’s 1936 paper are as follows (see [21]):

Theorem 173 (Schneider, 1936). 1. Let ℘ be a Weierstraß elliptic func-
tion with algebraic invariants g2, g3. Let β be a non-zero algebraic number.
Then β is not a pole of ℘ and ℘(β) is transcendental.
More generally, if a and b are two algebraic numbers with (a, b) 6= (0, 0),
then for any u ∈ C \ Ω at least one of the two numbers ℘(u), au+ bζ(u) is
transcendental.
2. Let ℘ and ℘∗ be two algebraically independent elliptic functions with al-
gebraic invariants g2, g3, g∗2, g∗3. If t ∈ C is not a pole of ℘ or of ℘∗, then
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at least one of the two numbers ℘(t) and ℘∗(t) is transcendental.
3. Let ℘ be a Weierstraß elliptic function with algebraic invariants g2, g3.
Then for any t ∈ C\Ω, at least one of the two numbers ℘(t), et is transcen-
dental.

It follows from Theorem 173.2 that the quotient of an elliptic integral of
the first kind (between algebraic points) by a non-zero period is either in the
field of endomorphisms (hence a rational number, or a quadratic number in
the field of complex multiplications), or a transcendental number.

Here is another important consequence of Theorem 173.2.

Corollary 174 (Schneider, 1936). Let τ ∈ H be a complex number in the
upper half plane =m(τ) > 0 such that j(τ) is algebraic. Then τ is algebraic
if and only if τ is imaginary quadratic.

In this connection we quote Schneider’s second problem in [21], which is
still open (see papers by Wakabayashi

Conjecture 175 (Schneiders’ second problem). Prove Corollary 174 with-
out using elliptic functions.

Sketch of proof of Corollary 174 as a consequence of part 2 of Theorem 173.
Assume that both τ ∈ H and j(τ) are algebraic. There exists an elliptic

function with algebraic invariants g2, g3 and periods ω1, ω2 such that

τ =
ω2

ω1
and j(τ) =

1728g3
2

g3
2 − 27g2

3

·

Set ℘∗(z) = τ2℘(τz). Then ℘∗ is a Weierstraß function with algebraic in-
variants g∗2, g∗3. For u = ω1/2 the two numbers ℘(u) and ℘∗(u) are algebraic.
Hence the two functions ℘(z) and ℘∗(z) are algebraically dependent. It fol-
lows that the corresponding elliptic curve has non-trivial endomorphisms,
therefore τ is quadratic.

A quantitative refinement of Schneider’s Theorem on the transcendence
of j(τ) given by A. Faisant and G. Philibert in 1984 became useful 10 years
later in connection with Nesterenko’s result. (see § 11.3).

We will not review the results related with abelian integrals, but only
quote the first result on this topic, which involves the Jacobian of a Fermat
curve: in 1941 Schneider proved that for a and b in Q with a, b and a + b
not in Z, the number

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
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is transcendental. We notice that in his 1932 paper, C.L. Siegel had already
announced partial results on the values of the Euler Gamma function.

Schneider’s above mentioned results deal with elliptic (and abelian) in-
tegrals of the first or second kind. His method can be extended to deal with
elliptic (and abelian) integrals of the third kind (this is Schneider’s third
problem in [21]).

As pointed out by J-P. Serre in 1979, it follows from the quasi-periodicity
of the Weierstraß sigma function (167) that the function

Fu(z) =
σ(z + u)

σ(z)σ(u)
e−zζ(u)

satisfies
Fu(z + ωi) = Fu(z)eηiu−ωiζ(u).

Theorem 176. Let u1 and u2 be two non-zero complex numbers. Assume
that g2, g3, ℘(u1), ℘(u2), β are algebraic and Zu1 ∩ Ω = {0}. Then the
number

σ(u1 + u2)

σ(u1)σ(u2)
e

(
β−ζ(u1)

)
u2

is transcendental.

From the next corollary, one can deduce that non-zero periods of elliptic
integrals of the third kind are transcendental.

Corollary 177. For any non-zero period ω and for any u ∈ C \ Ω the
number eωζ(u)−ηu+βω is transcendental.
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irrationality and transcendence
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Course N◦20, June 23, 2010

Content of the course:

1. Algebraic independence of the two functions ℘(z) and ez.
Legendre’s relation η2ω1 − η1ω2 = 2iπ. Proof: integrate ζ(z)dz on a funda-
mental parallelogram.
Application: algebraic independence of the two functions az + bζ(z) and
℘(z).

2. Section § 10.7.2: Morphisms between elliptic curves. The modular in-
variant.

3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multipli-
cations.
Algebraic independence of ℘ and ℘∗.
Schneider’s Theorem on the transcendence of j(τ) (corollary 174).

11 Algebraic independence

11.1 Chudnovskii’s results

References: [1], [3], Lecture 8. [5] § 5.2.

The text below is taken from [5] § 5.2.

In the 1970’s G.V. Chudnovsky proved strong results of algebraic inde-
pendence (small transcendence degree) related with elliptic functions. One
of his most spectacular contributions was obtained in 1976:

Theorem 178 (G.V. Chudnovsky, 1976). Let ℘ be a Weierstraß ellip-
tic function with invariants g2, g3. Let (ω1, ω2) be a basis of the lattice
period of ℘ and η1 = η(ω1), η2 = η(ω2) the associated quasi-periods of
the associated Weierstraß zeta function. Then at least two of the numbers
g2, g3, ω1, ω2, η1, η2 are algebraically independent.
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A more precise result is that, for any non-zero period ω, at least two
of the four numbers g2, g3, ω/π, η/ω (with η = η(ω)) are algebraically
independent.

In the case where g2 and g3 are algebraic one deduces from Theorem
178 that two among the four numbers ω1, ω2, η1, η2 are algebraically
independent; this statement is also a consequence of the next result:

Theorem 179 (G.V. Chudnovsky, 1981). Assume that g2 and g3 are alge-
braic. Let ω be a non-zero period of ℘, set η = η(ω) and let u be a complex
number which is not a period such that u and ω are Q-linearly independent:
u 6∈ Qω ∪ Ω. Assume ℘(u) ∈ Q. Then the two numbers

ζ(u)− η

ω
u,

η

ω

are algebraically independent.

From Theorem 178 or Theorem 179 one deduces:

Corollary 180. Let ω be a non-zero period of ℘ and η = η(ω). If g2

and g3 are algebraic, then the two numbers π/ω and η/ω are algebraically
independent.

The following consequence of Corollary 180 shows that in the CM case,
Chudnovsky’s results are sharp:

Corollary 181. Assume that g2 and g3 are algebraic and the elliptic curve
has complex multiplications. Let ω be a non-zero period of ℘. Then the two
numbers ω and π are algebraically independent.

As a consequence of formulae (162) and (163), one deduces:

Corollary 182. The numbers π and Γ(1/4) are algebraically independent.
Also the numbers π and Γ(1/3) are algebraically independent.
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The text below is taken from [4] § 5.2.

11.2 Modular functions and Ramanujan functions

S. Ramanujan introduced the following functions

P (q) = 1−24
∞∑
n=1

nqn

1− qn
, Q(q) = 1+240

∞∑
n=1

n3qn

1− qn
, R(q) = 1−504

∞∑
n=1

n5qn

1− qn
·

They are special cases of Fourier expansions of Eisenstein series. Recall the
Bernoulli numbers Bk defined by:

z

ez − 1
= 1− z

2
+
∞∑
k=1

(−1)k+1Bk
z2k

(2k)!
,

B1 = 1/6, B2 = 1/30, B3 = 1/42.

For k ≥ 1 the normalized Eisenstein series of weight k is

E2k(q) = 1 + (−1)k
4k

Bk

∞∑
n=1

n2k−1qn

1− qn
·

The connection with (161) is

E2k(q) =
1

2ζ(2k)
·Gk(τ),

for k ≥ 2, where q = e2πiτ . In particular

G2(τ) =
π4

32 · 5
· E4(q), G3(τ) =

2π6

33 · 5 · 7
· E6(q).
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With Ramanujan’s notation we have

P (q) = E2(q), Q(q) = E4(q), R(q) = E6(q).

The discriminant ∆ and the modular invariant J are related with these
functions by Jacobi’s product formula

∆ =
(2π)12

123
· (Q3−R2) = (2π)12q

∞∏
n=1

(1−qn)24 and J =
(2π)12Q3

∆
=

(24325G2)3

∆
·

Let q be a complex number, 0 < |q| < 1. There exists τ in the upper half
plane H such that q = e2πiτ . Select any twelfth root ω of ∆(q) . The
invariants g2 and g3 of the Weierstraß ℘ function attached to the lattice
(Z + Zτ)ω satisfy g3

2 − 27g2
3 = 1 and

P (q) = 3
ω

π
· η
π
, Q(q) =

3

4

(ω
π

)4
g2, R(q) =

27

8

(ω
π

)6
g3.

According to formulae (162) and (163), here are a few special values

• For τ = i, q = e−2π,

P (e−2π) =
3

π
, Q(e−2π) = 3

(ω1

π

)4
, (183)

R(e−2π) = 0 and ∆(e−2π) = 26ω12
1 ,

with

ω1 =
Γ(1/4)2

√
8π

= 2.6220575542 . . .

• For τ = %, q = −e−π
√

3,

P (−e−π
√

3) =
2
√

3

π
, Q(−e−π

√
3) = 0, (184)

R(−e−π
√

3) =
27

2

(ω1

π

)6
, ∆(−e−π

√
3) = −2433ω12

1 ,

with

ω1 =
Γ(1/3)3

24/3π
= 2.428650648 . . .
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11.3 Nesterenko’s result

In 1976, D. Bertrand pointed out that Schneider’s Theorem 173 on the
transcendence of ω/π implies:
For any q ∈ C with 0 < |q| < 1, at least one of the two numbers Q(q), R(q)
is transcendental.

He also proved the p-adic analog by means of a new version of the
Schneider–Lang criterion for meromorphic functions (he allows one essential
singularity) which he applied to Jacobi–Tate elliptic functions. Two years
later he noticed that G.V. Chudnovsky’s Theorem 178 yields:
For any q ∈ C with 0 < |q| < 1, at least two of the numbers P (q), Q(q), R(q)
are algebraically independent.

The following result of Yu.V. Nesterenko goes one step further:

Theorem 185 (Nesterenko, 1996). For any q ∈ C with 0 < |q| < 1, three
of the four numbers q, P (q), Q(q), R(q) are algebraically independent.

Among the tools used by Nesterenko in his proof is the following result
due to K. Mahler:

The functions P , Q, R are algebraically independent over C(q).
Also he uses the fact that they satisfy a system of differential equations

for D = q d/dq discovered by S. Ramanujan in 1916:

12
DP

P
= P − Q

P
, 3

DQ

Q
= P − R

Q
, 2

DR

R
= P − Q2

R
·

One of the main steps in his original proof is his following zero estimate:

Theorem 186 (Nesterenko’s zero estimate). Let L0 and L be positive inte-
gers, A ∈ C[q,X1, X2, X3] a non-zero polynomial in four variables of degree
≤ L0 in q and ≤ L in each of the three other variables X1, X2, X3. Then
the multiplicity at the origin of the analytic function A

(
q, P (q), Q(q), R(q)

)
is at most 2 · 1045L0L

3.

In the special case where J(q) is algebraic, P. Philippon produced an
alternative proof for Nesterenko’s result where this zero estimate 186 is not
used; instead of it, he used Philibert’s measure of algebraic independence
for ω/π and η/π. However Philibert’s proof requires a zero estimate for
algebraic groups.

Using (183) one deduces from Theorem 185

Corollary 187. The three numbers π, eπ, Γ(1/4) are algebraically indepen-
dent.
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while using (184) one deduces

Corollary 188. The three numbers π, eπ
√

3, Γ(1/3) are algebraically inde-
pendent.

Consequences of Corollary 187 are the transcendence of the numbers

σZ[i](1/2) = 25/4π1/2eπ/8Γ(1/4)−2

and (P. Bundschuh)

∞∑
n=0

1

n2 + 1
=

1

2
+
π

2
· e

π + e−π

eπ − e−π
·

D. Duverney, K. and K. Nishioka and I. Shiokawa as well as D. Bertrand
derived from Nesterenko’s Theorem 185 a number of interesting corollaries,
including the following ones

Corollary 189. Rogers-Ramanujan continued fraction:

RR(α) = 1 +
α

1 +
α2

1 +
α3

1 + . . .

is transcendental for any algebraic α with 0 < |α| < 1.

Corollary 190. Let (Fn)n≥0 be the Fibonacci sequence: F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2. Then the number

∞∑
n=1

1

F 2
n

is transcendental.

Jacobi Theta Series are defined by

θ2(q) = 2q1/4
∑
n≥0

qn(n+1) = 2q1/4
∞∏
n=1

(1− q4n)(1 + q2n),

θ3(q) =
∑
n∈Z

qn
2

=
∞∏
n=1

(1− q2n)(1 + q2n−1)2,

θ4(q) = θ3(−q) =
∑
n∈Z

(−1)nqn
2

=

∞∏
n=1

(1− q2n)(1− q2n−1)2.
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Corollary 191. . Let i, j and k ∈ {2, 3, 4} with i 6= j. Let q ∈ C satisfy
0 < |q| < 1. Then each of the two fields

Q
(
q, θi(q), θj(q), Dθk(q)

)
and Q

(
q, θk(q), Dθk(q), D

2θk(q)
)

has transcendence degree ≥ 3 over Q.

As an example, for an algebraic number q ∈ C with 0 < |q| < 1, the
three numbers ∑

n≥0

qn
2
,
∑
n≥1

n2qn
2
,
∑
n≥1

n4qn
2

are algebraically independent. In particular the number

θ3(q) =
∑
n∈Z

qn
2

is transcendental. The number θ3(q) was explicitly considered by Liouville
as far back as 1851.

The proof of Yu.V. Nesterenko is effective and yields quantitative refine-
ments (measures of algebraic independence).
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