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These are informal notes(1) of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

1 Introduction

1.1 Irrationality of
√

2

We first give a geometrical proof of the irrationality of the number
√

2 = 1, 414 213 562 373 095 048 801 688 724 209 . . .

Starting with a rectangle having sides 1 and 1+
√

2, we split it into two unit
squares and a smaller rectangle. The length of this second rectangle is 1, its
width is

√
2− 1, hence its proportion is

1√
2− 1

= 1 +
√

2.

Therefore the first and second rectangles have the same proportion. Now, if
we repeat the process and split the small rectangle into two squares (of sides√

2 − 1) and a third tiny rectangle, the proportions of this third rectangle
will again be 1 +

√
2. This means that the process will not end, each time

we shall get two squares and a remaining smaller rectangle having the same
proportion.

1This text is available on the internet at the address
http://www.math.jussieu.fr/∼miw/enseignement.html

1

http://www.impa.br/opencms/pt/
http://people.math.jussieu.fr/~miw/enseignement.html


On the other hand, if we start with a rectangle having integer side–
lengths, if we split it into several squares and if a small rectangle remains,
then clearly the small rectangle while have integer side–lengths(2). Therefore
the process will not continue forever, it will stop when there is no remaining
small rectangle. This proves the irrationality of

√
2.

In algebraic terms, the number x = 1 +
√

2 satisfies

x = 2 +
1
x

,

hence also
x = 2 +

1

2 +
1
x

= 2 +
1

2 +
1

2 +
1
x

= · · · ,

which yields the continued fraction expansion of 1 +
√

2.

1.2 Continued fractions

Here is the definition of the continued fraction expansion of a real number.
Given a real number x, the Euclidean division in R of x by 1 yields a

quotient #x$ ∈ Z (the integral part of x) and a remainder {x} in the interval
[0, 1) (the fractional part of x) satisfying

x = #x$+ {x}.

Set a0 = #x$. Hence a0 ∈ Z. If x is an integer then x = #x$ = a0 and
{x} = 0. In this case we just write x = a0 with a0 ∈ Z. Otherwise we have
{x} > 0 and we set x1 = 1/{x} and a1 = #x1$. Since {x} < 1 we have
x1 > 1 and a1 ≥ 1. Also

x = a0 +
1

a1 + {x1}
·

Again, we consider two cases: if x1 ∈ Z then {x1} = 0, x1 = a1 and

x = a0 +
1
a1

2Starting with a rectangle of side–lengths a and b, the process stops when a square of
side–length d is reached, where d is the gcd of a and b: also d is the largest positive integer
such that the initial rectangle can be covered with square tiles of side length d.
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with two integers a0 and a1, with a1 ≥ 2 (recall x1 > 1). Otherwise we can
define x2 = 1/{x1}, a2 = #x2$ and go one step further:

x = a0 +
1

a1 +
1

a2 + {x2}

·

Inductively one obtains a relation

x = a0 +
1

a1 +
1

a2 +
1

. . .
an−1 +

1
an + {xn}

with 0 ≤ {xn} < 1. The connexion with the geometric proof of irrationality
of
√

2 by means of rectangles and squares is now obvious: start with a
positive real number x and consider a rectangle of sides 1 and x. Divide this
rectangle into unit squares and a second rectangle. Then a0 is the number
of unit squares which occur, while the sides of the second rectangle are 1
and {x}. If x is not an integer, meaning {x} > 0, then we split the second
rectangle into squares of sides {x} plus a third rectangle. The number of
squares is now a1 and the third rectangle has sides {x} and 1−a1{x}. Going
one in the same way, one checks that the number of squares we get at the
n-th step is an.

This geometric point of view shows that the process stops after finitely
many steps (meaning that some {xn} is zero, or equivalently that xn is in
Z) if and only if x is rational.

For simplicity of notation, when x0, x1, . . . , xn are real numbers with
x1, . . . , xn positive, we write

x = [x0, x1, . . . , xn] for x0 +
1

x1 +
1

x2 +
1

. . .
xn−1 +

1
xn

·

When a0, a1, . . . , an are integers with a1, . . . , an positive, then [a0, a1, . . . , an]
is a rational number. Conversely, given a rational number x, the previous al-
gorithm produces a finite continued fraction [a0, a1, . . . , an] where a0 = #x$
and ai > 0 (1 ≤ i ≤ n) are integers. If x is a rational integer, then n = 0,
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a0 = x and the continued fraction which is produced by this algorithm is
x = [a0]. If x is not an integer, then n ≥ 1 and an ≥ 2. For any rational
number, there are exactly two finite continued fractions equal to x: one,
say [a0, a1, . . . , an−1, an], is given by the previous algorithm, the other one
is [a0, a1, . . . , an−1, an − 1, 1]. For instance if x is an integer the continued
fraction produced by the algorithm is [x], as we just saw, while the other
continued fraction equal to x is [x−1, 1]. The two continued fractions equal
to 1 are [1] and [0, 1], while any positive rational number distinct from 1 has
one continued fraction expansion with the last term an ≥ 2 and one with
the last term 1.

When x is irrational, we write the continued fraction as [a0, a1, . . . , an, . . . ].
We shall check later that when a0, a1, . . . , an, . . . are integers with a1, . . . , an, . . .
positive, the limit of [a0, a1, . . . , an] exists and is equal to x.

We need a further notation for ultimately periodic continued fraction.
Assume that x is irrational and that for some integers n0 and r > 0 its
continued fraction expansion [a0, a1, . . . , an, . . . ] satisfies

an+r = an for any n ≥ n0.

Then we write

x = [a0, a1, . . . , an0−1, an0 , an0+1, . . . , an0+r−1].

For instance √
2 = [1, 2, 2, 2, . . . ] = [1, 2]

and √
3 = [1, 1, 2, 1, 2, 1, 2, . . . ] = [1, 1, 2].

References on continued fractions are [11, 32, 19, 23, 4]. An interesting
remark [30] on the continued fraction expansion of

√
2 is to relate the A4

paper format 21× 29.7 to the fraction expansion

297
210

=
99
70

= [1, 2, 2, 2, 2, 2].

There is nothing special with the square root of 2: most of the previous
argument extend to the proof of irrationality of

√
n when n is a positive

integer which is not the square of an integer. For instance, a proof of the
irrationality of

√
n when n is not the square of an integer runs as follows.

Write
√

n = a/b where b is the smallest positive integer such that b
√

n is
an integer. Further, denote by m the integral part of

√
n: this means that

m is the positive integer such that m <
√

n < m + 1. The strict inequality
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m <
√

n is the assumption that n is not a square. From 0 <
√

n −m < 1
one deduces

0 < (
√

n−m)b < b.

Now the number
b′ := (

√
n−m)b = a−mb

is a positive rational integer, the product

b′
√

n = bn− am

is an integer and b′ < b, which contradicts the choice of b minimal.
The irrationality of

√
5 is equivalent to the irrationality of the Golden

ratio Φ = (1 +
√

5)/2, root of the polynomial X2 −X − 1, whose continued
fraction expansion is

Φ = [1, 1, 1, 1 . . . ] = [1].

This continued fraction expansion follows from the relation

Φ = 1 +
1
Φ
·

The geometric irrationality proof using rectangles that we described above
for 1 +

√
2 works in a similar way for the Golden ratio: a rectangle of sides

Φ and 1 splits into a square and a small rectangle of sides 1 and Φ−1, hence
the first and the second rectangles have the same proportion, namely

Φ =
1

Φ− 1
· (1)

Therefore the process continues forever with one square and one smaller
rectangle with the same proportion. Hence Φ and

√
5 are irrational numbers.

Exercise 1. Check that, in the geometric construction of splitting a rect-
angle of sides 1 and x into squares and rectangles, the number of successive
squares is the sequence of integers (an)n≥0 in the continued fraction expan-
sion of x.
b) Start with a unit square. Put on top of it another unit square: you get
a rectangle with sides 1 and 2. Next put on the right a square of sides 2,
which produces a rectangle with sides 2 and 3. Continue the process as fol-
lows: when you reach a rectangle of small side a and large side b, complete
it with a square of sides b, so that you get a rectangle with sides b and a+ b.
Which is the sequence of sides of the rectangles you obtain with this process?
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Generalizing this idea, given positive integers a0, a1, . . . , ak, devise a geo-
metrical construction of the positive rational number having the continued
fraction expansion

[a0, a1, . . . , ak].

Another proof of the irrationality of Φ is to deduce from the equation
(1) that a relation Φ = a/b with 0 < b < a yields

Φ =
b

a− b
,

hence a/b is not a rational fraction with minimal denominator.

1.3 Irrational numbers

If k is a positive integer and n a positive integer which is not the k-th power
of a rational integer, then the number n1/k is irrational. This follows, for
instance, from the fact that the roots of Xk − n are algebraic integers, and
algebraic integers which are rational numbers are rational integers.

Other numbers for which it is easy to prove the irrationality are quotients
of logarithms: if m and n are positive integers such that (log m)/(log n) is
rational, say a/b, then mb = na, which means that m and n are multiplica-
tively dependent. Recall that elements x1, . . . , xr in an additive group are
linearly independent if a relation a1x1 + · · ·+arxr = 0 with rational integers
a1, . . . , ar implies a1 = · · · = ar = 0. Similarly, elements x1, . . . , xr in a mul-
tiplicative group are multiplicatively independent if a relation xa1

1 · · ·xar
r = 1

with rational integers a1, . . . , ar implies a1 = · · · = ar = 0. Therefore a
quotient like (log 2)/ log 3, and more generally (log m)/ log n where m and
n are multiplicatively independent positive rational numbers, is irrational.

We have seen that a real number is rational if and only if its continued
fraction expansion is finite. There is another criterion of irrationality using
the b-adic expansion when b is an integer ≥ 2 (for b = 10 this is the decimal
expansion, for b = 2 it is the diadic expansion). Indeed any real number x
can be written

x = #x$+ d1b
−1 + d2b

−2 + · · · + dnb−n + · · ·

where the integers dn (the digits of x) are in the range 0 ≤ dn < b. There
is unicity of such an expansion, unless x is an integral multiple of some b−n

with n ≥ 0, in which case x has two expansions: one where all sufficiently
large digits vanish, and one for which all sufficiently large digits are b − 1.
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This is due to the equation

b−n =
n∑

k=0

(b− 1)b−n−k−1.

Here is the irrationality criterion using such expansions: fix an integer b ≥ 2.
Then the real number x is rational if and only if the sequence of digits
(dn)n≥1 of x in basis b is ultimately periodic.

Exercise 2. Let b ≥ 2 be an integer.
a) Show that a real number x is rational if and only if the sequence (dn)n≥1

of digits of x in the expansion in basis b

x = #x$+ d1b
−1 + d2b

−2 + · · · + dnb−n + · · · (0 ≤ dn < b)

is ultimately periodic.
b) Let (un)n≥0 be an increasing sequence of positive integers. Assume there
exists c > 0 such that, for all sufficiently large n,

un − un−1 ≥ cn.

Deduce from a) that the number

ϑ =
∑

n≥0

b−un

is irrational.

One might be tempted to conclude that it should be easy to decide
whether a given real number is rational or not. However this is not the case
with many constants from analysis, because most often one does not know
any expansion, either in continued fraction or in any basis b ≥ 2. And the
fact is that for many such constants the answer is not known. For instance,
one does not know whether the Euler–Mascheroni constant

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · + 1
n
− log n

)

= 0, 577 215 664 901 532 860 606 512 090 082 . . .
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is rational or not: one expects that it is an irrational number (and even a
transcendental number - see later). Other formulas for the same number are

γ =
∞∑

k=1

(
1
k
− log

(
1 +

1
k

))

=
∫ ∞

1

(
1
#x$ −

1
x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy

(1− xy) log(xy)
·

J. Sondow uses (a generalization of) the last double integral in [36], he was
inspired by F. Beukers’ work on Apéry’s proof of the irrationality of

ζ(3) =
∑

n≥1

1
n3

= 1, 202 056 903 159 594 285 399 738 161 511 . . .

in 1978. Recall that the values of the Riemann zeta function

ζ(s) =
∑

n≥1

n−s

was considered by Euler for real s and by Riemann for complex s, the series
being convergent for the real part of s greater than 1. Euler proved that
the values ζ(2k) of this function at the even positive integers (k ∈ Z, k ≥ 1)
are rational multiples of π2k. For instance, ζ(2) = π2/6. It is interesting
to notice that Euler’s proof relates the values ζ(2k) at the positive even
integers with the values of the same function at the odd negative integers,
namely ζ(1 − 2k). For Euler this involved divergent series, while Riemann
defined ζ(s) for s ∈ C, s )= 1, by analytic continuation.

One might be tempted to guess that ζ(2k+1)/π2k+1 is a rational number
when k ≥ 1 is a positive integer. However the folklore conjecture is that
this is not the case. In fact there are good reasons to conjecture that for
any k ≥ 1 and any non-zero polynomial P ∈ Z[X0, X1, . . . , Xk], the number
P (π, ζ(3), ζ(5), . . . , ζ(2k + 1)) is not 0. But one does not know whether

ζ(5) =
∑

n≥1

1
n5

= 1, 036 927 755 143 369 926 331 365 486 457 . . .

is irrational or not. And there is no proof so far that ζ(3)/π3 is irrational.
According to T. Rivoal, among the numbers ζ(2n+1) with n ≥ 2, infinitely
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many are irrational. And W. Zudilin proved that one at least of the four
numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. References with more information on this topic are given in
the Bourbaki talk [14] by S. Fischler.

A related open question is the arithmetic nature of Catalan’s constant

G =
∑

n≥1

(−1)n

(2n + 1)2
= 0, 915 965 594 177 219 015 0 . . .

Other open questions can be asked on the values of Euler’s Gamma
fonction

Γ(z) = e−γzz−1
∞∏

n=1

(
1 +

z

n

)−1
ez/n =

∫ ∞

0
e−ttz · dt

t
·

As an example we do not know how to prove that the number

Γ(1/5) = 4, 590 843 711 998 803 053 204 758 275 929 152 0 . . .

is irrational.
The only rational values of z for which the answer is known (and in fact

one knows the transcendence of the Gamma value in these cases) are

r ∈
{

1
6
, 1
4
, 1
3
, 1
2
, 2
3
, 3
4
, 5
6

}
(mod 1).

The number Γ(1/n) appears when one computes periods of the Fermat curve
Xn + Y n = Zn, and this curve is simpler (in technical terms it has genus
≤ 1) for n = 2, 3, 4 and 6. For n = 5 the genus is 2 and this is related with
the fact that one is not able so far to give the answer for Γ(1/5).

The list of similar open problems is endless. For instance, is the number

e + π = 5, 859 874 482 048 838 473 822 930 854 632 . . .

rational or not? The answer is not yet known. And the same is true for any
number in the following list

log π, 2π, 2e, πe, ee.

9



1.4 History of irrationality

The history of irrationality is closely connected with the history of continued
fractions (see[2, 3]). (Even the first examples of transcendental numbers pro-
duced by Liouville in 1844 involved continued fractions, before he considered
series).

The question of the irrationality of π was raised in India by Nı̄lakan. t.ha
Somayāj̄ı, who was born around 1444 AD. In his comments on the work
of Āryabhat.a, (b. 476 AD) who stated that an approximation for π is π ∼
3.1416, Somayāj̄ı asks(3):

Why then has an approximate value been mentioned here leav-
ing behind the actual value? Because it (exact value) cannot be
expressed.

In 1767, H. Lambert [20] proved that for x rational and non–zero, the
number tanx cannot be rational. Since tanπ/4 = 1 it follows that π is
irrational. Then he produced a continued fraction expansion for ex and
deduced that er is irrational when r is a non–zero rational number. This
is equivalent to the fact that non–zero positive rational numbers have an
irrational logarithm. A detailed description of Lambert’s proof is given in
[12].

Euler gave continued fractions expansions not only for e and e2:

e = [2; 1, 2j, 1]j≥1 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . ],

e2 = [7; 3j − 1, 1, 1, 3j, 12j + 6]j≥1 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, . . . ],

but also for (e + 1)/(e − 1), for (e2 + 1)/(e2 − 1), for e1/n with n > 1, for
e2/nwith odd n > 1 and Hurwitz (1896) for 2e and (e + 1)/3:
e + 1
e− 1

= [2(2j + 1)]j≥0 = [2; 6, 10, 14, . . . ],

e2 + 1
e2 − 1

= [2j + 1]j≥0 = [1; 3, 5, 7, . . . ],

e1/n = [1, (2j + 1)n− 1, 1]j≥0 for n ≥ 2,

e2/n = [1, (n− 1)/2 + 3jn, 6n + 12jn, (5n− 1)/2 + 3jn, 1]j≥0 for odd n ≥ 3,

2e = [5, 2, 3, 2j, 3, 1, 2j, 1]j≥1,

e + 1
3

=

[1, 4, 5, 4j − 3, 1, 1, 36j − 16, 1, 1, 4j − 2, 1, 1, 36j − 4, 1, 1, 4j − 1, 1, 5, 4j, 1]j≥1.

3 K. Ramasubramanian, The Notion of Proof in Indian Science, 13th World Sanskrit
Conference, 2006. http://www.iitb.ac.in/campus/diary/2006/august/tday2.htm
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Hermite proved the irrationality of π and π2 (see [3] p. 207 and p. 247).
Furthermore, A.M. Legendre proved, in 1794, by a modification of Lambert’s
proof, that π2 is also an irrational number (see [3] p. 14).

There are not so many numbers for which one knows the irrationality but
we don’t know whether they are algebraic or transcendental (4). A notable
exception is ζ(3), known to be irrational (Apéry, 1978) and expected to be
transcendental.

1.5 Variation on a proof by Fourier (1815)

That e is not quadratic follows from the fact that the continued fraction
expansion of e, which was known by L. Euler in 1737 [11, 7, 33, 37]), is not
periodic:

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

Since this expansion is infinite we deduce that e is irrational. The fact that it
is not ultimately periodic implies also that e is not a quadratic irrationality,
as shown by Lagrange in 1770 – Euler knew already in 1737 that a number
with an ultimately periodic continued fraction expansion is quadratic (see
[11, 4, 32]).

The following easier and well known proof of the irrationality of e was
given by J. Fourier in his course at the École Polytechnique in 1815. Later,
in 1872 , C. Hermite proved that e is transcendental, while the work of
F. Lindemann a dozen of years later led to a proof of the so-called Hermite–
Lindemann Theorem: for any nonzero algebraic number α the number eα is
transcendental. However for this first section we study only weaker state-
ments which are very easy to prove. We also show that Fourier’s argument
can be pushed a little bit further than what is usually done, as pointed out
by J. Liouville in 1840.

1.5.1 Irrationality of e

We truncate the exponential series giving the value of e at some point N :

N ! e−
N∑

n=0

N !
n!

=
∑

k≥1

N !
(N + k)!

· (2)

4Unless one considers complex numbers of the form ix where x is a real number expected
to be transcendental, but for which no proof of irrationality is known: there are plenty of
them!
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The right hand side of (2) is a sum of positive numbers, hence is positive
(not zero). From the lower bound (for the binomial coefficient)

(N + k)!
N !k!

≥ N + 1 for k ≥ 1,

one deduces ∑

k≥1

N !
(N + k)!

≤ 1
N + 1

∑

k≥1

1
k!

=
e− 1
N + 1

·

Therefore the right hand side of (2) tends to 0 when N tends to infinity. In
the left hand side,

∑N
n=0 N !/n! is an integer. It follows that for any integer

N ≥ 1 the number N !e is not an integer, hence e is an irrational number.

1.5.2 Irrationality of e−1, following C.L. Siegel

In 1949, in his book on transcendental numbers [35], C.L. Siegel simplified
the proof by Fourier: considering e−1 instead of e yields alternating series,
hence it is no more necessary to estimate the remainder term.

The sequence (1/n!)n≥0 is decreasing and tends to 0, hence for odd N ,

1− 1
1!

+
1
2!
− · · · + 1

(N − 1)!
− 1

N !
< e−1 < 1− 1

1!
+

1
2!
− · · · + 1

(N + 1)!
·

Multiply by N !; the left hand side becomes

aN := N !− N !
1!

+
N !
2!
− · · · + N !

(N − 1)!
− N !

N !
∈ Z,

while the right hand side becomes

aN +
1

N + 1
< aN + 1.

Hence 0 < N !e−1 − aN < 1, and therefore N !e−1 is not an integer.

1.5.3 The number e is not quadratic

.
The fact that e is not a rational number implies that for each m ≥ 1 the

number e1/m is not rational. To prove that e2, for instance, is also irrational
is not so easy (see the comment on this point in [1]).

The proof below is essentially the one given by J. Liouville in 1840 [25]
which is quoted by Ch. Hermite [17] (“ces travaux de l’illustre géomètre”).
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To prove that e does not satisfy a quadratic relation ae2 + be+ c with a,
b and c rational integers, not all zero, requires some new trick. Indeed if we
just mimic the same argument we get

cN ! +
N∑

n=0

(2na + b)
N !
n!

= −
∑

k≥0

(
2N+1+ka + b

) N !
(N + 1 + k)!

·

The left hand side is a rational integer, but the right hand side tends to
infinity (and not 0) with N , so we draw no conclusion.

Instead of this approach, Liouville writes the quadratic relation as ae +
b + ce−1 = 0. This time it works:

bN ! +
N∑

n=0

(a + (−1)nc)
N !
n!

= −
∑

k≥0

(
a + (−1)N+1+kc

) N !
(N + 1 + k)!

·

Again the left hand side is a rational integer, but now the right hand side
tends to 0 when N tends to infinity, which is what we expected. However we
need a little more work to conclude: we do not yet get the desired conclusion;
we only deduce that both sides vanish. Now let us look more closely to the
series in the right hand side. Write the two first terms AN for k = 0 and
BN for k = 1:

∑

k≥0

(
a + (−1)N+1+kc

) N !
(N + 1 + k)!

= AN + BN + CN

with

AN =
(
a− (−1)Nc

) 1
N + 1

, BN =
(
a + (−1)Nc

) 1
(N + 1)(N + 2)

and
CN =

∑

k≥2

(
a + (−1)N+1+kc

) N !
(N + 1 + k)!

·

The above proof that the sum AN + BN + CN tends to zero as N tends to
infinity shows more: each of the three sequences

AN , (N + 1)BN , (N + 1)(N + 2)CN

tends to 0 as N tends to infinity. Hence, from the fact that the sum AN +
BN +CN vanishes for sufficiently large N , it easily follows that for sufficiently
large N , each of the three terms AN , BN and CN vanishes, hence a−(−1)Nc
and a + (−1)Nc vanish, therefore a = c = 0, and finally b = 0.
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Exercise 3. Let (an)n≥0 be a bounded sequence of rational integers. Prove
that the following conditions are equivalent:
(i) The number

ϑ1 =
∑

n≥0

an

n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.

1.5.4 The number e2 is not quadratic

The proof below is the one given by J. Liouville in 1840 [24] . See also [8].
We saw in § 1.5.3 that there was a difficulty to prove that e is not

a quadratic number if we were to follow too closely Fourier’s initial idea.
Considering e−1 provided the clue. Now we prove that e2 is not a quadratic
number by truncating the series at carefully selected places. Consider a
relation ae4 + be2 + c = 0 with rational integer coefficients a, b and c. Write
ae2 + b + ce−2 = 0. Hence

N !b
2N−1

+
N∑

n=0

(a + (−1)nc)
N !

2N−n−1n!
= −

∑

k≥0

(
a + (−1)N+1+kc

) 2kN !
(N + 1 + k)!

·

Like in § 1.5.3, the right hand side tends to 0 as N tends to infinity, and if
the two first terms of the series vanish for some value of N , then we conclude
a = c = 0. What remains to be proved is that the numbers

N !
2N−n−1n!

, (0 ≤ n ≤ N)

are integers. For n = 0 this is the coefficient of b, namely 2−N+1N !. The
fact that these numbers are integers is not true for all values of N , it is not
true even for all sufficiently large N ; but we do not need so much, it suffices
that they are integers for infinitely many N , and that much is true.

The exponent vp(N !) of p in the prime decomposition of N ! is given by
the (finite) sum (see, for instance, [16])

vp(N !) =
∑

j≥1

⌊
N

pj

⌋
. (3)

Using the trivial upper bound #m/pj$ ≤ m/pj we deduce the upper bound

vp(n!) ≤ n

p− 1
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for all n ≥ 0. In particular v2(n!) ≤ n. On the other hand, when N is a
power of p, say N = pt, then (3) yields

vp(N !) = pt−1 + pt−2 + · · · + p + 1 =
pt − 1
p− 1

=
N − 1
p− 1

.

Therefore when N is a power of 2 the number N ! is divisible by 2N−1 and
we have, for 0 ≤ m ≤ N ,

v2(N !/n!) ≥ N − n− 1,

which means that the numbers N !/2N−n−1n! are integers.

Exercise 4. (Continuation of exercise 3). Let (an)n≥0 be a bounded se-
quence of rational integers. Prove that these properties are also equivalent
to
(iii) The number

ϑ2 =
∑

n≥0

an2n

n!

is rational.

Exercise 5. Prove that e
√

2 is an irrational number.
Hint. Prove the stronger result that e

√
2 + e−

√
2 is irrational.

Prove also the irrationality of e
√

3.
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