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These are informal notes of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

Recall Hurwitz’s Theorem, which is the implication (i)=⇒(vi) of Propo-
sition 4.

Lemma 112. Let ϑ be a real number. The following conditions are equiva-
lent:
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ−
p

q

∣∣∣∣ <
1√
5q2

·

We proved it by using continued fractions, as a consequence of Borel’s
Lemma 110: among three consecutive convergents of the continued fraction
of an irrational number ϑ, one at least satisfies property (ii) of Lemma 112.

We give two further proofs of Lemma 112: the first one rests on Farey’s
series, the last one does not involve continued fractions nor Farey series (but
the ideas are very similar). The last proof yields a new irrationality criterion
(Lemma 120).

6.5 Farey series

6.5.1 Definition and properties

For n ≥ 1, the Farey series Fn of order n is the finite increasing sequence
of rational numbers in the range [0, 1] having denominators ≤ n. Each of
them starts with 0 and ends with 1. Here are the first ones

F1 = {0, 1}
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F2 =
{

0,
1
2
, 1

}

F3 =
{

0,
1
3
,
1
2
,
2
3
, 1

}

F4 =
{

0,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
, 1

}

F5 =
{

0,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
, 1

}

F6 =
{

0,
1
6
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
5
6
, 1

}

F7 =
{

0,
1
7
,
1
6
,
1
5
,
1
4
,
2
7
,
1
3
,
2
5
,
3
7
,
1
2
,
4
7
,
3
5
,
2
3
,
5
7
,
3
4
,
4
5
,
5
6
,
6
7
, 1

}

F8 =
{

0,
1
8
,
1
7
,
1
6
,
1
5
,
1
4
,
2
7
,
1
3
,
3
8
,
2
5
,
3
7
,
1
2
,
4
7
,
3
5
,
5
8
,
2
3
,
5
7
,
3
4
,
4
5
,
5
6
,
6
7
,
7
8
, 1

}

The number of elements in Fn is given by the inductive relation

|Fn| = |Fn−1| + ϕ(n),

with |F1| = 2, where ϕ(n) is Euler’s function (ϕ(n) is the number of integers
in the range 1, . . . , n which are relativey prime to n). Hence

|Fn| = 1 +
n∑

m=1

ϕ(m).

One can deduce the estimate

|Fn| ∼
3n2

π2
·

Proposition 113. If h/k < h′/k′ are successive terms in a Farey series
Fn, then h′k − hk′ = 1.

For the proof, we follow § I.2 of [2]. Other proofs are given in [1], Chap. 3.

Lemma 114. Let x = (x1, x2) and y = (y1, y2) be two elements of Z2. The
following conditions are equivalent:
(i) (x, y) is a basis of Z2 over Z.
(ii) x1y2 − x2y1 = ±1.
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(iii) x and y are are linearly independent over R, and the closed parallelo-
gram

P =
{
λx + µy ; λ ∈ R, µ ∈ R, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1

}

with vertices 0, x, y and x + y does not contain integer points in Z2 but its
vertices.
(iv) x and y are are linearly independent over R, and the closed triangle

T =
{
λx + µy ; λ ∈ R≥0, µ ∈ R≥0, λ + µ ≤ 1

}

with vertices 0, x and y, does not contain integer points in Z2 but its vertices.

Proof. A change of basis for Z2 has a invertible matrix with determinant a
unit in Z, hence (i) ⇐⇒ (ii).

Assume (i). Any element z in Z2 can be written in a unique way as
λx + µy with λ and µ in R, and these numbers λ and µ are in Z. Hence,
when z ∈ P, we have 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1, and therefore each of λ, µ is 0
or 1. This proves (iii).

Conversely, assume (iii). Let u ∈ Z2. Since (x, y) is a basis of R2 over
R, we can write u = tx+ t′y with t and t′ in R. Define two integers a and a′

by a = )t* and a′ = )t′*. From 0 ≤ t− a < 1 and 0 ≤ t′ − a′ < 1 we deduce
u− ax− a′y ∈ Z2 ∩P with u− ax− a′y ,∈ {x, y}, hence u = ax + a′y. This
proves (i).

Since P contains T , (iii) implies (iv).
Finally, assume (iv). If z ∈ P∩Z2 is distinct from 0, x and y, then z ,∈ T ,

from which we deduce that x + y − z ∈ T ∩ Z2. From z ,= x and z ,= y we
deduce x+ y− z = 0, hence z = x+ y. Therefore P ∩Z2 = {0, x, y, x+ y},
which is (iii).

Proof of Proposition 113. Let h/k < h′/k′ be successive terms in the Farey
series Fn. From (h, k) ,= (h′, k′) and gcd(h, k) = gcd(h′, k′) = 1, we deduce
that the two vectors (h, k) and (h′, k′) of R2 are linearly independent. Since
h′k − hk′ > 0, using Lemma 114, it suffices to check that the triangle T
with vertices 0, x and y does not contain any element of Z2 but the vertices.
Assume z = (h′′, k′′) ∈ T ∩ Z2 with z ,∈ {0, x, y}. We have z = λx + µy
with λ ≥ 0, µ ≥ 0, 0 < λ + µ ≤ 1, (λ, µ) ,∈ {(0, 1) ; (1, 0)}. Then k′′ =
λk + µk′ ≤ n and h/k < h′′/k′′ < h′/k′, which contradicts the assumption
that there is no element between h/k and h′/k′ in Fn.
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Corollary 115. if h/k < h′′/k′′ < h′/k′ are successive elements in a Farey
series Fn, then

h′′

k′′
=

h + h′

k + k′
·

Proof. From Proposition 113 we deduce h′′k − hk′′ = 1, h′k′′ − h′′k′ = 1,
hence h′′(k + k′) = k′′(h + h′).

Examples in F5 of F6 are 1/3 < 2/5 < 1/2 < 2/5: the fraction (h +
h′)/(k + k′) may or may not be in reduced form.

Here is our second proof of Lemma 112.

Proposition 116. Let h/k < h′/k′ be successive elements in a Farey series
Fn. Define h′′ = h + h′, k′′ = k + k′. Then h′′/k′′ is in reduced form, and
for any α in the interval h/k ≤ α ≤ h′/k′, at least one of the following
inequalities hold:

α− h

k
<

1√
5k2

,

∣∣∣∣α−
h′′

k′′

∣∣∣∣ <
1√
5k′′2

,
h′

k′
− α <

1√
5k′2

·

Proof. From h(k + k′)− (h + h′)k = 1, we deduce that k + k′ and h + h′ are
relatively prime.

By symmetry we may assume h′′/k′′ < α < h′/k′. If none of the inequal-
ities hold, then

α− h

k
≥ 1√

5k2
, α− h′′

k′′
≥ 1√

5k′′2
,

h′

k′
− α ≥ 1√

5k′2
·

Using h′k − hk′ = 1 and h′k′′ − h′′k′ = 1, we deduce

1
kk′

≥ 1√
5

(
1
k2

+
1

k′2

)

and
1

k′k′′
≥ 1√

5

(
1

k′2
+

1
k′′2

)
·

We deduce
√

5kk′ ≥ k2 + k′2 and
√

5k′k′′ ≥ k′2 + k′′2,

which means that the numbers x = k/k′ and y = k′/k′′ satisfy

x2 −
√

5x + 1 ≤ 0 and y2 −
√

5y + 1 ≤ 0.
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Since the roots of X2 −
√

5X + 1 are Φ and 1/Φ, it follows that x and y lie
in the intervall (1/Φ,Φ). From k′′ = k + k′ we deduce 1/y = x + 1, hence:

1
Φ

+ 1 ≤ x + 1 =
1
y
≤ Φ.

Since x and y are rational numbers, this is not compatible with the irra-
tionality of Φ.

Notice that the end of the proof is the same as the proof of Borel’s
Lemma 110.

We conclude this section by some further remark on Farey sequences,
which we do not plan to use, but which may be interesting to know.

The converse of Corollary 115 is true: If h, k, h′, k′ are positive integers
with 0 < h/k < h′/k′ < 1 which satisfy h′k − kh′ = 1, then h/k and h′/k′

are consecutive elements in the Farey series Fn with n = max{k, k′}.

Here is the proof. Suppose first k ≥ k′. Denote by h′′/k′′ the successor of
h/k in Fk. Then h′′k−k′′h = 1 and 1 ≤ k′′ ≤ k, hence (h′′−h′)k = (k′′−k′)h,
which shows that k′ and k′′ are congruent modulo k. Since they both lie in
the interval [1, k], we deduce k′ = k′′, hence h′ = h′′.

Similarly, if k < k′, we denote by h′′/k′′ the predecessor of h′/k′ in Fk′ .
The same argument gives h/k = h′′/k′′.

It follows that if h/k < h′/k′ are consecutive in the Farey series Fn,
then the smallest m > n such that there is an element h′′/k′′ of Fm in the
interval h/k < h′′/k′′ < h′/k′ is m = k + k′, this element h′′/k′′ is unique
and h′′ = h + h′, k′′ = k + k′ = m.

Indeed, by definition of m, we have m = k′′. From the inequalities

h

k
<

h + h′

k + k′
<

h′

k′
,

it follows that m ≤ k + k′. The unicity of an element of Fm in this interval
follows from the fact that two distinct rational numbers with denominator
m are at distance ≥ 1/m, while Proposition 113 yields

h′

k′
− h

k
=

1
kk′

<
1
m
·

We have seen in Proposition 116 that (h + h′)/(k + k′) is in reduced form.
Finally Corollary 115 shows that h′′/k′′ = (h+h′)/(k+k′), hence k′′ = k+k′.

Here is a connection with continued fractions: let p/q be an irreducible
fraction with q ≥ 2; write the continued fraction of p/q which ends with
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an ≥ 2 as p/q = [0, a1, . . . , an]. Then the predecessors and successors of
p/q in the Farey series Fq have continued fractions [0, a1, . . . , an − 1] and
[0, a1, . . . , an−1]:

[0, a1, . . . , an−1] <
p

q
= [0, a1, . . . , an] < [0, a1, . . . , an − 1] if n is odd,

[0, a1, . . . , an − 1] <
p

q
= [0, a1, . . . , an] < [0, a1, . . . , an−1] if n is odd.

Indeed, using the other continued fraction p/q = [0, a1, . . . , an − 1, 1] =
pn+1/qn+1, we write as in (64)

(
p pn

q qn

)
=

(
pn−1&pn−2 qn−1 qn−2

) (
an − 1 1

1 0

) (
1 1
1 0

)

where pn/qn = [0, a1, . . . , an − 1] and pn−1/qn−1 = [0, a1, . . . , an−1], and we
have qn−1 < qn < q, pqn − pnq = (−1)n, pqn−1 − pn−1q = (−1)n−1 (recall
Lemma 68 with n replaced by n+1 and an+1 = 1). Hence the result follows
from the previous remarks.

6.5.2 Hurwitz Theorem

Here is the third proof of of Hurwitz’s Lemma 112.
We start with the next auxiliary result, which also follows from the re-

sults we proved on continued fractions (take for p/q and r/s two consecutive
convergents of ϑ) or on Farey series (take two consecutive elements of a Farey
series such that ϑ is in their interval).

Lemma 117. Let ϑ be a real irrational number. Then there exist infinitely
many pairs (p/q, r/s) of irreducible fractions such that

p

q
< ϑ<

r

s
and qr − ps = 1.

In this statement and the next ones, it is sufficient to prove inequalities
≤ in place of <: this follows from the irrationality of ϑ.

Proof. Let H be a positive integer. Among the irreducible rational fractions
a/b with 1 ≤ b ≤ H, select one for which |ϑ − a/b| is minimal. If a/b < ϑ
rename a/b as p/q, while if a/b > ϑ, then rename a/b as r/s.

First consider the case where a/b < ϑ, hence a/b = p/q. Since gcd(p, q) =
1, using Euclidean’s algorithm, one deduces (Bézout’s Theorem) that there
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exist (r, s) ∈ Z2 such that qr − sp = 1 with 1 ≤ s < q and |r| < |p|. Since
1 ≤ s < q ≤ H, from the choice of a/b it follows that

∣∣∣∣ϑ−
p

q

∣∣∣∣ ≤
∣∣∣ϑ−

r

s

∣∣∣

hence r/s does not belong to the interval [p/q, ϑ]. Since qr− sp > 0 we also
have p/q < r/s, hence ϑ < r/s.

In the second case where a/b > ϑ and r/s = a/b we solve qr − sp = 1
by Euclidean algorithm with 1 ≤ q < s and |p| < r, and the argument is
similar.

We now complete the proof of the existence of infinitely many such pairs.
Once we have a finite set of such pairs (p/q, r/s), we use the fact that there
is a rational number m/n closer to ϑ than any of these rational fractions.
We use the previous argument with H ≥ n. This way we produce a new pair
(p/q, r/s) of rational numbers which is none of the previous ones (because
one at least of the two rational numbers p/q, r/s is a better approximation
than the previous ones). Hence this construction yields infinitely many pairs,
as claimed.

Lemma 118. Let ϑ be a real irrational number. Assume (p/q, r/s) are
irreducible fractions such that

p

q
< ϑ<

r

s
and qr − ps = 1.

Then
min

{
q2

(
ϑ− p

q

)
, s2

(r

s
− ϑ

)}
<

1
2
·

Proof. Define

δ = min
{

q2

(
ϑ− p

q

)
, s2

(r

s
− ϑ

)}
.

From
δ

q2
≤ ϑ− p

q
and

δ

s2
≤ r

s
− ϑ

with qr − ps = 1 one deduces that the number t = s/q satisfies

t +
1
t
≤ 1

δ
·

Since the minimum of the function t -→ t + 1/t is 2 and since t ,= 1, we
deduce δ < 1/2.
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Remark. The inequality t+(1/t) ≥ 2 for all t > 0 with equality if and only
if t = 1 is equivalent to the arithmetico-geometric inequality

√
xy ≤ x + y

2
,

when x and y are positive real numbers, with equality if and only if x = y.
The correspondance between both estimates is t =

√
x/y.

From Lemmas 117 and 118 it follows that for ϑ ∈ R \ Q, there exist
infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ−
p

q

∣∣∣∣ <
1

2q2
·

A further step is required in order to complete the proof of Lemma 112.

Lemma 119. Let ϑ be a real irrational number. Assume (p/q, r/s) are
irreducible fractions such that

p

q
< ϑ<

r

s
and qr − ps = 1.

Define u = p + r and v = q + s. Then

min
{

q2

(
ϑ− p

q

)
, s2

(r

s
− ϑ

)
, v2

∣∣∣ϑ−
u

v

∣∣∣
}

<
1√
5
·

Proof. First notice that qu− pv = 1 and rv − su = 1. Hence

p

q
<

u

v
<

r

s
·

We repeat the proof of lemma 118 ; we distinguish two cases according to
whether u/v is larger or smaller than ϑ. Since both cases are quite similar,
let us assume ϑ < u/v. The proof of lemma 118 shows that

s

q
+

q

s
≤ 1

δ
and

v

q
+

q

v
≤ 1

δ
·

Hence each of the four numbers s/q, q/s, v/q, q/v satisfies t+1/t ≤ 1/δ. Now
the function t -→ t+1/t is decreasing on the interval (0, 1) and increasing on
the interval (1,+∞). It follows that our four numbers all lie in the interval
(1/x, x), where x is the root > 1 of the equation x + 1/x = 1/δ. The two
roots x and 1/x of the quadratic polynomial X2−(1/δ)X+1 are at a mutual
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distance equal to the square root of the discriminant ∆ = (1/δ)2 − 4 of this
polynomial. Now

v

q
− s

q
= 1,

hence the length
√

∆ of the interval (1/x, x) is ≥ 1 and therefore δ ≤ 1/
√

5.
This completes the proof of Lemma 119.

Remark. In the three proofs of Hurwitz’s Theorem, the number
√

5 occurs
as follows: for any x > 1,

max
{

x +
1
x

,
1 + x

x
+

x

1 + x

}
≥
√

5,

with equality if and only if x = Φ (the Golden ratio). Indeed, for x > 1 we
have

x +
1
x

>
√

5⇐⇒ x > Φ

and, with t = (x + 1)/x,

t +
1
t

>
√

5⇐⇒ t > Φ⇐⇒ x +
1
x

>
√

5⇐⇒ x < Φ.

6.5.3 A further irrationality criterion

Lemma 120. Let ϑ be a real number. The following conditions are equiva-
lent:
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q and r/s in Q such that

p

q
< ϑ<

r

s
, qr − ps = 1

and
max{qϑ− p ; r − sϑ} < ε.

(iii)There exist infinitely many pairs (p/q, r/s) of rational numbers such that

p

q
< ϑ<

r

s
, qr − ps = 1

and
max{q(qϑ− p) ; s(r − sϑ)} < 1.
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Proof. The implications (iii) =⇒ (ii) =⇒ (i) are easy. For (i)=⇒(iii) we are
going to combine the arguments in the proof of Lemma 117 with results
from the theory of continued fractions.

Since ϑ is irrational, there are infinitely many p/q such that
∣∣∣∣ϑ−

p

q

∣∣∣∣ <
1

2q2
·

This is a weak form of Hurwitz Lemma 112. According to Legendre’s Lemma
111, such a p/q is a convergent of ϑ. The best approximation property of
the convergents (Lemma 105) implies that for any a/b ∈ Q with 1 ≤ b ≤ q
and a/b ,= p/q, we have ∣∣∣ϑ−

a

b

∣∣∣ >

∣∣∣∣ϑ−
p

q

∣∣∣∣ .

Assume first p/q < ϑ. Let r/s be defined by qr − ps = 1 and 1 ≤ s < q,
|r| < |p|. We have

0 <
r

s
− ϑ <

r

s
− p

q
=

1
qs
≤ 1

s2
·

Next assume p/q > ϑ. In this case rename it r/s and define p/q by qr−ps = 1
and 1 ≤ q < s, |p| < |r|.

Finally, repeat the argument in the proof of Lemma 117 to get an infinite
set of approximations. Lemma 120 follows.
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