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7 Approximation of functions

We give Lambert’s proof of the irrationality of = and e” for r € Q \ {0},
involving continued fractions of analytic functions. Then we give a very
short introduction to generalized hypergeometric functions.

7.1 Lambert’s proof of the irrationality of 7 and e" for r €
Q\ {0}

The fundamental result of Lambert’s paper [3] is:

Theorem 121 (Lambert, 1761). For any r € Q \ {0}, the numbers tanr
and e” are irrational. In particular the number w is irrational.

The main tool is continued fractions, and the first goal of Lambert is
to develop tanz = sinz/cosz and (¥ — e *)/(e* + e~ %) into continued
fractions.

Proposition 122. The functions tanz and (e* — e~ ") /(e” + e~") can be
represented as a continued fraction

tanx——’ 7’+—$2’+“'+ _2’_|_..
113 "5 12k — 1
and
em_e_m—ﬂ+ﬂ+ﬁ+ + ? ‘+
e +e |1 |3 |5 12k — 1

Each of these continued fractions converges uniformly to the function in the
left hand side on any compact subset of C on which this function is bounded.
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These two formulae are related by

1 eit o e—it
tant = - "
7 et + et
The next tool is a criterion for irrationality, by means of such irregular
continued fractions. Here is Proposition 1, § 4.3.3, of [I].

Proposition 123. Let (an)n>1 and (bp)n>1 be two sequences of rational
integers. Assume that the continued fraction
bi| el bi| bn|

lai  |az  |as |an,

converges to some real number x. Assume also that there exists a positive
integer ng such that, for all n > ng, we have 0 < |by| < |an|. Then for each
n > 1 the continued fraction

bi’ bn-‘rl’ bn+2‘ 4o g bn-‘rm‘
an  ans1  fango |G m

converges to a limit x,,. Further, we have |x,| <1 for all n > ng. Further-
more, if xn, # +1 for all n > ng, then x is irrational.

From
bl bl bl b
lar ~ |az  |as lan + Tyt
using , we deduce
_Anitapdne
"~ Bp—1+@,Bp_2

This is an analog of but for generalized continued fractions and with
x, replaced by 1/x,. Therefore, x is rational if and only if x,, is rational for
at least one n > 1, if and only if x, is rational for all n > 1.

We assume these two propositions and we complete the proof of the
irrationality of tanr for r € Q non—zero.

We shall use several times the following lemma, which means, in short
terms

bi| = bl bn | Abi| A1 Aabo| oy An—l/\nbn"

ap+ — 4+ — +-+— =ao
]al ’ag |an |)\1a1 ‘ )\2&2 ’ /\nan
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Lemma 124. Consider a generalized finite continued fraction and define,

as usual (cf. (51))

An An—l ) 1 aiq 1 o Ap—1 1 Ay, 1
B, B,.1/ \1 0)\by O bp—1 0) \b, 0)°
Let A1, ..., A\, be further variables. Define, for n > 0, al, = \pa, and, for

n > 1, b, = A—1\pbn, with \g = 1. Then the polynomials Al, and B},
defined by

A, AL\ _ (ap 1Y\ (ay 1\ fan_y 1\ [a; 1
B, B, )= \1 0)\s o o, o)\, o)

A=A MA, and Bl =\ ---\,B.

are

In particular
AL A,

B, By
Proof. This is true for n = 0 and n = 1, and by induction this follows from

the recurrence formulae satisfied by A,,, By, Al and B):

A =d A+ A B, =d\B\_, +V,B!

n n*in—2 n-n—2-
]

Proof of Lambert’s irrationality result on tanr for r € Q\ {0}. Write r =
p/q with ¢ > 1 and p # 0 integers. From proposition we deduce
L T L e L s L s R

t = ..
e D e

Lemmawith ao =0, a, =2n—1forn>1, by = p/q, b, = —p?/q?* for
n>2, A\, =qforn>1, yields

2 2 2
pl | —p* | —p°| - |
tanp/q = — + 4+ =4 4
/1=14" T3q " T5q @n+1)g
For n > max{3,p?/2q}, set
-p* | -p* | —p* |

n = - b e+
T len T g T @n+3)g (20 + m)q
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so that )
p

B (2n + l)q + Yn—1 .
One deduces from Proposition that |y,| < 1. From the estimate

p? p?

< Pl
(2n+1)q — |yn—1| ~ 2nq

Yn =

|yn‘ = <1,
it follows that |y,| < 1. Therefore y,, # £1 for all sufficiently large n, hence
again we can apply Proposition and conclude.

O

The proof of Proposition [123] is similar to the proof of Proposition [60]
the main difference being that we do not assume the numbers a,, and b,, to
be positive - but here we assume the strict inequality |a,| > |by].

Proof of Proposition [125 We start with the following remark. Let a, b and
x be real numbers satisfying |a| >| b| + 1, |b| > 1 and |x| < 1. Then a + =

has the sign of a and
b

a-+x

< 1.

When a and b are rational integers, the hypotheses on a and b hold as soon
as |a| > |b] > 0.

From this observation and the assumption 0 < |b,| < |an|, 0 < |[bpy1] <
|ant1], we deduce that for all n > no,

|b(;1’ + |bn+1‘ _ bT;)
a
n n+1 an -+ n+1
Gp+1

has the same sign as by, /a, and has modulus < 1. By induction, one finds
that, for all m > 0,

bi|+ bn+1| 4t bn+m|
|an ‘an—i—l |an+m

has the same sign as b,/a, and has modulus < 1. Since the continued
fraction (of x, hence of z,,) is convergent, it follows that for all n > ng, x,
has the same sign as an,/bn, and |z,| < 1.

Assume now that |z,| < 1 for all n > ng and that x is rational. By
induction, x,, is rational for all n > 1; write z,, = u, /v, with |u,| < v, for
n > ng. From z, = b, /(an + n41) it follows that

b —anUn + bpvn

n
$n+1:_an+;: »
n n
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is a rational number of modulus < 1 and denominator |u,| smaller than the
denominator v, of x,,. By infinite descent we reach a contradiction. O

Remark. Assume the assumptions of Proposition[123 are satisfied, but x,, =
+1 for somen > ng. Once some x, is rational, all x,, are rational, therefore
Ty, = 1 for all sufficiently large n. Since the x, with n > ng have constant
sign, we have Ty, = Tpy1, and from x, = by /(an +bpy1) with |ay| > [by| > 0
we deduce x, = —1 and ap, = b, — 1 < —2. An example is

1] 1] —1|

1= e . =10.2.=2.2. 2. 1.
‘_2—|—|_2—|— +|_2+ [77 ) 45 ’ ]

It remains to prove Proposition [122]

Proof of Proposition[129. Lambert starts with the power series expansions
of sin and cos:

3 5 2n+1
mr—z— T e
e T Y gt
and . )
R S U A AL S
cosz=1-—=x +4! +(-1) (2n)!+

Divide sin by cos and write tanz = sinz/cosxz = x/(1 + Ay). The power
series A starts with —22/3. Next write A; = —22/(3 + A3), so that

X o X
14+ Ay 14 —x?
3+ Ay

tanx =

The first term of Ay is —22/5. For Ay = —22/(5 + A3) we have

ta x x| N —z?| N —z? |
nxy = = — .
—z? 1| 3 |5+ As
S —
3
+54—143

The closed formulae for A;, Ay and Ag are given in [I]. Here is the formula
for Ag which is computed from

x| -z —z?| -z |
tanx = |—1 + — + + -

’|
|3 |5 "+pk—1+Ay
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namely

> nil oneo (2n+2)(2n +4) - (2n + 2k)
y _nzzo(_l) gt (2n 4 2k + 1)!
£ S o (20 +2) (20 +4) - (20 + 2% —2)
;_ v (2n + 2k —1)!

One can write also the coefficients respectively

(2n+2)(2n +4)--- (2n + 2k) 2k (n + k)!

(2n + 2k + 1)! ©onl(2n+ 2k + 1)!

and
(2n+2)2n+4)---(2n+2k—2) 2" Y(n4k—1)!

(2n + 2k — 1)! T nl(2n+ 2k — 1)
The proof of the convergence of the continued fraction requires to compute
the convergents, which is something done by Lambert. He writes

x| —z?  —2? —z2 | P,
=t + +-

i Ty T T e Q.

where
Pn+1 = (2n + 1)Pn - xQPnfla QTL+1 = (2n + 1)Qn - $2Qn71

for n > 2, with the initial conditions P =z, Q1 = 1, P, = 3z, Q2 = 3 — 22.
By induction, it follows that the polynomial P, is odd, of degree n if n is
odd and n — 1 is n is even, while @), is an even polynomial, of degree n if n
is even and n — 1 is n is odd. The explicit formulae are

Po=cypny, Qun=cngn, cn=1-3-5---(2n—1)= (22733!!7
with
D D e P e i
1<k< (n+1)/2
and

0 = Z (1" 2 (2n —2k)(2n — 2k —2) - (2n — 4k + 2)

0<k<n/2 2k)!  (2n—1)(2n—3)---(2n -2k + 1)
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As n tends to infinity, p, and g, converge uniformly on any compact subset
of C to sin and cos: the difference between the sums of the first k& terms in
the Taylor expansion at the origin of p,, and sin (respectively of ¢, and cos)
is bounded above by

|$|2k+1 |$’2k+2 ’m|2kz+3
@Dl k12! (2k+3)

and therefore p,, /g, converge to tanx uniformly on any compact subset of
C where |tanz| is bounded.
O

Remark. In the proof of Theorem 121, we may replace the Lambert’s irra-

tionality criterion (. Pmposz'tz'on for continued fractions by our standard

criterion (Proposz'tion involving rational approrimations, as follows.
Writing the function f(z) = (1/z)tan z as a continued fraction and using

, we obtain, forn > 0,

5) — P (2) P (2) B Pri1(2) ) _ Pal?) 22 .
SR RE R (o0 3) a0 L aran

m>n

The polynomials P, and Q,, have integral coefficients and degrees < n; for
n tending to infinity, Qn(p/q) grows like 2™nl. One checks that the rational

approximation given by P,(p/q)/Qn(p/q) is too sharp for f(p/q) to be a
rational number.

From Lemma it follows that the continued fraction for (e —e~%)/(e"+
e~") given in Proposition can be written

T —T

e —e
For = 1/2 this gives

1 -
€+1 =12, 6, 10, 14, ..., 4k +2, ...]. = [4% + 2}x0.

e —

Let us deduce Euler’s continued fraction expansion for e (see § [1.4))

e=1[2,1,21,1,4,1, 1...] = [2,1,2k, 1i>1.

Define py /gy as the k—th convergent of x = [2,6,...,4k+2,...] and rg /sy
as the k—th convergent of y = [1,1,2,1,1,4,...,1,2k,1,...]. We eliminate

125



the indices which are not congruent to 1 modulo 3 among the 5 relations
involving 7 symbols

T3k—3 = T3k—4 + T3k—5,

T3k—2 = T3k—3 + I'3k—4,

T3k—1 = 2kT3k—2 + 353,

T3k = T3k—1 1 T3k—2,

T3k+1 = T3k + T'3k—1

and deduce
T3k41 = (4k + 2)r3g—2 + r3p—s.

We do the same for s; and get

<T3k+1 T3k—2> _ <7“3k—2 7‘3k-5> (4/<:+2 1)

S3k+1  S3k—2 83k—2 S3k—5 1 0

These are the same recurrence relations which are satisfied by pg and gqp.
Since

p—2=0, p1=1 po=2, g2=1, ¢g1=0, g=1
and
ro=0=2q_1, 11 =2=2q), s o=1=p_1—qg-1, s1=1=po—qo,

we deduce r3g11 = 2q and s3gp11 = pr—qx for all k. From y = limg_, o 73/ S35
we deduce y = 2/(x — 1). Since x = (e +1)/(e — 1), we get y = e — 1.
The same argument starting from

e?+1 —_—
o :[2j+1]j20:[1; 3, 5, 7,...],

yields Euler’s continued fraction expansion for e? (see §[1.4))

e =1[1,37—1, 1, 1, 3j, 12j+6);51 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8,...],

7.2 Hypergeometric functions

A (generalized) hypergeometric series is a power series

L+agz+ a2 /24 4 a2 /nl + - -
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such that there exists a rational fraction A € C(T) satisfying, for all n > 0,
ap+1 = apA(n).

Write this rational fraction as

(a1 + 1) (ap+T)
A(T)_C(b1+T)-..(bq+T)'

We assume that A has no pole on Zxq, which means b; ¢ Z<o for 1 < j <g,
so that A(n) is defined for all n > 0. Then

N :C(a1+n)--~(ap+n)
T+ n) - (bg + 1)

n

and therefore
n (a1)p--- (ap)n

T O (bgn

where (a),, denotes the Pochhammer symbol
(a)p =ala+1)---(a+n—1) forn>1and (a)y=1.

It is also called raising factorial: notice that (1), = n! and satisfies an
number of relations, among which

(@)km = (a)r(a + E)m.

For each n > 0, we have

(a)n

lim —= =1
a—o0o @

and for each a € C\ Zo, we have
tim (Yn g,

For p and ¢ non—negative integers, we define

ay az -+ Qp _ M.Zi.
qu<b1 by - bq Z>_Z(b1)n"'(b:)n n!

We shall use also the notation

qu(alaa2a"' )ap;blabQ)”' ,bq;Z).
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In the case where some a; is in Z<q, then ,Fj is a polynomial. Otherwise,
this power series has a radius of convergence which is infinite when ¢ > p,

)

finiteifg=p—1,and 0 if ¢ < p— 1.

For a, = by = ¢ we have
ar a - ap—1 C ap ag - Ap—1
F, P Z | = _1F -1 P
pra b1 b2 tee bq,1 & p d b1 b2 tee bq,1

Examples. The basic example is ¢Fp(z) = e*. Other examples are

a(a_‘_l)'”(a_'_n_l)-z”:(l—z)fa

Fo(a:2) = 3 .

n>0

and
ZTL

1
2F1(1,1;2;z) = = ——log(1l — 2).
7Z;)nqu z

We consider the special case p = 0, ¢ = 1 of Gauss hypergeometric series:

n

QFl(C; Z) = Z (c;nnl .

n>0

We denote this function by f(c; 2).

Since
(B, () (o) -2
and (g)n:@) <§+1>.,.<2+n—1>:W7

special cases are

P 2n
f(1/2;2%) = Z ((2271)' = cosh(2z)
n>0
and (22)2n )
f(3/2’ 2) - ; m == ? sinh(2,z).
From
1 _ c+n _ 1 n
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one deduces

n n

z

nz
fleiz) = . (¢c+1)pn! T ; (C)n-g-ln!'

>

n
The first series is f(c+ 1;2), the second is

n+1 2

Z (c B cle+1) nzzo (c+2),n! - cle+ 1)f(c—|— %2)-

n>0 )n+2n!

n

This is the functional equation relating f(c;2), f(c+ 1;2) and f(c+ 2;2):

flez) = fle+152) +

cle+ 1)f(c +2%2).

Hence the function g(c;2) = f(c;2)/f(c+ 1; 2) satisfies

( ) 14 z 1
c,z)= . .
g clc+1) gle+1;2)

Next define h(c; z) = (¢/2)g(c; 2%): we get

c 1
h(c’z)_;—’_h(c—l-l;z).
Therefore, for k > 1,
1 k—1
h(c;z):[c,c+ ,...,C+ ,h(c+k‘;z)].
z oz z

Replacing h by its value in terms of f yields

c fle;2?) _[c c+1 ct+k—1 (c+k) flc+k;2?) }

2 fle+ 22 (20 2 7 2 2 fletk+122)
We now take the limit on k:

Lemma 125. For ¢ and z positive real numbers, the infinite continued frac-
tion converges and we have

¢ flg2?) [c c+1 c+k }

2 fle+1;22) |20 =z 7 2

Proof. We first check the following auxiliary result:
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Let (an)n>0 be a sequence of real numbers, all > 1. Let x be
a real number. Assume that for all n > 1, there exists a real
number x,, > 1 such that

x = [ag,a1,...,an_1,Tp).

Then the infinite continued fraction |ag, a1, ..., an,...| converges
to x.

We already proved this result when the a, are integers, the proof in the
general case is the same: we write

[ } ‘1’(7,
apg,a1,...,Q = —
0, d1, s Un Bn

with A, = a,Ap_1+ Ap_o, By = anBn_1 + Bn_s, so that

. Tpt1An + Ap—1
T = )
mn—i—an + Bn—l

we note that B,, > B,,_1 + B,_2, which implies that B,, tends to infinity,
and we conclude with the estimate

Ap
By

1 1
< .
Bn(mn—&—an + Bn—l) o Bq%

xr —

To complete the proof of Lemma [125] we notice that for ¢ and z positive,

we have
c+k

fle+k+1;2%) < f(e+k;2%) and
z

>1

for sufficiently large k.
O

In the special cases ¢ = 1/2, this provides another proof of the continued
fraction expansion from Proposition [122)

ef —e’? 2| 22| 2 22|
— =10,1/2,3/2,...,(2k—1 =22y 2y
e? + e~ % [’ /Z, /Z, 7( )/Zv ] |1+‘3+|5+ +‘2]€—1+
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