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7 Approximation of functions

We give Lambert’s proof of the irrationality of π and er for r ∈ Q \ {0},
involving continued fractions of analytic functions. Then we give a very
short introduction to generalized hypergeometric functions.

7.1 Lambert’s proof of the irrationality of π and er for r ∈
Q \ {0}

The fundamental result of Lambert’s paper [3] is:

Theorem 121 (Lambert, 1761). For any r ∈ Q \ {0}, the numbers tan r
and er are irrational. In particular the number π is irrational.

The main tool is continued fractions, and the first goal of Lambert is
to develop tanx = sinx/ cos x and (ex − e−x)/(ex + e−x) into continued
fractions.

Proposition 122. The functions tanx and (ex − e−x)/(ex + e−x) can be
represented as a continued fraction

tanx =
x|
|1 +

−x2|
| 3

+
−x2|
| 5

+ · · · + −x2 |
|2k − 1

+ · · ·

and
ex − e−x

ex + e−x
=

x|
|1 +

x2|
| 3 +

x2|
| 5 + · · · + x2 |

|2k − 1
+ · · ·

Each of these continued fractions converges uniformly to the function in the
left hand side on any compact subset of C on which this function is bounded.
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These two formulae are related by

tan t =
1
i
· eit − e−it

eit + e−it
·

The next tool is a criterion for irrationality, by means of such irregular
continued fractions. Here is Proposition 1, § 4.3.3, of [1].

Proposition 123. Let (an)n≥1 and (bn)n≥1 be two sequences of rational
integers. Assume that the continued fraction

b1 |
|a1

+
b2 |
|a2

+
b3 |
|a3

+ · · · + bn |
|an

+ · · ·

converges to some real number x. Assume also that there exists a positive
integer n0 such that, for all n ≥ n0, we have 0 < |bn| < |an|. Then for each
n ≥ 1 the continued fraction

bn |
|an

+
bn+1 |
|an+1

+
bn+2 |
|an+2

+ · · · + bn+m |
|an+m

+ · · ·

converges to a limit xn. Further, we have |xn| ≤ 1 for all n ≥ n0. Further-
more, if xn %= ±1 for all n ≥ n0, then x is irrational.

From
b1 |
|a1

+
b2 |
|a2

+
b3 |
|a3

+ · · · + bn |
|an + xn+1

,

using (51), we deduce

x =
An−1 + xnAn−2

Bn−1 + xnBn−2
·

This is an analog of (70) but for generalized continued fractions and with
xn replaced by 1/xn. Therefore, x is rational if and only if xn is rational for
at least one n ≥ 1, if and only if xn is rational for all n ≥ 1.

We assume these two propositions and we complete the proof of the
irrationality of tan r for r ∈ Q non–zero.

We shall use several times the following lemma, which means, in short
terms

a0 +
b1 |
|a1

+
b2 |
|a2

+ · · · + bn |
|an

= a0 +
λ1b1 |
|λ1a1

+
λ1λ2b2|
| λ2a2

+ + · · · + λn−1λnbn|
| λnan

·
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Lemma 124. Consider a generalized finite continued fraction and define,
as usual (cf. (51))

(
An An−1

Bn Bn−1

)
=

(
a0 1
1 0

) (
a1 1
b1 0

)
· · ·

(
an−1 1
bn−1 0

) (
an 1
bn 0

)
.

Let λ1, . . . , λn be further variables. Define, for n ≥ 0, a′n = λnan and, for
n ≥ 1, b′n = λn−1λnbn, with λ0 = 1. Then the polynomials A′n and B′

n

defined by
(

A′n A′n−1

B′
n B′

n−1

)
=

(
a′0 1
1 0

) (
a′1 1
b′1 0

)
· · ·

(
a′n−1 1
b′n−1 0

) (
a′n 1
b′n 0

)
.

are
A′n = λ1 · · ·λnAn and B′

n = λ1 · · ·λnBn.

In particular
A′n
B′

n
=

An

Bn
.

Proof. This is true for n = 0 and n = 1, and by induction this follows from
the recurrence formulae satisfied by An, Bn, A′n and B′

n:

A′n = a′nA′n−1 + b′nA′n−2, B′
n = a′nB′

n−1 + b′nB′
n−2.

Proof of Lambert’s irrationality result on tan r for r ∈ Q \ {0}. Write r =
p/q with q ≥ 1 and p %= 0 integers. From proposition 122 we deduce

tan p/q =
p/q|
| 1

+
−p2/q2|
| 3

+
−p2/q2|
| 5

+ · · · + −p2/q2|
| 2n + 1

+ · · ·

Lemma 124 with a0 = 0, an = 2n− 1 for n ≥ 1, b1 = p/q, bn = −p2/q2 for
n ≥ 2, λn = q for n ≥ 1, yields

tan p/q =
p|
|q +

−p2|
| 3q

+
−p2|
| 5q

+ · · · + −p2 |
|(2n + 1)q

+ · · ·

For n > max{3, p2/2q}, set

yn =
−p2 |

|(2n + 1)q
+

−p2 |
|(2n + 3)q

+ · · · + −p2 |
|(2n + m)q

+ · · ·
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so that

yn = − p2

(2n + 1)q + yn−1
·

One deduces from Proposition 123 that |yn| ≤ 1. From the estimate

|yn| =
p2

(2n + 1)q − |yn−1|
≤ p2

2nq
< 1,

it follows that |yn| < 1. Therefore yn %= ±1 for all sufficiently large n, hence
again we can apply Proposition 123 and conclude.

The proof of Proposition 123 is similar to the proof of Proposition 60,
the main difference being that we do not assume the numbers an and bn to
be positive - but here we assume the strict inequality |an| > |bn|.

Proof of Proposition 123. We start with the following remark. Let a, b and
x be real numbers satisfying |a| ≥| b| + 1, |b| ≥ 1 and |x| < 1. Then a + x
has the sign of a and ∣∣∣∣

b

a + x

∣∣∣∣ < 1.

When a and b are rational integers, the hypotheses on a and b hold as soon
as |a| > |b| > 0.

From this observation and the assumption 0 < |bn| < |an|, 0 < |bn+1| <
|an+1|, we deduce that for all n ≥ n0,

bn |
|an

+
bn+1 |
|an+1

=
bn

an +
bn+1

an+1

has the same sign as bn/an and has modulus < 1. By induction, one finds
that, for all m ≥ 0,

bn |
|an

+
bn+1 |
|an+1

+ · · · + bn+m |
|an+m

has the same sign as bn/an and has modulus < 1. Since the continued
fraction (of x, hence of xn) is convergent, it follows that for all n ≥ n0, xn

has the same sign as an0/bn0 and |xn| ≤ 1.
Assume now that |xn| < 1 for all n ≥ n0 and that x is rational. By

induction, xn is rational for all n ≥ 1; write xn = un/vn with |un| < vn for
n ≥ n0. From xn = bn/(an + xn+1) it follows that

xn+1 = −an +
bn

xn
=
−anun + bnvn

un
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is a rational number of modulus < 1 and denominator |un| smaller than the
denominator vn of xn. By infinite descent we reach a contradiction.

Remark. Assume the assumptions of Proposition 123 are satisfied, but xn =
±1 for some n ≥ n0. Once some xn is rational, all xn are rational, therefore
xn = ±1 for all sufficiently large n. Since the xn with n ≥ n0 have constant
sign, we have xn = xn+1, and from xn = bn/(an + bn+1) with |an| > |bn| > 0
we deduce xn = −1 and an = bn − 1 ≤ −2. An example is

1 =
−1 |
| − 2

+
−1 |
| − 2

+ · · · + −1 |
| − 2

+ · · · = [0, 2,−2, 2,−2, . . .].

It remains to prove Proposition 122.

Proof of Proposition 122. Lambert starts with the power series expansions
of sin and cos:

sinx = x− x3

3!
+

x5

5!
− · · · + (−1)n x2n+1

(2n + 1)!
+ · · ·

and

cos x = 1− x2 +
x4

4!
− · · · + (−1)n x2n

(2n)!
+ · · ·

Divide sin by cos and write tanx = sin x/ cos x = x/(1 + A1). The power
series A1 starts with −x2/3. Next write A1 = −x2/(3 + A2), so that

tanx =
x

1 + A1
=

x

1 +
−x2

3 + A2

·

The first term of A2 is −x2/5. For A2 = −x2/(5 + A3) we have

tanx =
x

1 +
−x2

3 +
−x2

5 + A3

=
x|
|1 +

−x2|
| 3

+
−x2 |

|5 + A3
·

The closed formulae for A1, A2 and A3 are given in [1]. Here is the formula
for Ak which is computed from

tanx =
x|
|1 +

−x2|
| 3

+
−x2|
| 5

+ · · · + −x2 |
|2k − 1 + Ak

,
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namely

Ak =

∞∑

n=0

(−1)n+1x2n+2 (2n + 2)(2n + 4) · · · (2n + 2k)
(2n + 2k + 1)!

∞∑

n=0

(−1)nx2n (2n + 2)(2n + 4) · · · (2n + 2k − 2)
(2n + 2k − 1)!

·

One can write also the coefficients respectively

(2n + 2)(2n + 4) · · · (2n + 2k)
(2n + 2k + 1)!

=
2k(n + k)!

n!(2n + 2k + 1)!

and
(2n + 2)(2n + 4) · · · (2n + 2k − 2)

(2n + 2k − 1)!
=

2k−1(n + k − 1)!
n!(2n + 2k − 1)!

·

The proof of the convergence of the continued fraction requires to compute
the convergents, which is something done by Lambert. He writes

x|
|1 +

−x2|
| 3

+
−x2|

5
+ · · · + −x2 |

|2n− 1
=

Pn

Qn

where

Pn+1 = (2n + 1)Pn − x2Pn−1, Qn+1 = (2n + 1)Qn − x2Qn−1

for n ≥ 2, with the initial conditions P1 = x, Q1 = 1, P2 = 3x, Q2 = 3− x2.
By induction, it follows that the polynomial Pn is odd, of degree n if n is
odd and n− 1 is n is even, while Qn is an even polynomial, of degree n if n
is even and n− 1 is n is odd. The explicit formulae are

Pn = cnpn, Qn = cnqn, cn = 1 · 3 · 5 · · · (2n− 1) =
(2n)!
2nn!

,

with

pn =
∑

1≤k≤(n+1)/2

(−1)k−1 x2k−1

(2k − 1)!
· (2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 4)

(2n− 1)(2n− 3) · · · (2n− 2k + 3)

and

qn =
∑

0≤k≤n/2

(−1)k x2k

(2k)!
· (2n− 2k)(2n− 2k − 2) · · · (2n− 4k + 2)

(2n− 1)(2n− 3) · · · (2n− 2k + 1)
·
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As n tends to infinity, pn and qn converge uniformly on any compact subset
of C to sin and cos: the difference between the sums of the first k terms in
the Taylor expansion at the origin of pn and sin (respectively of qn and cos)
is bounded above by

|x|2k+1

(2k + 1)!
+

|x|2k+2

(2k + 2)!
+

|x|2k+3

(2k + 3)!
+ · · ·

and therefore pn/qn converge to tanx uniformly on any compact subset of
C where | tanx| is bounded.

Remark. In the proof of Theorem 121, we may replace the Lambert’s irra-
tionality criterion (Proposition 123) for continued fractions by our standard
criterion (Proposition 4) involving rational approximations, as follows.

Writing the function f(z) = (1/z) tan z as a continued fraction and using
(54), we obtain, for n > 0,

f(z) =
Pn(z)
Qn(z)

+
∑

m>n

(
Pm(z)
Qm(z)

− Pm+1(z)
Qm+1(z)

)
=

Pn(z)
Qn(z)

+
∑

m≥n

z2m

Qm−1Qm(z)
·

The polynomials Pn and Qn have integral coefficients and degrees ≤ n; for
n tending to infinity, Qn(p/q) grows like 2nn!. One checks that the rational
approximation given by Pn(p/q)/Qn(p/q) is too sharp for f(p/q) to be a
rational number.

From Lemma 124, it follows that the continued fraction for (ex−e−x)/(ex+
e−x) given in Proposition 122 can be written

ex − e−x

ex + e−x
= [0, 1/x, 3/x, 5/x, . . . , (2k − 1)/x, . . . ].

For x = 1/2 this gives

e + 1
e− 1

= [2, 6, 10, 14, . . . , 4k + 2, . . .]. = [4k + 2]k≥0.

Let us deduce Euler’s continued fraction expansion for e (see § 1.4)

e = [2, 1, 2, 1, 1, 4, 1, 1 . . . ] = [2, 1, 2k, 1]k≥1.

Define pk/qk as the k–th convergent of x = [2, 6, . . . , 4k+2, . . .] and rk/sk

as the k–th convergent of y = [1, 1, 2, 1, 1, 4, . . . , 1, 2k, 1, . . .]. We eliminate
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the indices which are not congruent to 1 modulo 3 among the 5 relations
involving 7 symbols

r3k−3 = r3k−4 + r3k−5,

r3k−2 = r3k−3 + r3k−4,

r3k−1 = 2kr3k−2 + r3k−3,

r3k = r3k−1 + r3k−2,

r3k+1 = r3k + r3k−1

and deduce
r3k+1 = (4k + 2)r3k−2 + r3k−5.

We do the same for sk and get
(

r3k+1 r3k−2

s3k+1 s3k−2

)
=

(
r3k−2 r3k−5

s3k−2 s3k−5

) (
4k + 2 1

1 0

)
.

These are the same recurrence relations which are satisfied by pk and qk.
Since

p−2 = 0, p−1 = 1, p0 = 2, q−2 = 1, q−1 = 0, q0 = 1

and

r−2 = 0 = 2q−1, r1 = 2 = 2q0, s−2 = 1 = p−1−q−1, s1 = 1 = p0−q0,

we deduce r3k+1 = 2qk and s3k+1 = pk−qk for all k. From y = limk→∞ r3k/s3k

we deduce y = 2/(x− 1). Since x = (e + 1)/(e− 1), we get y = e− 1.
The same argument starting from

e2 + 1
e2 − 1

= [2j + 1]j≥0 = [1; 3, 5, 7, . . . ],

yields Euler’s continued fraction expansion for e2 (see § 1.4)

e2 = [7; 3j − 1, 1, 1, 3j, 12j + 6]j≥1 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, . . . ],

7.2 Hypergeometric functions

A (generalized) hypergeometric series is a power series

1 + α1z + α2z
2/2 + · · · + αnzn/n! + · · ·
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such that there exists a rational fraction A ∈ C(T ) satisfying, for all n ≥ 0,

αn+1 = αnA(n).

Write this rational fraction as

A(T ) = c
(a1 + T ) · · · (ap + T )
(b1 + T ) · · · (bq + T )

·

We assume that A has no pole on Z≥0, which means bj %∈ Z≤0 for 1 ≤ j ≤ q,
so that A(n) is defined for all n ≥ 0. Then

αn+1 = c
(a1 + n) · · · (ap + n)
(b1 + n) · · · (bq + n)

αn

and therefore
αn = cn (a1)n · · · (ap)n

(b1)n · · · (bq)n
,

where (a)n denotes the Pochhammer symbol

(a)n = a(a + 1) · · · (a + n− 1) for n ≥ 1 and (a)0 = 1.

It is also called raising factorial: notice that (1)n = n! and satisfies an
number of relations, among which

(a)k+m = (a)k(a + k)m.

For each n ≥ 0, we have

lim
a→∞

(a)n

an
= 1

and for each a ∈ C \ Z<0, we have

lim
n→∞

(a)n

n!
= 1.

For p and q non–negative integers, we define

pFq

(
a1 a2 · · · ap

b1 b2 · · · bq

∣∣∣∣ z

)
=

∑

n≥0

(a1)n · · · (ap)n

(b1)n · · · (bq)n
· zn

n!
·

We shall use also the notation

pFq
(
a1, a2, · · · , ap; b1, b2, · · · , bq; z

)
.
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In the case where some ai is in Z≤0, then pFq is a polynomial. Otherwise,
this power series has a radius of convergence which is infinite when q ≥ p,
finite if q = p− 1, and 0 if q < p− 1.

For ap = bq = c we have

pFq

(
a1 a2 · · · ap−1 c
b1 b2 · · · bq−1 c

∣∣∣∣ z

)
= p−1Fq−1

(
a1 a2 · · · ap−1

b1 b2 · · · bq−1

∣∣∣∣ z

)

Examples. The basic example is 0F0(z) = ez. Other examples are

1F0
(
a; z

)
=

∑

n≥0

a(a + 1) · · · (a + n− 1)
n!

· zn = (1− z)−a

and
2F1

(
1, 1; 2; z

)
=

∑

n≥0

zn

n + 1
= −1

z
log(1− z).

We consider the special case p = 0, q = 1 of Gauss hypergeometric series:

0F1(c; z) =
∑

n≥0

zn

(c)nn!
·

We denote this function by f(c; z).
Since

(
1
2

)

n

=
(

1
2

) (
1
2

+ 1
)
· · ·

(
1
2

+ n− 1
)

=
(2n)!
22nn!

and (
3
2

)

n

=
(

3
2

) (
3
2

+ 1
)
· · ·

(
3
2

+ n− 1
)

=
(2n + 1)!

22nn!
,

special cases are

f(1/2; z2) =
∑

n≥0

(2z)2n

(2n)!
= cosh(2z)

and

f(3/2; z2) =
∑

n≥0

(2z)2n

(2n + 1)!
=

1
2z

sinh(2z).

From
1

(c)n
=

c + n

(c)n+1
=

1
(c + 1)n

+
n

(c)n+1

128



one deduces
f(c; z) =

∑

n≥0

zn

(c + 1)nn!
+

∑

n≥1

nzn

(c)n+1n!
·

The first series is f(c + 1; z), the second is

∑

n≥0

zn+1

(c)n+2n!
=

z

c(c + 1)

∑

n≥0

zn

(c + 2)nn!
=

z

c(c + 1)
f(c + 2; z).

This is the functional equation relating f(c; z), f(c + 1; z) and f(c + 2; z):

f(c; z) = f(c + 1; z) +
z

c(c + 1)
f(c + 2; z).

Hence the function g(c; z) = f(c; z)/f(c + 1; z) satisfies

g(c, z) = 1 +
z

c(c + 1)
· 1
g(c + 1; z)

·

Next define h(c; z) = (c/z)g(c; z2): we get

h(c; z) =
c

z
+

1
h(c + 1; z)

·

Therefore, for k ≥ 1,

h(c; z) =
[

c

z
,
c + 1

z
, . . . ,

c + k − 1
z

, h(c + k; z)
]

.

Replacing h by its value in terms of f yields

c

z
· f(c; z2)
f(c + 1; z2)

=
[

c

z
,
c + 1

z
, . . . ,

c + k − 1
z

,
(c + k)

z
· f(c + k; z2)
f(c + k + 1; z2)

]
.

We now take the limit on k:

Lemma 125. For c and z positive real numbers, the infinite continued frac-
tion converges and we have

c

z
· f(c; z2)
f(c + 1; z2)

=
[

c

z
,
c + 1

z
, . . . ,

c + k

z
, · · ·

]
.

Proof. We first check the following auxiliary result:
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Let (an)n≥0 be a sequence of real numbers, all ≥ 1. Let x be
a real number. Assume that for all n ≥ 1, there exists a real
number xn ≥ 1 such that

x = [a0, a1, . . . , an−1, xn].

Then the infinite continued fraction [a0, a1, . . . , an, . . . ] converges
to x.

We already proved this result when the an are integers, the proof in the
general case is the same: we write

[a0, a1, . . . , an] =
An

Bn

with An = anAn−1 + An−2, Bn = anBn−1 + Bn−2, so that

x =
xn+1An + An−1

xn+1Bn + Bn−1
,

we note that Bn ≥ Bn−1 + Bn−2, which implies that Bn tends to infinity,
and we conclude with the estimate

∣∣∣∣x−
An

Bn

∣∣∣∣ =
1

Bn(xn+1Bn + Bn−1)
≤ 1

B2
n
·

To complete the proof of Lemma 125, we notice that for c and z positive,
we have

f(c + k + 1; z2) < f(c + k; z2) and
c + k

z
≥ 1

for sufficiently large k.

In the special cases c = 1/2, this provides another proof of the continued
fraction expansion from Proposition 122:

ez − e−z

ez + e−z
= [0, 1/z, 3/z, . . . , (2k−1)/z, . . . ] =

z|
|1+

z2|
| 3 +

z2|
| 5 +· · ·+ z2 |

|2k − 1
+· · ·
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