Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course $\mathrm{N}^{\circ} 13$, May 31, 2010

These are informal notes of my course given in April - June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

8 Hermite's method

The proofs given in subsection 1.5 of the irrationality of e^{r} for several rational values of r (namely $r \in\{1,2, \sqrt{2}, \sqrt{3}\}$) are similar: the idea is to start from the expansion of the exponential function, to truncate it and to deduce rational approximations to e^{r}. In terms of the exponential function this amounts to approximate e^{z} by a polynomial. The main idea, due to C. Hermite [3], is to approximate e^{z} by rational functions $A(z) / B(z)$. The word "approximate" has the following meaning (Hermite-Padé): in a loose sense, an analytic function is well approximated by a rational function $A(z) / B(z)$ (where A and B are polynomial) if the first coefficients of the Taylor expansion of $f(z)$ and $A(z) / B(z)$ at the origin are the same. When $B(0) \neq 0$, this amounts to asking that the difference $B(z) f(z)-A(z)$ has a zero at the origin of high multiplicity.

When we just truncate the series expansion of the exponential function, we approximate e^{z} by a polynomial in z with rational coefficients; when we substitute $z=a$ where a is a positive integer, this polynomial produces a rational number, but the denominator of this number is quite large (unless $a= \pm 1$). A trick gave the result also for $a= \pm 2$, but definitely, for a a larger prime number for instance, there is a problem: if we multiply by the denominator then the "remainder" is by no means small. As shown by Hermite, to produce a sufficiently large gap in the power expansion of $B(z) e^{z}$ will solve this problem.

Our first goal (section $\S 8.1$) is to give, following Hermite, a new proof of Lambert's result on the irrationality of e^{r} when r is a non-zero rational number. Next we show how a slight modification implies the irrationality of π.

This proof serves as an introduction to Hermite's method. There are slightly different ways to present it: one is Hermite's original paper, another one is Siegel more algebraic point of view [5], and another was derived by Yu. V.Ñesterenko for [2] (A simple proof of the irrationality of π. Russ. J. Math. Phys. 13 (2006), no. 4, 473). See also Robert Breusch, A Proof of the Irrationality of π, The American Mathematical Monthly, Vol. 61, No. 9 (Nov., 1954), pp. 631-632.

8.1 Irrationality of e^{r} and π

8.1.1 Irrationality of e^{r} for $r \in \mathbf{Q}$

If $r=a / b$ is a rational number such that e^{r} is also rational, then $e^{|a|}$ is also rational, and therefore the irrationality of e^{r} for any non-zero rational number r follows from the irrationality of e^{a} for any positive integer a. We shall approximate the exponential function e^{z} by a rational function $A(z) / B(z)$ and show that $A(a) / B(a)$ is a good rational approximation to e^{a}, sufficiently good in fact so that one may use the usual irrationality criterion (Proposition 4).

Write

$$
e^{z}=\sum_{k \geq 0} \frac{z^{k}}{k!} .
$$

We wish to multiply this series by a polynomial so that the Taylor expansion at the origin of the product $B(z) e^{z}$ has a large gap: the polynomial preceding the gap will be $A(z)$, the remainder $R(z)=B(z) e^{z}-A(z)$ will have a zero of high multiplicity at the origin, namely at least the degree of A plus the length of the gap.

In order to create such a gap, we shall use the differential equation of the exponential function - hence we introduce derivatives.

8.1.2 Derivative operators

We first explain how to produce, from an analytic function whose Taylor development at the origin is

$$
\begin{equation*}
f(z)=\sum_{k \geq 0} a_{k} z^{k}, \tag{126}
\end{equation*}
$$

another analytic function with one given Taylor coefficient, say the coefficient of z^{m}, is zero. The coefficient of z^{m} for f is $a_{m}=m!f^{(m)}(0)$. The
same number a_{m} occurs when one computes the Taylor coefficient of z^{m-1} for the derivative f^{\prime} of f. Writing

$$
m a_{m}=m!\left(z f^{\prime}\right)^{(m)}(0)
$$

we deduce that the coefficient of z^{m} in the Taylor development of $z f^{\prime}(z)-$ $m f(z)$ is 0 , which is what we wanted.

It is the same thing to write

$$
z f^{\prime}(z)=\sum_{k \geq 0} k a_{k} z^{k}
$$

so that

$$
z f^{\prime}(z)-m f(z)=\sum_{k \geq 0}(k-m) a_{k} z^{k}
$$

Now we want that several consecutive Taylor coefficients cancel. It will be convenient to introduce derivative operators.

We denote by D the derivation $d / d z$. When f is a complex valued function of one complex variable z, we shall sometimes write $D(f(z))$ in place of $D f$. We write as usual D^{2} for $D \circ D$ and $D^{\ell}=D \circ D^{\ell-1}$ for $\ell \geq 2$. The Taylor expansion at the origin of an analytic function f is

$$
f(z)=\sum_{\ell \geq 0} \frac{1}{\ell!} D^{\ell} f(0) z^{\ell}
$$

The derivation D and the multiplication by z do not commute:

$$
D(z f)=f+z D(f)
$$

relation which we write $D z=1+z D$. From this relation it follows that the non-commutative ring generated by z and D over \mathbf{C} is also the ring of polynomials in D with coefficients in $\mathbf{C}[z]$. In this ring $\mathbf{C}[z][D]$ there is an element which will be very useful for us, namely $\delta=z d / d z$. It satisfies $\delta\left(z^{k}\right)=k z^{k}$. To any polynomial $T \in \mathbf{C}[t]$ we associate the derivative operator $T(\delta)$.

By induction on m one checks $\delta^{m} z^{k}=k^{m} z^{k}$ for all $m \geq 0$. By linearity, one deduces that if T is a polynomial with complex coefficients, then

$$
T(\delta) z^{k}=T(k) z^{k}
$$

Recalling our function f with the Taylor development (126), we have

$$
T(\delta) f(z)=\sum_{k \geq 0} a_{k} T(k) z^{k}
$$

Hence, if we want a function with a Taylor expansion having 0 as Taylor coefficient of z^{k} at the origin, it suffices to consider $T(\delta) f(z)$ where T is a polynomial satisfying $T(k)=0$. For instance, if n_{0} and n_{1} are two nonnegative integers and if we take

$$
T(t)=\left(t-n_{0}-1\right)\left(t-n_{0}-2\right) \cdots\left(t-n_{0}-n_{1}\right),
$$

then the series $T(\delta) f(z)$ can be written $A(z)+R(z)$ with

$$
A(z)=\sum_{k=0}^{n_{0}} T(k) a_{k} z^{k}
$$

and

$$
R(z)=\sum_{k \geq n_{0}+n_{1}+1} T(k) a_{k} z^{k} .
$$

This means that in the Taylor expansion at the origin of $T(\delta) f(z)$, all coefficients of $z^{n_{0}+1}, z^{n_{0}+2}, \ldots, z^{n_{0}+n_{1}}$ are 0 .

Let $n_{0} \geq 0, n_{1} \geq 0$ be two integers. Define $N=n_{0}+n_{1}$ and

$$
T(t)=\left(t-n_{0}-1\right)\left(t-n_{0}-2\right) \cdots(t-N) .
$$

Since T is monic of degree n_{1} with integer coefficients, it follows from the differential equation of the exponential function

$$
\delta\left(e^{z}\right)=z e^{z}
$$

that there is a polynomial $B \in \mathbf{Z}[z]$, which is monic of degree n_{1}, such that $T(\delta) e^{z}=B(z) e^{z}$.

Set

$$
A(z)=\sum_{k=0}^{n_{0}} T(k) \frac{z^{k}}{k!} \quad \text { and } \quad R(z)=\sum_{k \geq N+1} T(k) \frac{z^{k}}{k!} .
$$

Then

$$
B(z) e^{z}=A(z)+R(z)
$$

where A is a polynomial with rational coefficients of degree n_{0} and leading coefficient

$$
\frac{T\left(n_{0}\right)}{n_{0}!}=(-1)^{n_{1}} \frac{n_{1}!}{n_{0}!} .
$$

Also the analytic function R has a zero of multiplicity $N+1$ at the origin with leading term $T(N+1) z^{N+1} /(N+1)$!.

We can explicit these formulae for A and R. For $0 \leq k \leq n_{0}$ we have

$$
\begin{aligned}
T(k) & =\left(k-n_{0}-1\right)\left(k-n_{0}-2\right) \cdots(k-N) \\
& =(-1)^{n_{1}}(N-k) \cdots\left(n_{0}+2-k\right)\left(n_{0}+1-k\right) \\
& =(-1)^{n_{1}} \frac{(N-k)!}{\left(n_{0}-k\right)!} .
\end{aligned}
$$

Hence

$$
A(z)=(-1)^{n_{1}} \sum_{k=0}^{n_{0}} \frac{(N-k)!}{\left(n_{0}-k\right)!k!} \cdot z^{k}
$$

Since

$$
\frac{n_{0}!\left(n_{0}+n_{1}-k\right)!}{n_{1}!\left(n_{0}-k\right)!k!} \in \mathbf{Z}
$$

we deduce $\left(n_{0}!/ n_{1}!\right) A(z) \in \mathbf{Z}[z]$.
For $k \geq N+1$ we write in a similar way

$$
T(k)=\left(k-n_{0}-1\right)\left(k-n_{0}-2\right) \cdots(k-N)=\frac{\left(k-n_{0}-1\right)!}{(k-N-1)!} .
$$

Hence we have proved:
Proposition 127 (Hermite's formulae for the exponential function). Let $n_{0} \geq 0, n_{1} \geq 0$ be two integers. Define $N=n_{0}+n_{1}$. Set

$$
A(z)=(-1)^{n_{1}} \sum_{k=0}^{n_{0}} \frac{(N-k)!}{\left(n_{0}-k\right)!k!} \cdot z^{k} \quad \text { and } \quad R(z)=\sum_{k \geq N+1} \frac{\left(k-n_{0}-1\right)!}{(k-N-1)!k!} \cdot z^{k} .
$$

Finally, define $B \in \mathbf{Z}[z]$ by the condition

$$
\left(\delta-n_{0}-1\right)\left(\delta-n_{0}-2\right) \cdots(\delta-N) e^{z}=B(z) e^{z}
$$

Then

$$
B(z) e^{z}=A(z)+R(z) .
$$

Further, B is a monic polynomial with integer coefficients of degree n_{1}, A is a polynomial with rational coefficients of degree n_{0} and leading coefficient $(-1)^{n_{1}} n_{1}!/ n_{0}$!, and the analytic function R has a zero of multiplicity $N+1$ at the origin.
Furthermore, the polynomial ($\left.n_{0}!/ n_{1}!\right) A$ has integer coefficients.
Remark. For $n_{1}<n_{0}$ the leading coefficient $(-1)^{n_{1}} n_{1}!/ n_{0}$! of A is not an integer, but for $n_{1} \geq n_{0}$ the coefficients of A are integers.

We check the following elementary estimate for the remainder.
Lemma 128. Let $z \in \mathbf{C}$. Then

$$
|R(z)| \leq \frac{|z|^{N+1}}{n_{0}!} e^{|z|}
$$

Proof. We have

$$
R(z)=\sum_{k \geq N+1} \frac{\left(k-n_{0}-1\right)!}{(k-N-1)!k!} \cdot z^{k}=\sum_{\ell \geq 0} \frac{\left(\ell+n_{1}\right)!}{(\ell+N+1)!} \cdot \frac{z^{\ell+N+1}}{\ell!} .
$$

The trivial estimate

$$
\frac{(\ell+N+1)!}{\left(\ell+n_{1}\right)!}=\left(\ell+n_{0}+n_{1}+1\right)\left(\ell+n_{0}+n_{1}\right) \cdots\left(\ell+n_{1}+1\right) \geq n_{0}!
$$

yields the conclusion of Lemma 128 .
We are now able to complete the proof of the irrationality of e^{a} for a a positive integer (hence, for e^{r} when $r \in \mathbf{Q}, r \neq 0$). We take a large positive integer n and we select $n_{0}=n_{1}=n$. We write also

$$
T_{n}(z)=(z-n-1)(z-n-2) \cdots(z-2 n)
$$

and we denote by A_{n}, B_{n} and R_{n} the Hermite polynomials and the remainder in Hermite's Proposition 127, for $n_{0}=n_{1}=n$.

Replace z by a in the previous formulae; we deduce

$$
B_{n}(a) e^{a}-A_{n}(a)=R_{n}(a) .
$$

All coefficients in R_{n} are positive, hence $R_{n}(a)>0$. Therefore $B_{n}(a) e^{a}-$ $A_{n}(a) \neq 0$. Lemma 128 shows that $R_{n}(a)$ tends to 0 when n tends to infinity. Since $B_{n}(a)$ and $A_{n}(a)$ are rational integers, we may use the implication $($ ii $) \Rightarrow\left(\right.$ i) in (Proposition 4): we deduce that the number e^{a} is irrational.

8.1.3 Irrationality of π

The irrationality of e^{r} for $r \in \mathbf{Q} \backslash\{0\}$ is equivalent to the irrationality of $\log s$ for $s \in \mathbf{Q}_{>0}$. We extend this proof to $s=-1$ (so to speak) and get the irrationality of π.

Assume π is a rational number, $\pi=a / b$. Substitute $z=i a=i \pi b$ in the previous formulae. Notice that $e^{z}=(-1)^{b}$:

$$
B_{n}(i a)(-1)^{b}-A_{n}(i a)=R_{n}(i a),
$$

and that the two complex numbers $A_{n}(i a)$ and $B_{n}(i a)$ are in $\mathbf{Z}[i]$. The left hand side is in $\mathbf{Z}[i]$, the right hand side tends to 0 as n tends to infinity, hence both sides are 0 .

In the proof of \S 8.1.1, we used the positivity of the coefficients of R_{n} and we deduced that $R_{n}(a)$ was not 0 (this is a simple example of the so-called "zero estimate" in transcendental number theory). Here we need another argument.

The last step of the proof of the irrationality of π is achieved by using two consecutive indices n and $n+1$. We eliminate e^{z} among the two relations

$$
B_{n}(z) e^{z}-A_{n}(z)=R_{n}(z) \quad \text { and } \quad B_{n+1}(z) e^{z}-A_{n+1}(z)=R_{n+1}(z) .
$$

We deduce that the polynomial

$$
\begin{equation*}
\Delta_{n}=B_{n} A_{n+1}-B_{n+1} A_{n} \tag{129}
\end{equation*}
$$

can be written

$$
\begin{equation*}
\Delta_{n}=-B_{n} R_{n+1}+B_{n+1} R_{n} . \tag{130}
\end{equation*}
$$

As we have seen, the polynomial B_{n} is monic of degree n; the polynomial A_{n} also has degree n, its highest degree term is $(-1)^{n} z^{n}$. It follows from (129) that Δ_{n} is a polynomial of degree $2 n+1$ and highest degree term $(-1)^{n} 2 z^{2 n+1}$. On the other hand since R_{n} has a zero of multiplicity at least $2 n+1$, the relation (130) shows that it is the same for Δ_{n}. Consequently

$$
\Delta_{n}(z)=(-1)^{n} 2 z^{2 n+1} .
$$

We deduce that Δ_{n} does not vanish outside 0 . From (130) we deduce that R_{n} and R_{n+1} have no common zero apart from 0 . This completes the proof of the irrationality of π.

8.2 Padé approximation to the exponential function

For $h \geq 0$, the h-th derivative $D^{h} R(z)$ of the remainder in Proposition 145 is given by

$$
D^{h} R(z)=\sum_{k \geq N+1} \frac{\left(k-n_{0}-1\right)!}{(k-N-1)!} \cdot \frac{z^{k-h}}{(k-h)!} .
$$

In particular for $h=n_{0}+1$ the formula becomes

$$
\begin{equation*}
D^{n_{0}+1} R=\sum_{k \geq N+1} \frac{z^{k-n_{0}-1}}{(k-N-1)!}=z^{n_{1}} e^{z} \tag{131}
\end{equation*}
$$

This relations determines R since R has a zero of multiplicity $\geq n_{0}+1$ at the origin.

8.2.1 Siegel's point of view

Theorem 132. Given two integers $n_{0} \geq 0, n_{1} \geq 0$, there exist two polynomials A and B in $\mathbf{C}[z]$ with A of degree $\leq n_{0}$ and $B \neq 0$ of degree $\leq n_{1}$ such that the function $R(z)=B(z) e^{z}-A(z)$ has a zero at the origin of multiplicity $\geq N+1$ with $N=n_{0}+n_{1}$. This solution (A, B, R) is unique if we require B to be monic. Further, A has degree n_{0}, B has degree n_{1} and R has multiplicity $N+1$ at the origin. Furthermore, when B is monic, we have $D^{n_{0}+1} R=z^{n_{1}} e^{z}$.

Proof. We first prove the existence of a non-trivial solution (A, B, R). For $n \geq 0$ denote by $\mathbf{C}[z]_{\leq n}$ the \mathbf{C}-vector space of polynomials of degree $\leq n$. Its dimension is $n+1$. Consider the linear mapping

$$
\begin{array}{rlc}
\mathcal{L}: \mathbf{C}[z]_{\leq n_{1}} & \longrightarrow & \mathbf{C}^{n_{1}} \\
B(z) & \longmapsto\left(D^{\ell}\left(B(z) e^{z}\right)_{z=0}\right)_{n_{0}<\ell \leq N}
\end{array}
$$

This map is not injective, its kernel has dimension ≥ 1. Let $B \in \operatorname{ker} \mathcal{L}$. Define

$$
A(z)=\sum_{\ell=0}^{n_{0}} D^{\ell}\left(B(z) e^{z}\right)_{z=0} \frac{z^{\ell}}{\ell!}
$$

and

$$
R(z)=\sum_{\ell \geq N+1} D^{\ell}\left(B(z) e^{z}\right)_{z=0} \frac{z^{\ell}}{\ell!}
$$

Then (A, B, R) is a solution to the problem:

$$
\begin{equation*}
B(z) e^{z}=A(z)+R(z) \tag{133}
\end{equation*}
$$

There is an alternative proof of the existence as follows [5. Consider the linear mapping

$$
\begin{array}{clc}
\mathbf{C}[z]_{\leq n_{0}} \times \mathbf{C}[z]_{\leq n_{1}} & \longrightarrow & \mathbf{C}^{N+1} \\
(A(z), B(z)) & \longmapsto & \left(D^{\ell}\left(B(z) e^{z}\right)_{z=0}\right)_{0 \leq \ell \leq N}
\end{array}
$$

This map is not injective, its kernel has dimension ≥ 1. If (A, B) is a non-zero element in the kernel, then $B \neq 0$.

We now check that the kernel of \mathcal{L} has dimension 1 . Let $B \in \operatorname{ker} \mathcal{L}$, $B \neq 0$ and let (A, B, R) be the corresponding solution to (133).

Since A has degree $\leq n_{0}$, the $\left(n_{0}+1\right)$-th derivative of R is

$$
D^{n_{0}+1} R=D^{n_{0}+1}\left(B(z) e^{z}\right),
$$

hence it is the product of e^{z} with a polynomial of the same degree as the degree of B and same leading coefficient. Now R has a zero at the origin of multiplicity $\geq n_{0}+n_{1}+1$, hence $D^{n_{0}+1} R(z)$ has a zero of multiplicity $\geq n_{1}$ at the origin. Therefore

$$
\begin{equation*}
D^{n_{0}+1} R=c z^{n_{1}} e^{z} \tag{134}
\end{equation*}
$$

where c is the leading coefficient of B; it follows also that B has degree n_{1}. This proves that $\operatorname{ker} \mathcal{L}$ has dimension 1 .

Since $D^{n_{0}+1} R$ has a zero of multiplicity exactly n_{1}, it follows that R has a zero at the origin of multiplicity exactly $N+1$, so that R is the unique function satisfying $D^{n_{0}+1} R=c z^{n_{1}} e^{z}$ with a zero of multiplicity n_{0} at 0 .

It remains to check that A has degree n_{0}. Multiplying (133) by e^{-z}, we deduce

$$
A(z) e^{-z}=B(z)-R(z) e^{-z}
$$

We replace z by $-z$:

$$
\begin{equation*}
A(-z) e^{z}=B(-z)-R(-z) e^{z} \tag{135}
\end{equation*}
$$

It follows that $\left(B(-z), A(-z),-R(-z) e^{z}\right)$ is a solution to the Padé problem (133) for the parameters $\left(n_{1}, n_{0}\right)$. Therefore A has degree n_{0}.

Denote by $\left(A_{n_{0}, n_{1}}, B_{n_{0}, n_{1}}, R_{n_{0}, n_{1}}\right)$ the solution to the Padé problem (133) for the parameters $\left(n_{0}, n_{1}\right)$: the polynomial A has degree n_{0} and leading term $n_{1}!/ n_{0}$!, the polynomial B is monic of degree n_{1}, and R has a zero of multiplicity $N+1$ at the origin with leading term $n_{1}!z^{N+1} /(N+1)!$. As before $N=n_{0}+n_{1}$. Then we have

$$
\begin{align*}
& A_{n_{1}, n_{0}}(z)=(-1)^{N} \frac{n_{0}!}{n_{1}} B_{n_{0}, n_{1}}(-z), \\
& B_{n_{1}, n_{0}}(z)=(-1)^{N} \frac{n_{0}!}{n_{1}} A_{n_{0}, n_{1}}(-z), \tag{136}\\
& R_{n_{1}, n_{0}}(z)=(-1)^{N+1} \frac{n_{0}!}{n_{1}} R_{n_{0}, n_{1}}(-z) e^{z} .
\end{align*}
$$

Following [5], we give formulae for A, B and R.
Consider the operator J defined by

$$
J(\varphi)=\int_{0}^{z} \varphi(t) d t
$$

It satisfies

$$
D J \varphi=\varphi \quad \text { and } \quad J D f=f(z)-f(0)
$$

Hence the restriction of the operator of D to the functions vanishing at the origin is a one-to-one map with inverse J.

Lemma 137. For $n \geq 0$,

$$
J^{n+1} \varphi=\frac{1}{n!} \int_{0}^{z}(z-t)^{n} \varphi(t) d t
$$

Proof. The formula is valid for $n=0$. We first check it for $n=1$. The derivative of the function

$$
\int_{0}^{z}(z-t) \varphi(t) d t=z \int_{0}^{z} \varphi(t) d t-\int_{0}^{z} t \varphi(t) d t
$$

is

$$
\int_{0}^{z} \varphi(t) d t+z \varphi(z)-z \varphi(z)=\int_{0}^{z} \varphi(t) d t
$$

We now proceed by induction. For $n \geq 1$, the derivative of the function of z

$$
\frac{1}{n!} \int_{0}^{z}(z-t)^{n} \varphi(t) d t=\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!} \cdot z^{k} \int_{0}^{z} t^{n-k} \varphi(t) d t
$$

is

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!}\left(k z^{k-1} \int_{0}^{z} t^{n-k} \varphi(t) d t+z^{n} \varphi(z)\right) \tag{138}
\end{equation*}
$$

Since $n \geq 1$, we have

$$
\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!}=0
$$

and equation 138 is nothing else than

$$
\sum_{k=1}^{n} \frac{(-1)^{n-k}}{(k-1)!(n-k)!} \cdot z^{k-1} \int_{0}^{z} t^{n-k} \varphi(t) d t=\frac{1}{(n-1)!} \int_{0}^{z}(z-t)^{n-1} \varphi(t) d t
$$

