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8 Hermite’s method

The proofs given in subsection 1.5 of the irrationality of er for several ra-
tional values of r (namely r ∈ {1, 2,

√
2,
√

3}) are similar: the idea is to
start from the expansion of the exponential function, to truncate it and to
deduce rational approximations to er. In terms of the exponential func-
tion this amounts to approximate ez by a polynomial. The main idea, due
to C. Hermite [3], is to approximate ez by rational functions A(z)/B(z).
The word “approximate” has the following meaning (Hermite-Padé): in a
loose sense, an analytic function is well approximated by a rational function
A(z)/B(z) (where A and B are polynomial) if the first coefficients of the
Taylor expansion of f(z) and A(z)/B(z) at the origin are the same. When
B(0) #= 0, this amounts to asking that the difference B(z)f(z)−A(z) has a
zero at the origin of high multiplicity.

When we just truncate the series expansion of the exponential function,
we approximate ez by a polynomial in z with rational coefficients; when we
substitute z = a where a is a positive integer, this polynomial produces a
rational number, but the denominator of this number is quite large (unless
a = ±1). A trick gave the result also for a = ±2, but definitely, for a
a larger prime number for instance, there is a problem: if we multiply by
the denominator then the “remainder” is by no means small. As shown
by Hermite, to produce a sufficiently large gap in the power expansion of
B(z)ez will solve this problem.

Our first goal (section § 8.1) is to give, following Hermite, a new proof
of Lambert’s result on the irrationality of er when r is a non-zero rational
number. Next we show how a slight modification implies the irrationality of
π.
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This proof serves as an introduction to Hermite’s method. There are
slightly different ways to present it: one is Hermite’s original paper, another
one is Siegel more algebraic point of view [5], and another was derived by
Yu. V.Ñesterenko for [2] (A simple proof of the irrationality of π. Russ. J.
Math. Phys. 13 (2006), no. 4, 473). See also Robert Breusch, A Proof of
the Irrationality of π, The American Mathematical Monthly, Vol. 61, No.
9 (Nov., 1954), pp. 631-632.

8.1 Irrationality of er and π

8.1.1 Irrationality of er for r ∈ Q

If r = a/b is a rational number such that er is also rational, then e|a| is
also rational, and therefore the irrationality of er for any non-zero rational
number r follows from the irrationality of ea for any positive integer a.
We shall approximate the exponential function ez by a rational function
A(z)/B(z) and show that A(a)/B(a) is a good rational approximation to ea,
sufficiently good in fact so that one may use the usual irrationality criterion
(Proposition 4).

Write

ez =
∑

k≥0

zk

k!
·

We wish to multiply this series by a polynomial so that the Taylor expansion
at the origin of the product B(z)ez has a large gap: the polynomial preceding
the gap will be A(z), the remainder R(z) = B(z)ez − A(z) will have a zero
of high multiplicity at the origin, namely at least the degree of A plus the
length of the gap.

In order to create such a gap, we shall use the differential equation of
the exponential function - hence we introduce derivatives.

8.1.2 Derivative operators

We first explain how to produce, from an analytic function whose Taylor
development at the origin is

f(z) =
∑

k≥0

akz
k, (126)

another analytic function with one given Taylor coefficient, say the coeffi-
cient of zm, is zero. The coefficient of zm for f is am = m!f (m)(0). The
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same number am occurs when one computes the Taylor coefficient of zm−1

for the derivative f ′ of f . Writing

mam = m!(zf ′)(m)(0),

we deduce that the coefficient of zm in the Taylor development of zf ′(z)−
mf(z) is 0, which is what we wanted.

It is the same thing to write

zf ′(z) =
∑

k≥0

kakz
k

so that
zf ′(z)−mf(z) =

∑

k≥0

(k −m)akz
k.

Now we want that several consecutive Taylor coefficients cancel. It will be
convenient to introduce derivative operators.

We denote by D the derivation d/dz. When f is a complex valued
function of one complex variable z, we shall sometimes write D

(
f(z)

)
in

place of Df . We write as usual D2 for D ◦D and D! = D ◦D!−1 for " ≥ 2.
The Taylor expansion at the origin of an analytic function f is

f(z) =
∑

!≥0

1
"!

D!f(0)z!.

The derivation D and the multiplication by z do not commute:

D(zf) = f + zD(f),

relation which we write Dz = 1 + zD. From this relation it follows that
the non-commutative ring generated by z and D over C is also the ring
of polynomials in D with coefficients in C[z]. In this ring C[z][D] there is
an element which will be very useful for us, namely δ = zd/dz. It satis-
fies δ(zk) = kzk. To any polynomial T ∈ C[t] we associate the derivative
operator T (δ).

By induction on m one checks δmzk = kmzk for all m ≥ 0. By linearity,
one deduces that if T is a polynomial with complex coefficients, then

T (δ)zk = T (k)zk.

Recalling our function f with the Taylor development (126), we have

T (δ)f(z) =
∑

k≥0

akT (k)zk.
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Hence, if we want a function with a Taylor expansion having 0 as Taylor
coefficient of zk at the origin, it suffices to consider T (δ)f(z) where T is a
polynomial satisfying T (k) = 0. For instance, if n0 and n1 are two non-
negative integers and if we take

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t− n0 − n1),

then the series T (δ)f(z) can be written A(z) + R(z) with

A(z) =
n0∑

k=0

T (k)akz
k

and
R(z) =

∑

k≥n0+n1+1

T (k)akz
k.

This means that in the Taylor expansion at the origin of T (δ)f(z), all coef-
ficients of zn0+1, zn0+2, . . . , zn0+n1 are 0.

Let n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1 and

T (t) = (t− n0 − 1)(t− n0 − 2) · · · (t−N).

Since T is monic of degree n1 with integer coefficients, it follows from the
differential equation of the exponential function

δ(ez) = zez

that there is a polynomial B ∈ Z[z], which is monic of degree n1, such that
T (δ)ez = B(z)ez.

Set

A(z) =
n0∑

k=0

T (k)
zk

k!
and R(z) =

∑

k≥N+1

T (k)
zk

k!
·

Then
B(z)ez = A(z) + R(z),

where A is a polynomial with rational coefficients of degree n0 and leading
coefficient

T (n0)
n0!

= (−1)n1
n1!
n0!

·

Also the analytic function R has a zero of multiplicity N + 1 at the origin
with leading term T (N + 1)zN+1/(N + 1)!.
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We can explicit these formulae for A and R. For 0 ≤ k ≤ n0 we have

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N)
= (−1)n1(N − k) · · · (n0 + 2− k)(n0 + 1− k)

= (−1)n1
(N − k)!
(n0 − k)!

·

Hence

A(z) = (−1)n1

n0∑

k=0

(N − k)!
(n0 − k)!k!

· zk.

Since
n0!(n0 + n1 − k)!

n1!(n0 − k)!k!
∈ Z,

we deduce (n0!/n1!)A(z) ∈ Z[z].
For k ≥ N + 1 we write in a similar way

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N) =
(k − n0 − 1)!
(k −N − 1)!

·

Hence we have proved:

Proposition 127 (Hermite’s formulae for the exponential function). Let
n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1. Set

A(z) = (−1)n1

n0∑

k=0

(N − k)!
(n0 − k)!k!

· zk and R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk.

Finally, define B ∈ Z[z] by the condition

(δ − n0 − 1)(δ − n0 − 2) · · · (δ −N)ez = B(z)ez.

Then
B(z)ez = A(z) + R(z).

Further, B is a monic polynomial with integer coefficients of degree n1, A
is a polynomial with rational coefficients of degree n0 and leading coefficient
(−1)n1n1!/n0!, and the analytic function R has a zero of multiplicity N + 1
at the origin.
Furthermore, the polynomial (n0!/n1!)A has integer coefficients.

Remark. For n1 < n0 the leading coefficient (−1)n1n1!/n0! of A is not an
integer, but for n1 ≥ n0 the coefficients of A are integers.
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We check the following elementary estimate for the remainder.

Lemma 128. Let z ∈ C. Then

|R(z)| ≤ |z|N+1

n0!
e|z|.

Proof. We have

R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk =
∑

!≥0

(" + n1)!
(" + N + 1)!

· z!+N+1

"!
·

The trivial estimate

(" + N + 1)!
(" + n1)!

= (" + n0 + n1 + 1)(" + n0 + n1) · · · (" + n1 + 1) ≥ n0!

yields the conclusion of Lemma 128.

We are now able to complete the proof of the irrationality of ea for a a
positive integer (hence, for er when r ∈ Q, r #= 0). We take a large positive
integer n and we select n0 = n1 = n. We write also

Tn(z) = (z − n− 1)(z − n− 2) · · · (z − 2n)

and we denote by An, Bn and Rn the Hermite polynomials and the remainder
in Hermite’s Proposition 127. for n0 = n1 = n.

Replace z by a in the previous formulae; we deduce

Bn(a)ea −An(a) = Rn(a).

All coefficients in Rn are positive, hence Rn(a) > 0. Therefore Bn(a)ea −
An(a) #= 0. Lemma 128 shows that Rn(a) tends to 0 when n tends to infinity.
Since Bn(a) and An(a) are rational integers, we may use the implication
(ii)⇒(i) in (Proposition 4): we deduce that the number ea is irrational.

8.1.3 Irrationality of π

The irrationality of er for r ∈ Q \ {0} is equivalent to the irrationality of
log s for s ∈ Q>0. We extend this proof to s = −1 (so to speak) and get the
irrationality of π.

Assume π is a rational number, π = a/b. Substitute z = ia = iπb in the
previous formulae. Notice that ez = (−1)b:

Bn(ia)(−1)b −An(ia) = Rn(ia),
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and that the two complex numbers An(ia) and Bn(ia) are in Z[i]. The left
hand side is in Z[i], the right hand side tends to 0 as n tends to infinity,
hence both sides are 0.

In the proof of § 8.1.1, we used the positivity of the coefficients of Rn and
we deduced that Rn(a) was not 0 (this is a simple example of the so-called
“zero estimate” in transcendental number theory). Here we need another
argument.

The last step of the proof of the irrationality of π is achieved by using two
consecutive indices n and n + 1. We eliminate ez among the two relations

Bn(z)ez −An(z) = Rn(z) and Bn+1(z)ez −An+1(z) = Rn+1(z).

We deduce that the polynomial

∆n = BnAn+1 −Bn+1An (129)

can be written
∆n = −BnRn+1 + Bn+1Rn. (130)

As we have seen, the polynomial Bn is monic of degree n; the polynomial
An also has degree n, its highest degree term is (−1)nzn. It follows from
(129) that ∆n is a polynomial of degree 2n + 1 and highest degree term
(−1)n2z2n+1. On the other hand since Rn has a zero of multiplicity at least
2n + 1, the relation (130) shows that it is the same for ∆n. Consequently

∆n(z) = (−1)n2z2n+1.

We deduce that ∆n does not vanish outside 0. From (130) we deduce that
Rn and Rn+1 have no common zero apart from 0. This completes the proof
of the irrationality of π.

8.2 Padé approximation to the exponential function

For h ≥ 0, the h-th derivative DhR(z) of the remainder in Proposition 145
is given by

DhR(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!

· zk−h

(k − h)!
·

In particular for h = n0 + 1 the formula becomes

Dn0+1R =
∑

k≥N+1

zk−n0−1

(k −N − 1)!
= zn1ez. (131)

This relations determines R since R has a zero of multiplicity ≥ n0 + 1 at
the origin.
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8.2.1 Siegel’s point of view

Theorem 132. Given two integers n0 ≥ 0, n1 ≥ 0, there exist two polyno-
mials A and B in C[z] with A of degree ≤ n0 and B #= 0 of degree ≤ n1

such that the function R(z) = B(z)ez − A(z) has a zero at the origin of
multiplicity ≥ N + 1 with N = n0 + n1. This solution (A, B,R) is unique if
we require B to be monic. Further, A has degree n0, B has degree n1 and
R has multiplicity N + 1 at the origin. Furthermore, when B is monic, we
have Dn0+1R = zn1ez.

Proof. We first prove the existence of a non-trivial solution (A, B, R). For
n ≥ 0 denote by C[z]≤n the C–vector space of polynomials of degree ≤ n.
Its dimension is n + 1. Consider the linear mapping

L : C[z]≤n1 −→ Cn1

B(z) *−→
(
D!

(
B(z)ez

)
z=0

)

n0<!≤N

This map is not injective, its kernel has dimension ≥ 1. Let B ∈ kerL.
Define

A(z) =
n0∑

!=0

D!
(
B(z)ez

)
z=0

z!

"!

and

R(z) =
∑

!≥N+1

D!
(
B(z)ez

)
z=0

z!

"!
·

Then (A, B,R) is a solution to the problem:

B(z)ez = A(z) + R(z). (133)

There is an alternative proof of the existence as follows [5]. Consider the
linear mapping

C[z]≤n0 ×C[z]≤n1 −→ CN+1

(
A(z), B(z)

)
*−→

(
D!

(
B(z)ez

)
z=0

)

0≤!≤N

This map is not injective, its kernel has dimension ≥ 1. If (A, B) is a
non-zero element in the kernel, then B #= 0.

We now check that the kernel of L has dimension 1. Let B ∈ kerL,
B #= 0 and let (A, B,R) be the corresponding solution to (133).

Since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),
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hence it is the product of ez with a polynomial of the same degree as the
degree of B and same leading coefficient. Now R has a zero at the origin of
multiplicity ≥ n0 + n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1

at the origin. Therefore
Dn0+1R = czn1ez (134)

where c is the leading coefficient of B; it follows also that B has degree n1.
This proves that kerL has dimension 1.

Since Dn0+1R has a zero of multiplicity exactly n1, it follows that R has
a zero at the origin of multiplicity exactly N + 1, so that R is the unique
function satisfying Dn0+1R = czn1ez with a zero of multiplicity n0 at 0.

It remains to check that A has degree n0. Multiplying (133) by e−z, we
deduce

A(z)e−z = B(z)−R(z)e−z.

We replace z by −z:

A(−z)ez = B(−z)−R(−z)ez. (135)

It follows that
(
B(−z), A(−z),−R(−z)ez

)
is a solution to the Padé problem

(133) for the parameters (n1, n0). Therefore A has degree n0.

Denote by (An0,n1 , Bn0,n1 , Rn0,n1) the solution to the Padé problem
(133) for the parameters (n0, n1): the polynomial A has degree n0 and
leading term n1!/n0!, the polynomial B is monic of degree n1, and R has a
zero of multiplicity N +1 at the origin with leading term n1!zN+1/(N +1)!.
As before N = n0 + n1. Then we have

An1,n0(z) = (−1)N n0!
n1

Bn0,n1(−z),

Bn1,n0(z) = (−1)N n0!
n1

An0,n1(−z), (136)

Rn1,n0(z) = (−1)N+1 n0!
n1

Rn0,n1(−z)ez.

Following [5], we give formulae for A, B and R.
Consider the operator J defined by

J(ϕ) =
∫ z

0
ϕ(t)dt.

It satisfies
DJϕ = ϕ and JDf = f(z)− f(0).
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Hence the restriction of the operator of D to the functions vanishing at the
origin is a one-to-one map with inverse J .

Lemma 137. For n ≥ 0,

Jn+1ϕ =
1
n!

∫ z

0
(z − t)nϕ(t)dt.

Proof. The formula is valid for n = 0. We first check it for n = 1. The
derivative of the function

∫ z

0
(z − t)ϕ(t)dt = z

∫ z

0
ϕ(t)dt−

∫ z

0
tϕ(t)dt

is ∫ z

0
ϕ(t)dt + zϕ(z)− zϕ(z) =

∫ z

0
ϕ(t)dt.

We now proceed by induction. For n ≥ 1, the derivative of the function of z

1
n!

∫ z

0
(z − t)nϕ(t)dt =

n∑

k=0

(−1)n−k

k!(n− k)!
· zk

∫ z

0
tn−kϕ(t)dt

is
n∑

k=0

(−1)n−k

k!(n− k)!

(
kzk−1

∫ z

0
tn−kϕ(t)dt + znϕ(z)

)
. (138)

Since n ≥ 1, we have
n∑

k=0

(−1)n−k

k!(n− k)!
= 0,

and equation (138) is nothing else than

n∑

k=1

(−1)n−k

(k − 1)!(n− k)!
· zk−1

∫ z

0
tn−kϕ(t)dt =

1
(n− 1)!

∫ z

0
(z − t)n−1ϕ(t)dt.
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