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From (134) with c = 1 and Lemma 137 we deduce that the remainder
R(z) in Hermite’s fomula with parameters n0 and n1 and B monic is given
by

R(z) =
1

n0!

∫ z

0
(z − t)n0tn1etdt.

Replacing t by tz yields:

Lemma 139. The remainder R(z) in Hermite’s fomula with parameters n0

and n1 (and B monic) is given by

R(z) =
zN+1

n0!

∫ 1

0
(1− t)n0tn1etzdt.

An easy consequence of Lemma 139 is the estimate for the remainder
term given in Lemma 128.

We now recover the explicit formulae for A and B which we derived in
Proposition 127 in the context of Theorem 132.

When S ∈ C[[t]] is a power series, say

S(t) =
∑

i≥0

sit
i,

and f an analytic complex valued function, we define

S(D)f =
∑

i≥0

siD
if,

and we shall use this notation only when the sum is finite: either S is a
polynomial in C[t] or f is a polynomial in C[z].
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We reproduce [5], Chap.I § 1: for two power series S1 and S2 and an
analytic function f we have

(S1 + S2)(D)f = S1(D)f + S2(D)f

and
(S1S2)(D)f = S1(D)

(
S2(D)f

)
.

Also if s0 #= 0 then the series S has an inverse in the ring C[[t]], say

S−1(t) =
∑

i≥0

σit
i, (t0 = 1/s0)

and
S−1(D)

(
S(D)f

)
= S(D)

(
S−1(D)f

)
= f.

For instance with S(t) = 1− t and S−1(t) = 1 + t + t2 + · · · ,

(1−D)
∑

n≥0

Dnf =
∑

n≥0

Dn(1−D)f = f.

If the power series S and the polynomial f have integer coefficients, then
S(D)f is also a polynomial with integer coefficients. The same holds also
for S−1(D)f if, further, s0 = ±1.

For λ ∈ C and P ∈ C[z], we have

D(eλzP ) = eλz(λ + D)P.

Hence for n ≥ 1,
Dn(eλzP ) = eλz(λ + D)nP

and (λ + D)nP is again a polynomial; further, it has the same degree as P
when λ #= 0. Conversely, assuming λ #= 0, given a polynomial Q ∈ C[z], the
unique solution P ∈ C[z] to the differential equation

(λ + D)nP = Q

is
P = (λ + D)−nQ

and this solution P is a polynomial of the same degree as Q. In the case
λ = ±1, when Q has integer coefficients, then so does P .

We come back now to the solution (A, B, R) to the Padé problem (133)
in Theorem 132, where B ∈ C[z] is monic of degree n1 and A ∈ C[z] has
degree n0, while R ∈ C[[z]] has a zero of multiplicity N + 1 at 0.
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From
Dn0+1

(
B(z)ez

)
= zn1ez

we deduce
B(z) = (1 + D)−n0−1zn1 .

From this formula it follows that B has integer coefficients. It is easy to
explicit the polynomial B. From

(1 + D)−n0−1 =
∑

"≥0

(−1)"

(
n0 + #

#

)
D",

we deduce

B(z) =
n1∑

"=0

(−1)"

(
n0 + #

#

)
n1!

(n1 − #)!
zn1−",

which can be written also as

B(z) = (−1)n1
n1!
n0!

n1∑

k=0

(−1)k (N − k)!
(n1 − k)!k!

zk. (140)

One checks that B is monic of degree n1. This formula matches with Propo-
sition 127 and the duality (136) between (n0, n1) and (n1, n0).

We can also check the formula for A starting from

Dn1+1
(
A(z)e−z

)
= −Dn1+1

(
R(z)e−z

)
,

where the left hand side is the product of e−z with a polynomial of degree
≤ n0, while the right hand side has a multiplicity ≥ n0 at the origin. We
deduce

Dn1+1
(
A(z)e−z

)
= azn0e−z

where a is the leading coefficient of A. From

Dn1+1
(
A(z)e−z

)
= e−z(−1 + D)n1+1A(z)

we deduce
(−1 + D)n1+1A(z) = −azn0

and
A(z) = −a(−1 + D)−n1−1zn0 .

Hence the same computation as was done before for B will give the formula
for A.

Thanks to these explicit formulae, we can express A and B in terms of
hypergeometric series:
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Lemma 141. The numerator An0,n1 and the denominator Bn0,n1 of the
Padé approximant of index (n0, n1) for the exponential function are given
by hypergeometric polynomials

An0,n1(z) = (−1)n1
N !
n0!

1F1(−n0;−N ; z)

and
Bn0,n1(z) = (−1)n1

N !
n0!

1F1(−n1;−N ;−z).

Proof. The proofs for both formulae are similar – in fact (136) shows that
they are equivalent. Consider

An0,n1(z) = (−1)n1

n0∑

k=0

(N − k)!
(n0 − k)!k!

· zk

and write

(−n0)k = (−1)k n0!
(n0 − k)!

and (−N)k = (−1)k N !
(N − k)!

·

Then

An0,n1(z) = (−1)n1
N !
n0!

n0∑

k=0

(−n0)k

(−N)kk!
· zk = (−1)n1

N !
n0!

1F1(−n0;−N ; z).

One can find the explicit values of these polynomials on the internet by
looking for Padé table for the exponential function. Here is the table for
Bn0,n1 – the table for An0,n1 is easy to deduce from (136).

n1

n0
0 1 2 3

0 1 z − 1 z2 − 2z + 2 z3 − 3z2 + 6z − 6
1 1 z − 2 z2 − 4z + 6 z3 − 6z2 + 18z − 24
2 1 z − 3 z2 − 6z + 12 z3 − 9z2 + 36z − 60
3 1 z − 4 z2 − 8z + 20 z3 − 12z2 + 60z − 120

These polynomials are also useful for giving continued fractions expressions
for the exponential function.
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8.3 Hermite’s transcendence proof

In 1873 C. Hermite [3] proved that the number e is transcendental. In his
paper he explains in a very clear way how he found his proof. He starts
with an analogy between simultaneous diophantine approximation of real
numbers on the one hand and analytic complex functions of one variable
on the other. He first solves the analytic problem by constructing explicitly
what is now called Padé approximants for the exponential function. In fact
there are two types of such approximants, they are now called type I and
type II, and what Hermite did in 1873 was to compute Padé approximants of
type II. He also found those of type I in 1873 and studied them later in 1893.
K. Mahler was the first in the mid’s 1930 to relate the properties of the two
types of Padé’s approximants and to use those of type I in order to get a new
proof of Hermite’s transcendence Theorem (and also of the generalisation
by Lindemann and Weierstraß as well as quantitative refinements). See [2]
Chap. 2 § 3.

In the analogy with number theory, Padé approximants of type II are
related with the simultaneous approximation of real numbers ϑ1, . . . ,ϑm by
rational numbers pi/q with the same denominator q (one does not require
that the fractions are irreducible), which means that we wish to estimate

max
1≤i≤m

∣∣∣∣ϑi −
pi

q

∣∣∣∣

in terms of q, while type I is related with the study of estimates for linear
combinations

|a0 + a1ϑ1 + · · · + amϑm|

when a0, . . . , am are rational integers, not all of which are 0, in terms of the
number max0≤i≤m |ai|.

We explained Hermite’s strategy in § 3.1: in order to apply the criterion
for linear independence Proposition 14 and obtain the linear independence
over Q of 1, e, e2, . . . (and therefore the transcendence of e), Hermite first
“approximates” simultaneously the functions ez, e2z, . . . by rational fractions
P1/Q, Pm/Q, and then substitutes z = 1.

8.3.1 Padé approximants

Henri Eugène Padé (1863–1953), who was a student of Charles Hermite
(1822–1901), gave his name to the following objects which he studied thor-
oughly in his thesis in 1892 (for a complete historical survey of the theory,
see [1]).
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Lemma 142. Let f1, . . . , fm be analytic functions of one complex variable
near the origin. Let n0, n1, . . . , nm be non-negative integers. Set

N = n0 + n1 + · · · + nm.

Then there exists a tuple (Q, P1, . . . , Pm) of polynomials in C[X] satisfying
the following properties:
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree ≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x &→ Q(x)fµ(x)− Pµ(x) has a zero at the
origin of multiplicity ≥ N + 1.

Definition. A tuple (Q, P1, . . . , Pm) of polynomials in C[X] satisfying the
condition of Lemma 142 is called a Padé system of the second type for
(f1, . . . , fm) attached to the parameters n0, n1, . . . , nm.

Proof. The polynomial Q of Lemma 142 should have degree ≤ N − n0,
so we have to find (or rather to prove the existence of) its N − n0 + 1
coefficients, not all being zero. We consider these coefficients as unknowns.
The property we require is that for 1 ≤ µ ≤ m, the Taylor expansion at
the origin of Q(x)fµ(x) has zero coefficients for xN−nµ+1, xN−nµ+1, . . . , xN .
If this property holds for 1 ≤ µ ≤ m, we shall define Pµ by truncating the
Taylor series at the origin of Q(x)fµ(x) at the rank xN−nµ , hence Pµ will
have degree ≤ N − nµ, while the remainder Q(x)fµ(x) − Pµ(x) will have a
mutiplicity ≥ N + 1 at the origin.

Now for each given µ the condition we stated amounts to require that
our unknowns (the coefficients of Q) satisfy nµ homogeneous linear relations,
namely (

d

dx

)k

[Q(x)fµ(x)]x=0 = 0 for N − nµ < k ≤ N.

Therefore altogether we get n1 + · · · + nm = N − n0 homogeneous linear
equations, and since the number N − n0 + 1 of unknowns (the coefficients
of Q) is larger, linear algebra tells us that a non-trivial solution exists.

There is no unicity, because of the homogeneity of the problem: the set
of solutions (together with the trivial solution 0) is a vector space over C,
and Lemma 142 tells us that it has positive dimension. In the case where
this dimension is 1 (which means that there is unicity up to a multiplicative
factor), the system of approximants is called perfect. An example is with
m = 1 and f(x) = ex, as shown by Hermite’s work.

Here is the definition of the Padé approximants of type I:
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Lemma 143. Let f1, . . . , fm be analytic functions of one complex variable
near the origin. Let d0, d1, . . . , dm be non-negative integers. Set

M = d0 + d1 + · · · + dm + m.

Then there exists a tuple (A0, . . . , Am) of polynomials in C[X], not all of
which are zero, where Ai has degree ≤ di, such that the function

A0 + A1f1 + · · · + Amfm

has a zero at the origin of multiplicity ≥M .

Definition. A tuple (A0, A1, . . . , Am) of polynomials in C[X] satisfying
the condition of Lemma 143 is called a Padé system of the first type for
(f1, . . . , fm) attached to the parameters n0, n1, . . . , nm.

Proof. The map from the product of linear spaces C[z]≤n0 × · · ·C[z]≤nm to
CM which sends a tuple (A0, . . . , Am) to

(
Dj(A0 + A1f1 + · · · + Amfm)(0)

)
0≤j<M

is not injective, and any non–zero element in the kernel satisfies the required
property.

In the case m = 1, the notions of Padé approximants of type I and II
coincide – and an explicit solution has been given in the previous courses
when f1(x) = ex.

Most often it is not easy to find explicit solutions: we only know their
existence. As we are going to show, Hermite succeeded to produce explicit
solutions for the systems of Padé approximants of type II for the functions
(ex, e2x, . . . , emx).

8.3.2 Hermite’s identity

FromLemma 139 we deduce the value of the integral
∫ 1

0
(1− t)n0tn1etzdt.

One can compute similar more general integrals, where f(t) = (1 − t)n0tn1

is replaced by any polynomial. We start with a simple example.
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Lemma 144. Let f be a polynomial of degree ≤ N . Define

F = f + Df + D2 + · · · + DNf.

Then for z ∈ C ∫ z

0
e−tf(t)dt = F (0)− e−zF (z).

We can also write the definition of F as

F = (1−D)−1f where (1−D)−1 =
∑

k≥0

Dk.

The series in the right hand side is infinite, but when we apply the operator
to a polynomial only finitely many Dkf are not 0: when f is a polynomial
of degree ≤ N then Dkf = 0 for k > N .

Proof. More generally, if f is a complex function which is analytic at the
origin and N is a positive integer, if we set

F = f + Df + D2 + · · · + DNf,

then the derivative of e−tF (t) is −e−tf(t) + e−tDN+1f(t).

A change of variables in Lemma 144 leads to a formula for
∫ u

0
e−xtf(t)dt

when x and u are complex numbers. Here, in place of using Lemma 144, we
repeat the proof. Integrate by part e−xtf(t) between 0 and u:

∫ u

0
e−xtf(t)dt = −

[
1
x

e−xtf(t)
]u

0

+
1
x

∫ u

0
e−xtf ′(t)dt.

By induction we deduce
∫ u

0
e−xtf(t)dt = −

m∑

k=0

[
1

xk+1
e−xtDkf(t)

]u

0

+
1

xm+1

∫ u

0
e−xtDm+1f(t)dt.

Let N be an upper bound for the degree of f . For m = N the last integral
vanishes and

∫ u

0
e−xtf(t)dt = −

N∑

k=0

[
1

xk+1
e−xtDkf(t)

]u

0

=
N∑

k=0

1
xk+1

Dkf(0)− e−xu
N∑

k=0

1
xk+1

Dkf(u).

Multipling by xN+1eux yields:
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Lemma 145. Let f be a polynomial of degree ≤ N and let x, u be complex
numbers. Then

exu
N∑

k=0

xN−kDkf(0) =
N∑

k=0

xN−kDkf(u) + xN+1exu
∫ u

0
e−xtf(t)dt.

With the notation of Lemma 145, the function

x &→
∫ u

0
e−xtf(t)dt

is analytic at x = 0, hence its product with xN+1 has a mutiplicity ≥ N + 1
at the origin. Moreover

Q(x) =
N∑

k=0

xN−kDkf(0) and P (x) =
N∑

k=0

xN−kDkf(u)

are polynomials in x.
If the polynomial f has a zero of multiplicity ≥ n0 at the origin, then Q

has degree ≤ N − n0. If the polynomial f has a zero of multiplicity ≥ n1 at
u, then P has degree ≤ N − n1.

For instance, in the case u = 1, N = n0 + n1, f(t) = tn0(t − 1)n1 , the
two polynomials

Q(x) =
N∑

k=n0

xN−kDkf(0) and P (x) =
N∑

k=n1

xN−kDkf(1)

satisfy the properties which were required in section §8.1.1 (see Proposition
127), namely R(z) = Q(z)ez − P (z) has a zero of multiplicity > n0 + n1 at
the origin, P has degree ≤ n0 and Q has degree ≤ n1.

Lemma 145 is a powerful tool to go much further.

Proposition 146. Let m be a positive integer, n0, . . . , nm be non-negative
integers. Set N = n0 + · · · + nm. Define the polynomial f ∈ Z[t] of degree
N by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =
N∑

k=n0

xN−kDkf(0), Pµ(x) =
N∑

k=nµ

xN−kDkf(µ)
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and
Rµ(x) = xN+1exµ

∫ µ

0
e−xtf(t)dt.

Then the polynomial Q has exact degree N − n0, while Pµ has exact degree
N − nµ, and Rµ is an analytic function having at the origin a multiplicity
≥ N + 1. Further, for 1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q, P1, . . . , Pm) is a Padé system of the second type for the m-tuple
of functions (ex, e2x, . . . , emx), attached to the parameters n0, n1, . . . , nm.
Furthermore, the polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have
integral coefficients.

These polynomials Q, P1, . . . , Pm are called the Hermite-Padé polynomi-
als attached to the parameters n0, n1, . . . , nm.
Remark. If one wants to compare the formulae of § 8.1 with the special case
m = 1 of Proposition 146, one should be aware that we shifted somewhat the
notations: in § 8.1 we worked with f(t) = tn1(1− t)n0 , while in Proposition
146 with m = 1 the polynomial which occurs is f(t) = tn0(t− 1)n1 .

Proof. The coefficient of xN−n0 in the polynomial Q is Dn0f(0), so it is not
zero since f has mutiplicity exactly n0 at the origin. Similarly for 1 ≤ µ ≤ m
the coefficient of xN−nµ in Pµ is Dn0f(µ) #= 0.

The assertion on the integrality of the coefficients follows from the next
lemma.

Lemma 147. Let f be a polynomial with integer coefficients and let k be
a non-negative integer. Then the polynomial (1/k!)Dkf has integer coeffi-
cients.

Proof. If f(X) =
∑

n≥0 anXn then

1
k!

Dkf =
∑

n≥0

an

(
n

k

)
Xn with

(
n

k

)
=

n!
k!(n− k)!

,

and the binomial coefficients are rational integers.

From Lemma 147 it follows that for any polynomial f ∈ Z[X] and for
any integers k and n with n ≥ k, the polynomial (1/k!)Dnf also belongs to
Z[X]. This completes the proof of Proposition 146.
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