Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N ${ }^{\circ} 15$, June 7, 2010

These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

We complete the proof of the transcendence of e, following Hermite.
We shall substitute 1 to x in the relations

$$
Q(x) e^{\mu x}=P_{\mu}(x)+R_{\mu}(x)
$$

and deduce simultaneous rational approximations $\left(p_{1} / q, p_{2} / q, \ldots, p_{m} / q\right)$ to the numbers e, e^{2}, \ldots, e^{m}. In order to use Proposition 14, we need to have independent such approximations. This is a subtle point which Hermite did not find easy to overcome, according to his owns comments: we quote from p. 77 of [3]

Mais une autre voie conduira à une démonstration plus rigoureuse
The following approach is due to K. Mahler, we can view it as an extension of the simple non-vanishing argument used in $\S 8.1 .3$ for the irrationality of π.

We fix integers n_{0}, \ldots, n_{1}, all ≥ 1. We set $N=n_{0}+\cdots+n_{m}$. For $j=0,1, \ldots, m$ we denote by $Q_{j}, P_{j 1}, \ldots, P_{j m}$ the Hermite-Padé polynomials attached to the parameters

$$
n_{0}-\delta_{j 0}, n_{1}-\delta_{j 1}, \ldots, n_{m}-\delta_{j m},
$$

where $\delta_{j i}$ is Kronecker's symbol

$$
\delta_{j i}= \begin{cases}1 & \text { if } j=i, \\ 0 & \text { if } j \neq i .\end{cases}
$$

These parameters are said to be contiguous to $n_{0}, n_{1}, \ldots, n_{m}$. They are the rows of the matrix

$$
\left(\begin{array}{ccccc}
n_{0}-1 & n_{1} & n_{2} & \cdots & n_{m} \\
n_{0} & n_{1}-1 & n_{2} & \cdots & n_{m} \\
\vdots & \vdots & \ddots & \vdots & \\
n_{0} & n_{1} & n_{2} & \cdots & n_{m}-1
\end{array}\right)
$$

We are going to use the previous results, but one should notice that the sum of the parameters on each row is now $N^{\prime}=N-1$, not N as before.

Proposition 148. There exists a non-zero constant c such that the determinant

$$
\Delta=\left|\begin{array}{cccc}
Q_{0} & P_{10} & \cdots & P_{m 0} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{m} & P_{1 m} & \cdots & P_{m m}
\end{array}\right|
$$

is the monomial $c x^{m N}$.
Proof. The matrix of degrees of the entries in the determinant defining Δ is

$$
\left(\begin{array}{cccc}
N-n_{0} & N-n_{1}-1 & \cdots & N-n_{m}-1 \\
N-n_{0}-1 & N-n_{1} & \cdots & N-n_{m}-1 \\
\vdots & \vdots & \ddots & \vdots \\
N-n_{0}-1 & N-n_{1}-1 & \cdots & N-n_{m}
\end{array}\right)
$$

Therefore Δ is a polynomial of exact degree $N-n_{0}+N-n_{1}+\cdots+N-$ $n_{m}=m N$, the leading coefficient arising from the diagonal. This leading coefficient is $c=c_{0} c_{1} \cdots c_{m}$, where c_{0} is the leading coefficient of Q_{0} and c_{μ} is the leading coefficient of $P_{\mu \mu}, 1 \leq \mu \leq m$.

It remains to check that Δ has a multiplicity at least $m N$ at the origin. Linear combinations of the columns yield

$$
\Delta(x)=\left|\begin{array}{cccc}
Q_{0}(x) & P_{10}(x)-e^{x} Q_{0}(x) & \cdots & P_{m 0}(x)-e^{m x} Q_{0}(x) \\
\vdots & \vdots & \ddots & \vdots \\
Q_{m}(x) & P_{1 m}(x)-e^{x} Q_{m}(x) & \cdots & P_{m m}(x)-e^{m x} Q_{m}(x)
\end{array}\right|
$$

Each $P_{\mu j}(x)-e^{\mu x} Q_{j}(x), 1 \leq \mu \leq m, 0 \leq j \leq m$, has multiplicity at least N at the origin, because for each contiguous triple $(1 \leq j \leq m)$ we have

$$
\sum_{i=0}^{m}\left(n_{i}-\delta_{j i}\right)=n_{0}+n_{1}+\cdots+n_{m}-1=N-1
$$

Looking at the multiplicity at the origin, we can write

$$
\Delta(x)=\left|\begin{array}{cccc}
Q_{0}(x) & \mathcal{O}\left(x^{N}\right) & \cdots & \mathcal{O}\left(x^{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
Q_{m}(x) & \mathcal{O}\left(x^{N}\right) & \cdots & \mathcal{O}\left(x^{N}\right)
\end{array}\right|
$$

This completes the proof of Proposition 148 .
Now we fix a sufficiently large integer n and we use the previous results for $n_{0}=n_{1}=\cdots=n_{m}=n$ with $N=(m+1) n$. We define, for $0 \leq j \leq m$, the integers $q_{j}, p_{1 j}, \ldots, p_{n j}$ by

$$
(n-1)!q_{j}=Q_{j}(1),(n-1)!p_{\mu j}=P_{\mu j}(1), \quad(1 \leq \mu \leq m)
$$

Proposition 149. There exists a constant $\kappa>0$ independent on n such that

$$
\max _{1 \leq \mu \leq m} \max _{0 \leq j \leq m}\left|q_{i} e^{\mu}-p_{\mu j}\right| \leq \frac{\kappa^{n}}{n!}
$$

Further, the determinant

$$
\left|\begin{array}{cccc}
q_{0} & p_{10} & \cdots & p_{m 0} \\
\vdots & \vdots & \ddots & \vdots \\
q_{m} & p_{1 m} & \cdots & p_{m m}
\end{array}\right|
$$

is not zero.
Proof. Recall Hermite's formulae in Proposition 146 :

$$
Q_{j}(x) e^{\mu x}-P_{\mu j}(X)=x^{m n} e^{\mu x} \int_{0}^{\mu} e^{-x t} f_{j}(t) d t, \quad(1 \leq \mu \leq m, 0 \leq j \leq m)
$$

where

$$
\begin{aligned}
f_{j}(t) & =(t-j)^{-1}(t(t-1) \cdots(t-m))^{n} \\
& =(t-j)^{n-1} \prod_{\substack{1 \leq i \leq m \\
i \neq j}}(t-i)^{n}
\end{aligned}
$$

We substitute 1 to x and we divide by $(n-1)$!:

$$
q_{j} e^{\mu}-p_{\mu j}=\frac{1}{(n-1)!}\left(Q_{j}(1) e^{\mu}-P_{\mu j}(1)\right)=\frac{e^{\mu}}{(n-1)!} \int_{0}^{\mu} e^{-t} f_{j}(t) d t
$$

Now the integral is bounded from above by

$$
\int_{0}^{\mu} e^{-t}\left|f_{j}(t)\right| d t \leq m \sup _{0 \leq t \leq m}\left|f_{j}(t)\right| \leq m^{1+(m+1) n} .
$$

Finally the determinant in the statement of Proposition 149 is

$$
\frac{\Delta(1)}{(n-1)!^{m+1}},
$$

where Δ is the determinant of Proposition 148. Hence it does not vanish since $\Delta(1) \neq 0$.

Since κ^{n} / n ! tends to 0 as n tends to infinity, we may apply the criterion for linear independence Proposition 14 . Therefore the numbers $1, e, e^{2}, \ldots, e^{m}$ are linearly independent, and since this is true for all integers m, Hermite's Theorem on the transcendence of e follows.
Exercise 8. Using Hermite's method as explained in $\S 8.3$, prove that for any non-zero $r \in \mathbf{Q}(i)$, the number e^{r} is transcendental.
Exercise 9. Let m be a positive integer and $\epsilon>0$ a real number. Show that there exists $q_{0}>0$ such that, for any tuple (q, p_{1}, \ldots, p_{m}) of rational integers with $q>q_{0}$,

$$
\max _{1 \leq \mu \leq m}\left|e^{\mu}-\frac{p_{\mu}}{q}\right| \geq \frac{1}{q^{1+(1 / m)+\epsilon}}
$$

Check that it is not possible to replace the exponent $1+(1 / m)$ by a smaller number.
Hint. Consider Hermite's proof of the transcendence of e (§8.3.2), especially Proposition 149. First check (for instance, using Cauchy's formulae)

$$
\max _{0 \leq j \leq m} \frac{1}{k!}\left|D^{k} f_{j}(\mu)\right| \leq c_{1}^{n}
$$

where c_{1} is a positive real number which does not depend on n. Next, check that the numbers p_{j} and $q_{\mu j}$ satisfy

$$
\max \left\{q_{j},\left|p_{\mu j}\right|\right\} \leq(n!)^{m} c_{2}^{m}
$$

for $1 \leq \mu \leq m$ and $0 \leq j \leq n$, where again $c_{2}>0$ does not depend on n. Then repeat the proof of Hermite in $\S 8.3$ with n satisfying

$$
(n!)^{m} c_{3}^{-2 m n} \leq q<((n+1)!)^{m} c_{3}^{-2 m(n+1)},
$$

where $c_{3}>0$ is a suitable constant independent on n. One does not need to compute c_{1}, c_{2} and c_{3} in terms of m, one only needs to show their existence so that the proof yields the desired estimate.

References

[1] C. Brezinski, History of continued fractions and Padé approximants, vol. 12 of Springer Series in Computational Mathematics, SpringerVerlag, Berlin, 1991.
http://www.emis.de/cgi-bin/MATH-item?0714.01001.
[2] N. I. Fel'dman \& Y. V. Nesterenko - Transcendental numbers, in Number Theory, IV, Encyclopaedia Math. Sci., vol. 44, Springer, Berlin, 1998, p. 1-345.
[3] C. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. Paris, 77 (1873), pp. 18-24, 74-79, 226-233, 285-293. (Euvres de Charles Hermite, Paris: Gauthier-Villars, (1905), III, 150-181. See also Oeuvres III, 127130, 146-149, and Correspondance Hermite-Stieltjes, II, lettre 363, 291295. University of Michigan Historical Math Collection http://name.umdl.umich.edu/AAS7821.0001.001.
[4] I. Niven - Irrational numbers, Carus Math. Monographs 11 (1956).
[5] C.L. Siegel - Transcendental Numbers, Annals of Mathematics Studies, 16. Princeton University Press, Princeton, N. J., 1949.

9 Interpolation

9.1 Weierstraß question

Weierstraß (see [3]) initiated the question of investigating the set of algebraic numbers where a given transcendental entire function f takes algebraic values.

Denote by $\overline{\mathbf{Q}}$ the field of algebraic numbers (algebraic closure of \mathbf{Q} in \mathbf{C}). For an entire function f, we define the exceptional set S_{f} of f as the set of algebraic numbers α such that $f(\alpha)$ is algebraic:

$$
S_{f}:=\{\alpha \in \overline{\mathbf{Q}} ; f(\alpha) \in \overline{\mathbf{Q}}\} .
$$

For instance, the Hermite-Lindemann's Theorem on the transcendence of $\log \alpha$ and e^{β} for α and β algebraic numbers is the fact that the exceptional set of the function e^{z} is $\{0\}$. Also, the exceptional set of $e^{z}+e^{1+z}$ is empty, by the Theorem of Lindemann-Weierstrass. The exceptional set of functions like 2^{z} or $e^{i \pi z}$ is \mathbf{Q}, as shown by the Theorem of Gel'fond and Schneider.

The exceptional set of a polynomial is $\overline{\mathbf{Q}}$ if the polynomial has algebraic coefficients, otherwise it is finite. Also, any finite set of algebraic numbers is the exceptional set of some entire function: for $s \geq 1$ the set $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ is the exceptional set of the polynomial $\pi\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{s}\right) \in \mathbf{C}[z]$ and also of the transcendental entire function $\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{s}\right) e^{z-\alpha_{1}}$. Assuming Schanuel's conjecture, further explicit examples of exceptional sets for entire functions can be produced, for instance $\mathbf{Z}_{\geq 0}$ or \mathbf{Z}.

The study of exceptional sets started in 1886 with a letter of Weierstrass to Strauss. This study was later developed by Strauss, Stäckel, Faber see [3]. Further results are due to van der Poorten, Gramain, Surroca and others (see [1, [5]).

Among the results which were obtained, a typical one is the following: if A is a countable subset of \mathbf{C} and if E is a dense subset of \mathbf{C}, there exist transcendental entire functions f mapping A into E.

Also, van der Poorten noticed in [4] that there are transcendental entire functions f such that $D^{k} f(\alpha) \in \mathbf{Q}(\alpha)$ for all $k \geq 0$ and all algebraic α.

The question of possible sets S_{f} has been solved in [2]: any set of algebraic numbers is the exceptional set of some transcendental entire function. Also multiplicities can be included, as follows: define the exceptional set with multiplicity of a transcendental entire function f as the subset of $(\alpha, t) \in \overline{\mathbf{Q}} \times \mathbf{Z}_{\geq 0}$ such that $f^{(t)}(\alpha) \in \overline{\mathbf{Q}}$. Here, $f^{(t)}$ stands for the t-th derivative of f, which we denote also by $D^{t} f$.

Then any subset of $\overline{\mathbf{Q}} \times \mathbf{Z}_{\geq 0}$ is the exceptional set with multiplicities of some transcendental entire function f. More generally, the main result of [2] is the following:

Let A be a countable subset of \mathbf{C}. For each pair (α, s) with $\alpha \in A$, and $s \in \mathbf{Z}_{\geq 0}$, let $E_{\alpha, s}$ be a dense subset of \mathbf{C}. Then there exists a transcendental entire function f such that

$$
\begin{equation*}
\left(\frac{d}{d z}\right)^{s} f(\alpha) \in E_{\alpha, s} \tag{150}
\end{equation*}
$$

for all $(\alpha, s) \in A \times \mathbf{Z}_{\geq 0}$.
One may replace \mathbf{C} by \mathbf{R} : it means that one may take for the sets $E_{\alpha, s}$ dense subsets of \mathbf{R}, provided that one requires A to be a countable subset of \mathbf{R}.

The proof is a construction of an interpolation series on a sequence where each w occurs infinitely often. The coefficients of the interpolation series are selected recursively to be sufficiently small (and nonzero), so that the sum f of the series is a transcendental entire function.

This process yields uncountably many such functions. Further, one may also require that they are algebraically independent over $\mathbf{C}(z)$ together with their derivatives. Furthermore, at the same time, one may request further restrictions on each of these functions f. For instance, given any transcendental function g with $g(0) \neq 0$, one may require $|f|_{R} \leq|g|_{R}$ for all $R \geq 0$.

As a very special case of 150 (selecting A to be the set $\overline{\mathbf{Q}}$ of algebraic numbers and each $E_{\alpha, s}$ to be either $\overline{\mathbf{Q}}$ or its complement in \mathbf{C}), one deduces the existence of uncountably many algebraic independent transcendental entire functions f such that any Taylor coefficient at any algebraic point α takes a prescribed value, either algebraic or transcendental.

Exercise 10. . Check that a consequence of the main result 150) of [2] is the following.
Let A be a countable subset of \mathbf{C}. For any non negative integer s and any $\alpha \in A$, let $E_{\alpha s}$ be a dense subset in \mathbf{C}. Let g be a transcendental entire function with $g(0) \neq 0$. Then there exists a set $\left\{f_{i} i \in I\right\}$ of entire functions, with I a set having the power of continuum, with the following properties.

- For any $i \in I$, any $\alpha \in A$ and any integer $s \geq 0, f_{i}^{(s)}(\alpha) \in E_{\alpha s}$.
- For any $i \in I$ and any real number $r \geq 0,\left|f_{i}\right|_{r} \leq|g|_{r}$.
- The functions $f_{i}^{(s)},(i \in I, s \geq 0)$ are algebraically independent over $\mathbf{C}(z)$.

Hint. Use (150) with A replaced by $A \cup\left\{z_{1}, z_{2}\right\}$, where z_{1}, z_{2} are two algebraically independent complex numbers which do not belong to A. For $s \geq 0$, set $E_{z_{1}, s}=\overline{\mathbf{Q}}$. If there is a non-trivial relation of algebraic dependence among some of the functions $f_{i}^{(s)}$, then there is such a relation with coefficients in $\overline{\mathbf{Q}}\left(z_{1}\right)$. Next select a set of numbers $x_{i, s}, i \in I, s \geq 0$, having the power of continuum, which are algebraically independent over $\mathbf{Q}\left(z_{1}, z_{2}\right)$ - it is easy to give explicit examples with Liouville numbers. To produce f_{i}, set $E_{z_{2}, s}=\overline{\mathbf{Q}} x_{i, s} \backslash\{0\}$.

References

[1] F. Gramain, Fonctions entières arithmétiques, in Séminaire d'analyse 1985-1986 (Clermont-Ferrand, 1985-1986), Univ. Clermont-Ferrand II, Clermont, 1986, pp. 9, Exp. No. 9.
[2] J. Huang, D. Marques, and M. Mereb, Algebraic values of transcendental functions at algebraic points. http://arxiv.org/abs/0808.2766, 2008.
[3] K. Mahler, Lectures on transcendental numbers, Springer-Verlag, Berlin, 1976. Lecture Notes in Mathematics, Vol. 546.
[4] A. J. Van der Poorten, Transcendental entire functions mapping every algebraic number field into itself, J. Austral. Math. Soc., 8 (1968), pp. 192-193.
[5] A. Surroca, Valeurs algébriques de fonctions transcendantes, Int. Math. Res. Not., Art. ID 16834 (2006), p. 31.
[6] M. Waldschmidt, Auxiliary functions in transcendental number theory., Ramanujan J., 20 (2009), pp. 341-373.

