Updated: June 9, 2010

Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N°15, June 7, 2010

These are informal notes of my course given in April – June 2010 at IMPA (*Instituto Nacional de Matematica Pura e Aplicada*), Rio de Janeiro, Brazil.

We complete the proof of the transcendence of e, following Hermite. We shall substitute 1 to x in the relations

$$Q(x)e^{\mu x} = P_{\mu}(x) + R_{\mu}(x)$$

and deduce simultaneous rational approximations $(p_1/q, p_2/q, \ldots, p_m/q)$ to the numbers e, e^2, \ldots, e^m . In order to use Proposition 14, we need to have independent such approximations. This is a subtle point which Hermite did not find easy to overcome, according to his owns comments: we quote from p. 77 of [3]

Mais une autre voie conduira à une démonstration plus rigoureuse

The following approach is due to K. Mahler, we can view it as an extension of the simple non-vanishing argument used in § 8.1.3 for the irrationality of π .

We fix integers n_0, \ldots, n_1 , all ≥ 1 . We set $N = n_0 + \cdots + n_m$. For $j = 0, 1, \ldots, m$ we denote by $Q_j, P_{j1}, \ldots, P_{jm}$ the Hermite-Padé polynomials attached to the parameters

$$n_0 - \delta_{j0}, n_1 - \delta_{j1}, \ldots, n_m - \delta_{jm},$$

where δ_{ji} is Kronecker's symbol

$$\delta_{ji} = \begin{cases} 1 & \text{if } j = i, \\ 0 & \text{if } j \neq i. \end{cases}$$

These parameters are said to be *contiguous* to n_0, n_1, \ldots, n_m . They are the rows of the matrix

$$\begin{pmatrix} n_0 - 1 & n_1 & n_2 & \cdots & n_m \\ n_0 & n_1 - 1 & n_2 & \cdots & n_m \\ \vdots & \vdots & \ddots & \vdots & \\ n_0 & n_1 & n_2 & \cdots & n_m - 1 \end{pmatrix}.$$

We are going to use the previous results, but one should notice that the sum of the parameters on each row is now N' = N - 1, not N as before.

Proposition 148. There exists a non-zero constant c such that the determinant

$$\Delta = \begin{vmatrix} Q_0 & P_{10} & \cdots & P_{m0} \\ \vdots & \vdots & \ddots & \vdots \\ Q_m & P_{1m} & \cdots & P_{mm} \end{vmatrix}$$

is the monomial cx^{mN} .

Proof. The matrix of degrees of the entries in the determinant defining Δ is

$$\begin{pmatrix} N - n_0 & N - n_1 - 1 & \cdots & N - n_m - 1 \\ N - n_0 - 1 & N - n_1 & \cdots & N - n_m - 1 \\ \vdots & \vdots & \ddots & \vdots \\ N - n_0 - 1 & N - n_1 - 1 & \cdots & N - n_m \end{pmatrix}.$$

Therefore Δ is a polynomial of exact degree $N - n_0 + N - n_1 + \cdots + N - n_m = mN$, the leading coefficient arising from the diagonal. This leading coefficient is $c = c_0 c_1 \cdots c_m$, where c_0 is the leading coefficient of Q_0 and c_{μ} is the leading coefficient of $P_{\mu\mu}$, $1 \leq \mu \leq m$.

It remains to check that Δ has a multiplicity at least mN at the origin. Linear combinations of the columns yield

$$\Delta(x) = \begin{vmatrix} Q_0(x) & P_{10}(x) - e^x Q_0(x) & \cdots & P_{m0}(x) - e^{mx} Q_0(x) \\ \vdots & \vdots & \ddots & \vdots \\ Q_m(x) & P_{1m}(x) - e^x Q_m(x) & \cdots & P_{mm}(x) - e^{mx} Q_m(x) \end{vmatrix}.$$

Each $P_{\mu j}(x) - e^{\mu x}Q_j(x)$, $1 \le \mu \le m$, $0 \le j \le m$, has multiplicity at least N at the origin, because for each contiguous triple $(1 \le j \le m)$ we have

$$\sum_{i=0}^{m} (n_i - \delta_{ji}) = n_0 + n_1 + \dots + n_m - 1 = N - 1.$$

Looking at the multiplicity at the origin, we can write

$$\Delta(x) = \begin{vmatrix} Q_0(x) & \mathcal{O}(x^N) & \cdots & \mathcal{O}(x^N) \\ \vdots & \vdots & \ddots & \vdots \\ Q_m(x) & \mathcal{O}(x^N) & \cdots & \mathcal{O}(x^N) \end{vmatrix}.$$

This completes the proof of Proposition 148.

Now we fix a sufficiently large integer n and we use the previous results for $n_0 = n_1 = \cdots = n_m = n$ with N = (m+1)n. We define, for $0 \le j \le m$, the integers $q_j, p_{1j}, \ldots, p_{nj}$ by

$$(n-1)!q_j = Q_j(1), \ (n-1)!p_{\mu j} = P_{\mu j}(1), \ (1 \le \mu \le m).$$

Proposition 149. There exists a constant $\kappa > 0$ independent on n such that

$$\max_{1 \le \mu \le m} \max_{0 \le j \le m} |q_i e^{\mu} - p_{\mu j}| \le \frac{\kappa^n}{n!}.$$

Further, the determinant

$$\begin{vmatrix} q_0 & p_{10} & \cdots & p_{m0} \\ \vdots & \vdots & \ddots & \vdots \\ q_m & p_{1m} & \cdots & p_{mm} \end{vmatrix}$$

is not zero.

Proof. Recall Hermite's formulae in Proposition 146:

$$Q_j(x)e^{\mu x} - P_{\mu j}(X) = x^{mn}e^{\mu x} \int_0^\mu e^{-xt} f_j(t)dt, \quad (1 \le \mu \le m, \ 0 \le j \le m),$$

where

$$f_j(t) = (t-j)^{-1} \left(t(t-1) \cdots (t-m) \right)^n$$

= $(t-j)^{n-1} \prod_{\substack{1 \le i \le m \\ i \ne j}} (t-i)^n.$

We substitute 1 to x and we divide by (n-1)!:

$$q_j e^{\mu} - p_{\mu j} = \frac{1}{(n-1)!} \left(Q_j(1) e^{\mu} - P_{\mu j}(1) \right) = \frac{e^{\mu}}{(n-1)!} \int_0^{\mu} e^{-t} f_j(t) dt.$$

Now the integral is bounded from above by

$$\int_0^{\mu} e^{-t} |f_j(t)| dt \le m \sup_{0 \le t \le m} |f_j(t)| \le m^{1 + (m+1)n}.$$

Finally the determinant in the statement of Proposition 149 is

$$\frac{\Delta(1)}{(n-1)!^{m+1}},$$

where Δ is the determinant of Proposition 148. Hence it does not vanish since $\Delta(1) \neq 0$.

Since $\kappa^n/n!$ tends to 0 as *n* tends to infinity, we may apply the criterion for linear independence Proposition 14. Therefore the numbers $1, e, e^2, \ldots, e^m$ are linearly independent, and since this is true for all integers *m*, Hermite's Theorem on the transcendence of *e* follows.

Exercise 8. Using Hermite's method as explained in § 8.3, prove that for any non-zero $r \in \mathbf{Q}(i)$, the number e^r is transcendental.

Exercise 9. Let *m* be a positive integer and $\epsilon > 0$ a real number. Show that there exists $q_0 > 0$ such that, for any tuple (q, p_1, \ldots, p_m) of rational integers with $q > q_0$,

$$\max_{1 \le \mu \le m} \left| e^{\mu} - \frac{p_{\mu}}{q} \right| \ge \frac{1}{q^{1+(1/m)+\epsilon}} \cdot$$

Check that it is not possible to replace the exponent 1 + (1/m) by a smaller number.

Hint. Consider Hermite's proof of the transcendence of e (§ 8.3.2), especially Proposition 149. First check (for instance, using Cauchy's formulae)

$$\max_{0 \le j \le m} \frac{1}{k!} |D^k f_j(\mu)| \le c_1^n,$$

where c_1 is a positive real number which does not depend on n. Next, check that the numbers p_j and $q_{\mu j}$ satisfy

$$\max\{q_j, |p_{\mu j}|\} \le (n!)^m c_2^m$$

for $1 \le \mu \le m$ and $0 \le j \le n$, where again $c_2 > 0$ does not depend on n. Then repeat the proof of Hermite in § 8.3 with n satisfying

$$(n!)^m c_3^{-2mn} \le q < \left((n+1)!\right)^m c_3^{-2m(n+1)},$$

where $c_3 > 0$ is a suitable constant independent on n. One does not need to compute c_1 , c_2 and c_3 in terms of m, one only needs to show their existence so that the proof yields the desired estimate.

References

- C. BREZINSKI, History of continued fractions and Padé approximants, vol. 12 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1991. http://www.emis.de/cgi-bin/MATH-item?0714.01001.
- [2] N. I. FEL'DMAN & Y. V. NESTERENKO Transcendental numbers, in Number Theory, IV, Encyclopaedia Math. Sci., vol. 44, Springer, Berlin, 1998, p. 1–345.
- [3] C. HERMITE, Sur la fonction exponentielle, C. R. Acad. Sci. Paris, 77 (1873), pp. 18-24, 74-79, 226-233, 285-293. Œuvres de Charles Hermite, Paris: Gauthier-Villars, (1905), III, 150-181. See also Oeuvres III, 127-130, 146-149, and Correspondance Hermite-Stieltjes, II, lettre 363, 291-295. University of Michigan Historical Math Collection http://name.umdl.umich.edu/AAS7821.0001.001.
- [4] I. NIVEN Irrational numbers, Carus Math. Monographs 11 (1956).
- [5] C.L. SIEGEL *Transcendental Numbers*, Annals of Mathematics Studies, 16. Princeton University Press, Princeton, N. J., 1949.

9 Interpolation

9.1 Weierstraß question

Weierstraß (see [3]) initiated the question of investigating the set of algebraic numbers where a given transcendental entire function f takes algebraic values.

Denote by $\overline{\mathbf{Q}}$ the field of algebraic numbers (algebraic closure of \mathbf{Q} in \mathbf{C}). For an entire function f, we define the exceptional set S_f of f as the set of algebraic numbers α such that $f(\alpha)$ is algebraic:

$$S_f := \left\{ \alpha \in \overline{\mathbf{Q}} \; ; \; f(\alpha) \in \overline{\mathbf{Q}} \right\}$$

For instance, the Hermite–Lindemann's Theorem on the transcendence of $\log \alpha$ and e^{β} for α and β algebraic numbers is the fact that the exceptional set of the function e^z is $\{0\}$. Also, the exceptional set of $e^z + e^{1+z}$ is empty, by the Theorem of Lindemann–Weierstrass. The exceptional set of functions like 2^z or $e^{i\pi z}$ is \mathbf{Q} , as shown by the Theorem of Gel'fond and Schneider.

The exceptional set of a polynomial is \mathbf{Q} if the polynomial has algebraic coefficients, otherwise it is finite. Also, any finite set of algebraic numbers is the exceptional set of some entire function: for $s \ge 1$ the set $\{\alpha_1, \ldots, \alpha_s\}$ is the exceptional set of the polynomial $\pi(z - \alpha_1) \cdots (z - \alpha_s) \in \mathbf{C}[z]$ and also of the transcendental entire function $(z - \alpha_2) \cdots (z - \alpha_s)e^{z-\alpha_1}$. Assuming Schanuel's conjecture, further explicit examples of exceptional sets for entire functions can be produced, for instance $\mathbf{Z}_{\ge 0}$ or \mathbf{Z} .

The study of exceptional sets started in 1886 with a letter of Weierstrass to Strauss. This study was later developed by Strauss, Stäckel, Faber – see [3]. Further results are due to van der Poorten, Gramain, Surroca and others (see [1, 5]).

Among the results which were obtained, a typical one is the following: if A is a countable subset of \mathbf{C} and if E is a dense subset of \mathbf{C} , there exist transcendental entire functions f mapping A into E.

Also, van der Poorten noticed in [4] that there are transcendental entire functions f such that $D^k f(\alpha) \in \mathbf{Q}(\alpha)$ for all $k \ge 0$ and all algebraic α .

The question of possible sets S_f has been solved in [2]: any set of algebraic numbers is the exceptional set of some transcendental entire function. Also multiplicities can be included, as follows: define the exceptional set with multiplicity of a transcendental entire function f as the subset of $(\alpha, t) \in \overline{\mathbf{Q}} \times \mathbf{Z}_{\geq 0}$ such that $f^{(t)}(\alpha) \in \overline{\mathbf{Q}}$. Here, $f^{(t)}$ stands for the t-th derivative of f, which we denote also by $D^t f$. Then any subset of $\overline{\mathbf{Q}} \times \mathbf{Z}_{\geq 0}$ is the exceptional set with multiplicities of some transcendental entire function f. More generally, the main result of [2] is the following:

Let A be a countable subset of **C**. For each pair (α, s) with $\alpha \in A$, and $s \in \mathbb{Z}_{\geq 0}$, let $E_{\alpha,s}$ be a dense subset of **C**. Then there exists a transcendental entire function f such that

$$\left(\frac{d}{dz}\right)^s f(\alpha) \in E_{\alpha,s} \tag{150}$$

for all $(\alpha, s) \in A \times \mathbb{Z}_{\geq 0}$.

One may replace **C** by **R**: it means that one may take for the sets $E_{\alpha,s}$ dense subsets of **R**, provided that one requires A to be a countable subset of **R**.

The proof is a construction of an interpolation series on a sequence where each w occurs infinitely often. The coefficients of the interpolation series are selected recursively to be sufficiently small (and nonzero), so that the sum f of the series is a transcendental entire function.

This process yields uncountably many such functions. Further, one may also require that they are algebraically independent over $\mathbf{C}(z)$ together with their derivatives. Furthermore, at the same time, one may request further restrictions on each of these functions f. For instance, given any transcendental function g with $g(0) \neq 0$, one may require $|f|_R \leq |g|_R$ for all $R \geq 0$.

As a very special case of 150 (selecting A to be the set $\overline{\mathbf{Q}}$ of algebraic numbers and each $E_{\alpha,s}$ to be either $\overline{\mathbf{Q}}$ or its complement in \mathbf{C}), one deduces the existence of uncountably many algebraic independent transcendental entire functions f such that any Taylor coefficient at any algebraic point α takes a prescribed value, either algebraic or transcendental.

Exercise 10. . Check that a consequence of the main result (150) of [2] is the following.

Let A be a countable subset of C. For any non negative integer s and any $\alpha \in A$, let $E_{\alpha s}$ be a dense subset in C. Let g be a transcendental entire function with $g(0) \neq 0$. Then there exists a set $\{f_i \ i \in I\}$ of entire functions, with I a set having the power of continuum, with the following properties.

- For any $i \in I$, any $\alpha \in A$ and any integer $s \ge 0$, $f_i^{(s)}(\alpha) \in E_{\alpha s}$.
- For any $i \in I$ and any real number $r \ge 0$, $|f_i|_r \le |g|_r$.
- The functions $f_i^{(s)}$, $(i \in I, s \ge 0)$ are algebraically independent over $\mathbf{C}(z)$.

Hint. Use (150) with A replaced by $A \cup \{z_1, z_2\}$, where z_1, z_2 are two algebraically independent complex numbers which do not belong to A. For $s \ge 0$, set $E_{z_1,s} = \overline{\mathbf{Q}}$. If there is a non-trivial relation of algebraic dependence among some of the functions $f_i^{(s)}$, then there is such a relation with coefficients in $\overline{\mathbf{Q}}(z_1)$. Next select a set of numbers $x_{i,s}, i \in I, s \ge 0$, having the power of continuum, which are algebraically independent over $\mathbf{Q}(z_1, z_2)$ – it is easy to give explicit examples with Liouville numbers. To produce f_i , set $E_{z_2,s} = \overline{\mathbf{Q}} x_{i,s} \setminus \{0\}$.

References

- F. GRAMAIN, Fonctions entières arithmétiques, in Séminaire d'analyse 1985–1986 (Clermont-Ferrand, 1985–1986), Univ. Clermont-Ferrand II, Clermont, 1986, pp. 9, Exp. No. 9.
- J. HUANG, D. MARQUES, AND M. MEREB, Algebraic values of transcendental functions at algebraic points. http://arxiv.org/abs/0808.2766, 2008.
- [3] K. MAHLER, Lectures on transcendental numbers, Springer-Verlag, Berlin, 1976. Lecture Notes in Mathematics, Vol. 546.
- [4] A. J. VAN DER POORTEN, Transcendental entire functions mapping every algebraic number field into itself, J. Austral. Math. Soc., 8 (1968), pp. 192–193.
- [5] A. SURROCA, Valeurs algébriques de fonctions transcendantes, Int. Math. Res. Not., Art. ID 16834 (2006), p. 31.
- [6] M. WALDSCHMIDT, Auxiliary functions in transcendental number theory., Ramanujan J., 20 (2009), pp. 341–373.