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9.2 Integer valued entire functions

We have seen in § 9.1 that there is no hope to prove a general transcendence
theorem on the values of entire functions. One needs to be less ambitious,
and the most natural thing to do is to put restrictions on the functions.
For instance the functions produced in § 9.1 with large exceptional sets
do not satisfy differential equations (more precisely, as we have seen, it is
possible to produce such functions which do not satisfy differential equations
– it is another challenge to prove that none of them satisfies a differential
equation!). We shall see, with the Schneider–Lang Theorem, that general
transcendence results can be proved for functions satisfying some differential
equations.

However, one of the earliest progresses in the theory came from adding
restrictions not on the functions, but on the numbers. We were considering
in § 9.1 algebraic values of transcendental functions at algebraic points. A
much more restricted question is to investigate integer values at integral
points. This is the story that we are telling now. We even start with a more
specific topic by looking at zero values. Next we consider Pólya’s pioneer
work on integer valued entire functions, we pursue with Gel’fond’s extension
to Gaussian integers, and then with his proof of the transcendence of eπ.

When f is a complex function which is bounded on a disc |z| ≤ r, we set

|f |r = sup
|z|=r

|f(z)|.

9.2.1 Weierstraß canonical products

Recall that if f is an analytic function on a simply connected open subset
D of C without zero in D, then there exists a analytic function g in D such
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that f = eg. If f has only finitely many zeros, then f(z) = A(z)eg(z), where
A is a polynomial (having the same zeros as f) and g is analytic in D. We
are interested in having a similar decomposition when f has infinitely many
zeroes - recall that if f is not the zero function, then the zeroes are isolated.

We assume D = C (hence f is an entire function). Its zeros form a
discrete set, one can order them by non–decreasing modulus: let (α0, α1, . . .)
be this sequence of zeros of f , counting multiplicities. It will be convenient
to assume f(0) "= 0, hence |α0| > 0.

We further assume that f has finite order of growth ", namely (cf [10]
Chap. X § 3):

" = lim sup
r→∞

log log |f |r
log r

.

Recall the Taylor expansion at the origin of log(1− z):

log(1− z) = −z − z2

2
− z3

3
− · · · zm

m
− · · ·

For m ≥ 0, one defines the Weierstraß factor ([10] Chap. X § 2) as:

E(z, m) = (1− z)ez+z2/2+z3/3+···+zm/m;

in particular E(z, 0) = 1 − z. This function is very close to 1 (especially
when m is large) for |z| not too large: according to [10] Chap. X § 2 Lemma
2.2, for |z| ≤ 1/2 one has | log E(z, m)| ≤ 2|z|m+1.

A classical result (see [10] Chap. X § 3 Th. 3.5) is that there exist an
integer m ≤ " and a polynomial P of degree ≤ " such that

f(z) = eP (z)
∏

n≥0

E(z/αn, m).

The integer m is the integral part of " if " is not an integer, it is " or "− 1
if " is an integer.

Conversely, given a discrete sequence of non–zero complex numbers (αn)n≥0,
ordered with non–decreasing modulus, there exists a sequence of non–negative
numbers (mn)n≥0 such that the product

∏

n≥0

E(z/αn, mn)

is normally convergent over any compact subset of C (see [16] Chap. VII
§ 7.6 and [10] Chap. X § 2 Th. 2.3). When this property is true for a constant
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sequence mn = m, (n ≥ 0), and when m is the smallest integer such that
the product ∏

n≥0

E(z/αn, m)

is convergent, then this product is called the canonical product of Weierstraß
associated with the sequence (αn)n≥0.
Examples.
• (See [16] Chap. XII and [10] Chap. XII § 2).
The canonical product of Weierstraß associated with the non–negative inte-
gers Z≥0 is

z
∏

n≥1

(
1− z

n

)
ez/n = − eγz

Γ(−z)
·

• (see [16] Chap. XII § 12.4 and [10] Chap. X § 2).
The canonical product of Weierstraß associated with the rational integers
Z, is

z
∏

n∈Z\{0}

(
1− z

n

)
ez/n = π−1 sin(πz) =

−z

Γ(z)Γ(1− z)
·

• (see [16] Chap. XX and [10] Chap. XI § 4). and [1, 9, 14]). Let Ω =
Zω1 + Zω2 be a lattice in C. The Weierstraß canonical product attached
to Ω is the Weierstraß sigma function σΩ defined by

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
e

z
ω + z2

2ω2 ·

Exercise 11. Show that the function

g(z) =
∑

n≥0

(−1)n π2n

22n(2n)!
zn

has the infinite product expansion

g(z) =
∏

n∈Z

(
1− z

(2n + 1)2

)
·

Hint: Check g(t2) = cos(πt/2).

An entire function f is said to be of finite exponential type if the number

α = lim sup
r→∞

log |f |r
r
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is finite. In this case f is said to be of exponential type α. Notice that a
function of finite exponential type has order ≤ 1; if the order is < 1, then
the type α is zero.

Lemma 151. A function of exponential type < 1 which vanishes for all
n = 0, 1, . . . is the zero function.

The proof relies on the following auxiliary result:

Lemma 152 (Jensen’s Formula). If g is an analytic function in an open
set containing the closed disk disc |z| ≤ r with zeros (aj)1≤j≤k in this disc
and if g(0) "= 0, then

log |g(0)| +
k∑

j=1

log
r

|aj |
=

1
2π

∫ 2π

0
log |g(reiθ)|dθ.

Sketch of proof of Jensen’s Formula 152. Assume first that g has no zero in
the closed disk disc |z| ≤ r. Then there is an open disk containing this
closed disk, where g has no zero, and therefore there is an analytic function
h in a neighborhood of the disc |z| ≤ r such that g = eh. Since |g| = e(eh,
the formula follows by taking the real part of

h(0) =
1

2iπ

∫

|z|=r
h(z)

dz

z
=

1
2π

∫ 2π

0
h(reiθ)dθ.

In the general case, one can write g(z) = (z−a1) · · · (z−ak)eh(z), where h is
analytic. By multiplicativity of both sides of the conclusion of Lemma 152,
the formula reduces to the following one: for any complex number α,

∫ 1

0
log |e2iπt − α|dt = log max{1, |α|}.

(See for instance [11], pp. 5–6, or [10] Chap. IX Th. 1.3).

Proof of Lemma 151. Assume f is not the zero function and vanishes at all
the non–negative integers n = 0, 1, . . . Since the zeroes of f are isolated,
there exists z0 ∈ (0, 1) such that f(z0) "= 0. Use Jensen’s formula 152 for
the function g(z) = f(z0 + z) with r = N − z0, where N is a large integer.
The set of zeroes of g in the disc |z| ≤ r contains the elements n − z0,
1 ≤ n ≤ N − z0. For 1 ≤ n ≤ N − z0 we have (N − z0)/(n− z0) ≥ N/n. For
the other zeros we use the trivial estimate log(r/|aj |) ≥ 0. Also |g|r ≤ |f |N .
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We deduce an upper bound of the right hand side of Jensen’s Formula by
using the assumption: there exists c > 0 and λ < 1 such that |f |N ≤ ceλN :

1
2π

∫ 2π

0
log |g(reiθ)|dθ ≤ log |g|r ≤ log |f |N ≤ λN + log c.

Hence

log |f(z0)| ≤ λN −
N∑

n=1

log(N/n) + log c = λN −N log N + log N ! + log c.

Since λ < 1, it follows from Stirling’s formula:

N ! & NNe−N
√

2πN (153)

that λN − N log N + log N ! tends to −∞ as N tends to infinity, which
contradicts f(z0) "= 0.

Remark on Jensen’s Formula. In many situations, one can replace
Jensen’s formula (Lemma 152) by Schwarz’s Lemma (see § 10.4), which
gives an upper bound for |f |r when f has N zeroes (counting multiplicities)
in |z| ≤ r: for R > r one has

|f |r ≤
(

R2 + r2

2rR

)−N

|f |R. (154)

However, here, it would give a weaker result: in order to reach the conclusion
of Lemma 151, using (154), one needs to assume that f has exponential type
≤ γ where γ satisfies

γ < sup
λ>1

1
λ

log
(

λ2 + 1
2λ

)
<

1
5
.

Remark on Stirling’s Formula (153). We needed only a weak form of
Stirling’s formula. Asymptotic expansions (see the definition in Chap. VIII
of [16]) for the logarithm of the Gamma function are known:

log Γ(z) =
(

z − 1
2

)
log z − z +

1
2

log(2π)−
∫ +∞

0

P1(t)
z + t

dt

for
−π + δ < arg z < π + δ with 0 < δ < π,
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where P1(t) = t − )t* − 1/2. Denote by (Bn)n≥0 the sequence of Bernoulli
numbers, which are defined by ([16] § 7.1)

x

ex − 1
=

∑

n≥0

Bn
xn

n!
·

The first non–zero values are

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

, B10 =
5
66

·

For z with argument ≤ (π/2)−δ with δ > 0, we have (see Chap. XII § 12.33
of [16]):

log Γ(z) =
(

z − 1
2

)
log z−z+

1
2

log(2π)+
B2

1 · 2 · z +
B4

3 · 4 · z2
+

B6

5 · 6 · z3
+ · · ·

9.2.2 Pólya and 2z

Satz I in [12] is the following result.

Theorem 155 (Pólya). If an entire function f satisfies f(n) ∈ Z for all
n = 0, 1, . . . , and

lim
r→∞

r1/2|f |r
2r

= 0,

then f is a polynomial.

A consequence of Pólya’s Theorem 155 is that an entire function of ex-
ponential type < log 2 is a polynomial. In loose terms, it means that the
function 2z is the transcendental function mapping Z≥0 to Z which grows
the least rapidly.

In his 1929 paper [12], Pólya also considered entire functions mapping Z
to Z: he proved that the smallest such transcendental function is

1√
5

((
3 +

√
5

2

)z

−
(

3−
√

5
2

)z)
.

After Pólya’s work, a number of papers have been written on the sub-
ject. In particular Ch. Pisot used the Laplace–Borel transform to prove
that an entire function mapping Z≥0 to Z of exponential type ≤ log 2 =
0.69314718 . . . is of the form A(z) + B(z)2z, where A and B are polynomi-
als. See [6, 7].

Pólya’s proof involves the calculus of finite differences [4] which we now
introduce.
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9.2.3 Calculus of finite differences

Given a function f and points x0, x1, . . . , xm where f is analytic, one defines
inductively analytic functions f1, f2, . . . as follows:

f1(z) =
f(z)− f(z0)

z − z0
, f2(z) =

f1(z)− f1(z1)
z − z1

, f3(z) =
f2(z)− f2(z2)

z − z2
, . . .

so that

f(z) = f(z0) + (z − z0)f1(z),
f1(z) = f1(z1) + (z − z1)f2(z),
f2(z) = f2(z2) + (z − z2)f3(z), . . .

This gives the expansion

f(z) = c0 + c1(z − z0) + c2(z − z0)(z − z1) + c3(z − z0)(z − z1)(z − z2) + · · ·
+ cm(z − z0)(z − z1) · · · (z − zm−1) + (z − z0)(z − z1) · · · (z − zm)fm+1(z)

with c0 = f(z0), c1 = f1(z1), . . . , cm = fm(zm).
Here is a first set of formulae for the coefficients c0, c1, . . . cm. For sim-

plicity we assume that the points x0, x1, . . . , xm are pairwise distinct. Define
first

[x0] = f(x0), [x1] = f(x1), . . . , [xm] = f(xm),

and next set

[x0, x1] =
[x0]− [x1]
x0 − x1

, [x1, x2] =
[x1]− [x2]
x1 − x2

, . . . , [xm−1, xm] =
[xm−1]− [xm]
xm−1 − xm

,

[x0, x1, x2] =
[x0, x1]− [x1, x2]

x0 − x2
, [x1, x2, x3] =

[x1, x2]− [x2, x3]
x1 − x3

, . . . ,

and so on, up to

[x0, x1, . . . , xm] =
[x0, x1, . . . , xm−1]− [x1, x2, . . . , xm]

x0 − xm
·

Then
c0 = [x0], c1 = [x0, x1], . . . , cm = [x0, . . . , xm].

We now explain another way of getting such an expansion, by means of
an identity due to Ch. Hermite (see [13]):

1
x− z

=
1

x− x0
+

z − x0

x− x0
· 1
x− z

·
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We replace the last factor 1/(x− z) by repeating the same formula with x0

replaced by x1:

1
x− z

=
1

x− x0
+

z − x0

x− x0
·
(

1
x− x1

+
z − x1

x− x1
· 1
x− z

)
·

Inductively we deduce

1
x− z

=
m∑

j=0

(z − x0)(z − x1) · · · (z − xj−1)
(x− x0)(x− x1) · · · (x− xj)

+
(z − x0)(z − x1) · · · (z − xm)
(x− x0)(x− x1) · · · (x− xm)

· 1
x− z

·

Now we multiply by (1/2iπ)f(x) and integrate along a simple contour C
which contains all the xi as well as z: this produces Newton interpolation
expansion

f(z) =
m∑

j=0

cj(z − x0) · · · (z − xj−1) + Rm(z)

with

cj =
1

2iπ

∫

C

f(x)dx

(x− x0)(x− x1) · · · (x− xj)
(0 ≤ j ≤ m− 1)

and

Rm(z) = (z−x0)(z−x1) · · · (z−xm)· 1
2iπ

∫

C

f(x)dx

(x− x0)(x− x1) · · · (x− xm)(x− z)
·

Similar formulae exist when the points xi are not distinct: when one repeats
m times the same xi, one considers the values f (s)(xi) of the successive
derivatives of f at xi, for s = 0, . . . ,m − 1. See § 9.2.8 and [10] Chap. IX
§ 2.

9.2.4 Proof of Pólya’s Theorem

Proof. The Newton’s interpolation series introduced in § 9.2.3 associated
with the function f and the points xj = j for j ≥ 0 is the formal series

F (z) =
∑

n≥0

cnz(z − 1) · · · (z − n + 1),
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where, for n ≥ 0,

cn =
n∑

k=0

f(k)∏

0≤j≤n
j "=k

(k − j)
·

Since
∏

0≤j≤n
j "=k

(k − j) = k(k − 1) · · · 2 · 1 · (−1)(−2) · · · (k − n) = (−1)n−kk!(n− k)!,

we deduce

cn =
1
n!

n∑

k=0

(−1)n−k

(
n

k

)
f(k).

Hence cn is a rational number and more precisely n!cn is a rational integer.
We are going to prove that cn vanishes for sufficiently large n. In order to do
so, we produce an upper bound for |cn| by using the hypothesis of Theorem
155, namely

|f |r = ε(r)r−1/22r

where ε(r) → 0 as r →∞. From the integral formula

cn =
1

2iπ

∫

|z|=rn

f(z)dz

z(z − 1) · · · (z − n)

which is valid for any rn > n, we deduce

|cn| ≤ ε(rn)r−1/2
n 2rn

1
(rn − 1)(rn − 2) · · · (rn − n)

·

The best choice [12] is rn = 2n. Using Stirling’s formula (153) we obtain

n!|cn| ≤
ε(2n)√

2n
22n n!(n− 1)!

(2n− 1)!

=
ε(2n)√

2n
22n+1 n!2

(2n)!

∼ ε(2n)√
2n

22n+1 (nne−n
√

2πn)2

(2n)2ne−2n
√

4πn
= ε(2n)

√
2π.

Hence |cn| < 1/n! for sufficiently large n, and therefore cn = 0 for sufficiently
large n, which means that the interpolation series F is a polynomial. Since
f − F vanishes for all n = 0, 1, . . . (by the construction of the interpolation
series) and has exponential type < log 2 < 1, it follows from Lemma 151
that f = F , hence f is a polynomial.
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Remark. In [12], Pólya explains his choice of rn = 2n by letting rn = n/ξ
with 0 < ξ < 1, and by performing all the details of the computation with
ξ. He shows that the optimal value for ξ is obtained when the function
ξξ(1 − ξ)1−ξ assumes its minimal value, which is at ξ = 1/2, and then he
completes the proof with this choice.

9.2.5 Integer valued entire functions on Gaussian integers

In 1926, S. Fukasawa extended Pólya’s result to the Gaussian integers: he
proved that if f is an entire function mapping Z[i] to Z[i] and if, for any
ε > 0, there exists θε > 0 such that

|f |r ≤ eθεrσ−ε
with σ =

1440
919 + 27

√
5

= 1.470 . . . ,

then f is a polynomial. In 1929, A.O. Gel’fond [3] refined the result and
obtained the right exponent 2 in place of σ − ε: he proved that an entire
function f mapping Z[i] to Z[i] and satisfying

|f |r ≤ eγr2
with γ <

π

2(1 + e164/π)2
& 0.7 · 10−45

is a polynomial.
The proofs by Fukasawa and Gel’fond rely on Newton’s interpolation

series at the points in Z[i].
That the exponent 2 cannot be improved is shown by the Weierstraß

sigma function associated to Z[i]. Gel’fond wrote that his estimate for the
constant γ is not the right limit for the problem. In 1980, D.W. Masser
showed that the result cannot hold with γ replaced by a constant larger
than π/(2e). In 1981, F. Gramain [5] proved that the result holds with
π/(2e), which is therefore best possible:

If f is an entire function which is not a polynomial and maps
Z[i] to Z[i], then

lim sup
r→∞

1
r2

log |f |r ≥
π

2e
·

9.2.6 The constant of Gramain–Weber

The work by Masser and Gramain on entire functions mapping Z[i] to Z[i]
gave rise to the following problem, which is still unsolved. For each integer
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k ≥ 2, let rk be the minimal radius of a closed disk in R2 containing at least
k points of Z2, and for n ≥ 2 define

δn = − log n +
n∑

k=2

1
πr2

k

·

The limit δ = limn→∞ δn exists (it is an analogue in dimension 2 of the Euler
constant), and the best known estimates for it are [8]

1.811 · · · < δ < 1.897 . . .

(see also [2]). F. Gramain conjectures that

δ = 1 +
4
π

(
γL(1) + L′(1)

)
,

where γ is Euler’s constant and

L(s) =
∑

n≥0

(−1)n(2n + 1)−s

is the L function of the quadratic field Q(i) (Dirichlet beta function). Since
L(1) = π/4 and

L′(1) =
∑

n≥0

(−1)n+1 · log(2n + 1)
2n + 1

=
π

4
(
3 log π + 2 log 2 + γ − 4 log Γ(1/4)

)
,

Gramain’s conjecture is equivalent to

δ = 1 + 3 log π + 2 log 2 + 2γ − 4 log Γ(1/4) = 1.822825 . . .

Other problems related to the lattice Z[i] are described in the section “On
the borders of geometry and arithmetic” of [15].
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