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These are informal notes of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

The work by Fukasawa on integer valued entire functions at the points
of Z[i] requires estimates on the number of points of Z[i] into a disc. More
generally, Fukasawa showed that if A is a domain bounded by finitely many
curves of finite length, if we set

A =
∫ ∫

(D)
dxdy, B =

∫ ∫

(D)
log

√
x2 + y2dxdy,

then the number of points in Dt ∩ Z[i] satisfies

At2 log t + Bt2 + O(t log t) as t→∞.

For the unit disc D = {z ∈ C ; |z| ≤ 1}, one has A = π and B = −π/2.
One deduces

log
∏

0 !=ω∈Z[i]
|ω|≤t

|ω| =
∑

0 !=ω∈Z[i]
|ω|≤t

log |ω| = πr2 log r − π

2
r2 + o(r2).

This yields

Lemma 156. An entire function f satisfying f(Z[i]) = {0} and, for all
sufficiently large r,

|f |r ≤ eκr2

with κ < π/2, is a polynomial.

Proof. Like in the proof of Lemma 151, this follows from Jensen’s formula,
but here one replaces Stirling’s formula by the estimates

∑

|ω|≤r

1 = πr2 + o(r2)
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and
∑

0 !=ω∈Z[i]
|ω|≤t

log(|ω|/r) = πr2 log r − π

2
r2 − πr2 log r + o(r2) = −π

2
r2 + o(r2).

9.2.7 Transcendence of eπ

In [2], just after his paper [1] on integer valued entire functions on Z[i],
A.O. Gel’fond extended his proof and obtained the following outstanding
result:

Theorem 157 (Ge’lfond). The number

eπ = 23, 140 692 632 779 269 005 729 086 367 . . .

is transcendental.

This was the first step towards a solution of the seventh of the 23 prob-
lems raised by D. Hilbert at the International Congress of Mathematicians
in Paris in 1900: for algebraic α and β with α '= 0, α '= 1 and β irrational,
the number αβ is transcendental.

The number αβ is defined as αβ = exp(β log α), where log α is any
logarithm of α. The condition α '= 1 may be replaced by logα '= 0, both
statements are equivalent.

Taking α = −1, log α = iπ, β = −i gives αβ = eπ.

Proof of Theorem 157. . Gel’fond starts by ordering Z[i] by non–decreasing
modulus, and for those of the same modulus by increasing arguments in
[0, 2π):

Z[i] =
{
x0, x1, x2, . . . , xn, . . .

}

with x0 = 0. Hence
{
x0, x1, x2, . . .

}
= {0, 1, i, −1, −i, 1 + i, −1 + i, −1− i, 2, 2i, . . . }.

If the disc |z| ≤ rn contains the points xi for 0 ≤ i ≤ n, then the number
n + 1 of these points is

n + 1 = πr2
n + αrn + o(rn)

with α < 2
√

2π, hence |xn| =
√

n/π + o(
√

n).
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For n ≥ 1, define Pn(z) = z(z− x1) · · · (z− xn−1). Gel’fond expands the
function eπz into a series of Pn:

eπz =
n∑

k=0

AkPk(z) + Rn(z),

where, following 9.2.3,

Ak =
1

2iπ

∫

|ζ|=n

eπζdζ

Pk+1(ζ)
and Rn(z) =

Pn+1(z)
2iπ

∫

|ζ|=n

eπζ

Pk+1(ζ)
· dζ

ζ − z
·

Since the zeroes of Pk+1 are simple, the residue formula gives, for n ≥ 0,

An =
n∑

k=0

eπxk

ωn,k
, with ωn,k =

∏

0≤j≤n
j !=k

(xk − xj).

The number eπxk is ±eπ$e(xk) and *e(xk) is a rational integer of absolute
value ≤

√
n/π + o(

√
n). Hence An is a polynomial in eπ and e−π of degree

≤
√

n/π+o(
√

n) and coefficients in Q(i). The integral over the circle |ζ| = n
yields the upper bound

|An| ≤
eπn

∏

0≤j≤n

(n− |xj |)
≤ e−n log n+πn+O(

√
n).

In his previous work [1], Gel’fond proved that the least common multiple
Ωn of the numbers ωn,k for 0 ≤ k ≤ n (which is also the least common
denominator of the numbers 1/ωn,k for 0 ≤ k ≤ n) satisfies

Ωn ≤ e
1
2n log n+163n+o(n).

The product ΩnAn is in Z[i][eπ, e−π]:

ΩnAn =
n∑

k=0

Bkneπxk with Bkn = Ωn/ωn,k ∈ Z[i]

and
max

0≤k≤n
|Bkn| ≤ e

1
2n log n+163n− 1

2n log n+3πn+o(n) ≤ e173n+o(n).

Assuming eπ is algebraic, Liouville’s inequality (Lemma 26) implies An =
0 for all sufficiently large n, and therefore the interpolation series

F (z) =
∑

n≥0

AnPn(z)
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is a polynomial. This polynomial F , by construction, takes the value eπxk

at z = xk, which means that the entire function eπz−F (z) vanishes on Z[i].
But this function has exponential type π, hence order 1, and Lemma 156
implies that this function is the zero function. This is a contradiction with
the fact that eπz is a transcendental function.

9.2.8 Interpolation formulae

In the easiest case where there are no multiplicities, the interpolation prob-
lem is to find a function f taking given values at distinct points. When
xi and yi are m given points (0 ≤ i ≤ m − 1), with xi pairwise distinct,
there is a unique polynomial P of degree < m satisfying P (xi) = yi for
0 ≤ i ≤ m− 1. This polynomial is

f(z) =
m−1∑

j=0

yjfj(z),

where fj is the solution of the same problem for the special case where
yi = δij (Kronecker symbol, which is 1 for i = j and 0 otherwise). Explicitly,

fj(z) =
∏

0≤i≤m−1
i!=j

z − xi

xj − xi
·

Similar formulae exist when the xi may be repeated. As a simple example,
if xi = x0 for 0 ≤ i ≤ m, then the condition on f becomes f (j)(x0) = yj

(0 ≤ j < m), and the solution is given by the Taylor’s expansion

f(z) =
m−1∑

j=0

yjfj(z) with fj(z) =
1
j!

(z − x0)j ·

In the very general case, one way to produce such formulae is to introduce
integral formulae.

Let Q(z) be a monic polynomial with roots z1, . . . , zn, and for 1 ≤ i ≤ n
let mi ≥ 1 be the multiplicity of zi as a root of Q:

Q(z) =
n∏

i=1

(z − zi)mi .

Let R be a real number with R > max1≤i≤n |zi], so that the disc |z| < R
contains all points zi. We denote by Γ the circle |z| = R. Further, for
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1 ≤ i ≤ n, let ri be a real number in the range

0 < ri < min
1≤k≤n

k !=i

|zi − zk|.

We denote by Γi the circle |zi| ≤ ri: it contains zi, but no zk for k '= i.
The following formula is due to Hermite: for f analytic in an open domain
containing the disc |z| ≤ R and for z in the open disc |z| < R distinct from
all zi,

f(z)
Q(z)

=
1

2iπ

∫

Γ

f(ζ)
Q(ζ)

· dζ

ζ − z
− 1

2iπ

n∑

i=1

mi−1∑

j=0

f (j)(zi)
j!

∫

Γi

(ζ − zi)j

Q(ζ)
· dζ

ζ − z
·

The proof is a simple application of the residue formula (see for instance [3]
Chap. IX § 2): the first integral divided by 2iπ is the sum of the residues of
the function

ϕ(ζ) =
f(ζ)
Q(ζ)

· 1
ζ − z

at the poles in |z| < R. The pole ζ = z is simple, and the residue is
f(z)/Q(z), which gives the left hand side. Also, each sum

mi−1∑

j=0

f (j)(zi)
j!

∫

Γj

(ζ − zi)j

Q(ζ)
· dζ

ζ − z

in the right hand side is 2iπ times the residue at ζ = zi of ϕ(ζ). Hence the
formula drops out.

If f is a polynomial of degree < M where M = m1 + · · ·+ mn, then the
first integral vanishes.

For 1 ≤ i0 ≤ n and 0 ≤ j0 < mi, define the function fi0,j0(z) on the open
set |z − zi0 | > ri0 by

fi0,j0(z) = − 1
j!

· 1
2iπ

Q(z)
∫

|ζ−zi0 |=ri0

(ζ − zi0)j0

Q(ζ)
· dζ

ζ − z
·

Here, ri0 is any number satisfying 0 < ri0 < mini'=i0 |zi−zi0 |. Computing the
integral by means of the residue Theorem shows that the integral extends
to a meromorphic function in C with a single pole at z = zi0 of order ≤ mi.
Also, letting |z| tend to infinity shows that fi0,j0(z) is a polynomial of degree
< M . Hence fi0,j0 is the unique polynomial of degree < M satisfying

f (j)
i0,j0

(zi) = δ(i0,j0),(i,j) where δ(i0,j0),(i,j) =

{
1 if i = i0 and j = j0,
0 otherwise.
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It follows that, given distinct points z1, . . . , zn, positive integers m1, . . . ,mn

and complex numbers yij (1 ≤ i ≤ n, 0 ≤ j ≤ mi − 1), there is a unique
polynomial of degree < M , where M = m1 + · · · + mn, satisfying the M
conditions f (j)(zi) = yij for 1 ≤ i ≤ n and 0 ≤ j ≤ mi− 1. This polynomial
is given by

n∑

i=1

mi−1∑

j=0

yijfij .

9.2.9 Rational interpolation

We just mention another kind of interpolation formula, which was intro-
duced by René Lagrange in 1935, and used more recently by Tanguy Rivoal
[4] for producing Diophantine results, including a new proof of Apéry’s the-
orem on the irrationality of ζ(3).

One starts with the formula

1
x− z

=
α− β

(x− α)(x− β)
+

x− β

x− α
· z − α

z − β
· 1
x− z

·

Iterating and integrating yields

f(z) =
N−1∑

n=0

Bn
(z − α1) · · · (z − αn)
(z − β1) · · · (z − βn)

+ R̃N (z).

This is an expansion of f into rational fractions, with given zeroes and poles.
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10 The Schneider–Lang Theorem

The Theorem of Schneider-Lang is a general statement dealing with values
of meromorphic functions of one or several complex variables, satisfying
differential equations.

The first general result dealing with analytic or meromorphic functions
of one variable and containing the solution to Hilbert’s seventh problem
appears in [4]. In fact one can deduce the transcendence of αβ (Gel’fond-
Schneider Theorem 1.4) from this theorem, either by using the two functions
z and αz without derivatives (Schneider’s method), or else ez and eβz with
derivatives (Gel’fond’s method). The statement is rather complicated, and
Th. Schneider made successful attempts to simplify it [5]. Schneider’s crite-
ria in [5], Chap. II, § 3, Th.12 and 13 deal only with Gel’fond’s method, i.e.
involve derivatives. Further simplifications have been introduced by S. Lang
later: either for Schneider’s method (see [1], Chap. III, § 1, Th.1), or else
for Gel’fond’s method and functions satisfying differential equations (see [1],
Chap. III, § 1, Th.1 and [3], Appendix 1). This last result is known as the
Theorem of Schneider-Lang.

10.1 Statement and first corollaries

Content of the course: Theorem of Schneider–Lang, corollaries: theo-
rem of Hermite–Lindemann, Theorem of Gel’fond–Schneider.
Outline of the proof.
References: [6] (Chap. 3, § 3.7) and [7] (§ 2.2).
See also [5] (Chap. II, § 3, Th.12 and 13); [1] (Chap. III, § 1, Th.1); [3]
(Appendix 1).
There is also a proof in [2] (Chap. IX § 3) for the special case where the
number field is Q: this allows to avoid any use of algebraic number theory.
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