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10.7 Elliptic functions

10.7.1 Introduction to elliptic functions

Among many references for this section are the books by Chandrasekharan
[4], Chap. 1–6; by S. Lang [16], Chap. 1–6 and [14], § 1–6; by Alain Robert,
[20], Chap I; by J. Silverman [23, 24], and by M. Hindry and J. Silverman
[9].

The text below is taken from [29] § 2 and § 3.

An elliptic curve may be defined as

• y2 = C(x) for a squarefree cubic polynomial C(x),

• a connected compact Lie group of dimension 1,

• a complex torus C/Ω where Ω is a lattice in C,

• a Riemann surface of genus 1,

• a non-singular cubic in P2(C) (together with a point at infinity),

• an algebraic group of dimension 1, with underlying projective algebraic
variety.
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We shall use the Weierstraß form

E =
{
(t : x : y) ; y2t = 4x3 − g2xt2 − g3t

3
}
⊂ P2.

Here g2 and g3 are complex numbers, with the only assumption g3
2 #=

27g2
3, which means that the discriminant of the polynomial 4X3− g2X − g3

does not vanish.
An analytic parametrization of the complex points E(C) of E is given by

means of the Weierstraß elliptic function ℘, which satisfies the differential
equation

℘′2 = 4℘3 − g2℘− g3. (158)

It has a double pole at the origin with principal part 1/z2 and also satisfies
an addition formula

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1
4
·
(

℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

. (159)

The exponential map of the Lie group E(C) is

expE : C → E(C)
z %→

(
1 : ℘(z) : ℘′(z)

)
.

The kernel of this map is a lattice in C (that is a discrete rank 2 subgroup),

Ω = ker expE = {ω ∈ C ; ℘(z + ω) = ℘(z)} = Zω1 + Zω2.

Hence expE induces an isomorphism between the quotient additive group
C/Ω and E(C) with the law given by (159). The elements of Ω are the
periods of ℘. A pair (ω1, ω2) of fundamental periods is given by (cf. [30]
§ 20.32 Example 1)

ωi = 2
∫ ∞

ei

dx√
4x3 − g2x− g3

, (i = 1, 2),

where
4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

Indeed, since ℘′ is periodic and odd, it vanishes at ω1/2, ω2/2 and (ω1 +
ω2)/2, hence the values of ℘ at these points are the three distinct complex
numbers e1, e2 and e3 (recall that the discriminant of 4x3 − g2x− g3 is not
0).

Conversely, given a lattice Ω, there is a unique Weierstraß elliptic func-
tion ℘Ω whose period lattice is Ω (see § 10.7.5). We denote its invariants in
the differential equation (158) by g2(Ω) and g3(Ω).
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We shall be interested mainly (but not only) with elliptic curves which
are defined over the field of algebraic numbers: they have a Weierstraß
equation with algebraic g2 and g3. However we shall also use the Weier-
straß elliptic function associated with the lattice λΩ where λ ∈ C× may be
transcendental; the relations are

℘λΩ(λz) = λ−2℘Ω(z), g2(λΩ) = λ−4g2(Ω), g3(λΩ) = λ−6g3(Ω).
(160)

The lattice Ω = Z + Zτ , where τ is a complex number with positive
imaginary part, satisfies

g2(Z + Zτ) = 60G2(τ) and g3(Z + Zτ) = 140G3(τ),

where, for Gk(τ) (with k ≥ 2) are the Eisenstein series (see, for instance, [22]
Chap. VII, § 2.3, [11] Chap. III § 2 or [23] Chap. VI § 3— the normalization
in [31] p. 240 is different):

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

(m + nτ)−2k. (161)

10.7.2 Morphisms between elliptic curves. The modular invari-
ant

If Ω and Ω′ are two lattices in C and if f : C/Ω → C/Ω′ is an analytic homo-
morphism, then the map C → C/Ω → C/Ω′ factors through a homothecy
C→ C given by some λ ∈ C such that λΩ ⊂ Ω′:

C λ−−−→ C
↓ ↓

C/Ω −−−→
f

C/Ω′

If f #= 0, then λ ∈ C× and f is surjective.
Conversely, if there exists λ ∈ C such that λΩ ⊂ Ω′, then fλ(x + Ω) =

λx + Ω′ defines an analytic surjective homomorphism fλ : C/Ω → C/Ω′. In
this case λΩ is a subgroup of finite index in Ω′, hence the kernel of fλ is
finite and there exists µ ∈ C× with µΩ′ ⊂ Ω: the two elliptic curves C/Ω
and C/Ω′ are isogeneous.

If Ω and Ω∗ are two lattices, ℘ and ℘∗ the associated Weierstraß elliptic
functions and g2, g3 the invariants of ℘, the following statements are equiv-
alent:
(i) There is a 2 × 2 matrix with rational coefficients which maps a basis of
Ω to a basis of Ω∗.
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(ii) There exists λ ∈ Q× such that λΩ ⊂ Ω∗.
(iii) There exists λ ∈ Z \ {0} such that λΩ ⊂ Ω∗.
(iv) The two functions ℘ and ℘∗ are algebraically dependent over the field
Q(g2, g3).
(v) The two functions ℘ and ℘∗ are algebraically dependent over C.

The map fλ is an isomorphism if and only if λΩ =Ω ′.
The number

j =
1728g3

2

g3
2 − 27g2

3

is the modular invariant of the elliptic curve E. Two elliptic curves over C
are isomorphic if and only if they have the same modular invariant.

Set τ = ω2/ω1, q = e2πiτ and J(e2πiτ ) = j(τ). Then

J(q) = q−1

(
1 + 240

∞∑

m=1

m3 qm

1− qm

)3 ∞∏

n=1

(1− qn)−24

=
1
q

+ 744 + 196884 q + 21493760 q2 + · · ·

— see [19] § 4.12 or [22] Chap. VII § 3.3 and § 4.

10.7.3 Endomorphisms of an elliptic curve; complex multiplica-
tions

Let Ω be a lattice in C. The set of analytic endomorphisms of C/Ω is the
subring

End(C/Ω) =
{
fλ ; λ ∈ C with λΩ ⊂ Ω

}

of C. We also call it the ring of endomorphisms of the associated elliptic
curve, or of the corresponding Weierstraß ℘ function and we identify it with
the subring {

λ ∈ C ; λΩ ⊂ Ω
}

of C. The field of endomorphisms is the quotient field End(C/Ω)⊗Z Q of
this ring.

If λ ∈ C satisfies λΩ ⊂ Ω, then λ is either a rational integer or else an
algebraic integer in an imaginary quadratic field. For such a λ, ℘Ω(λz) is a
rational function of ℘Ω(z); the degree of the numerator is λ2 if λ ∈ Z and
N(λ) otherwise (here, N is the norm of the imaginary quadratic field); the
degree of the denominator is λ2 − 1 if λ ∈ Z and N(λ)− 1 otherwise.

Let E be the elliptic curve attached to the Weierstraß ℘ function. The
ring of endomorphisms End(E) of E is either Z or else an order in an imag-
inary quadratic field k. The latter case arises if and only if the quotient
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τ = ω2/ω1 of a pair of fundamental periods is a quadratic number; in this
case the field of endomorphisms of E is k = Q(τ) and the curve E has
complex multiplications – this is the so-called CM case. This means also
that the two functions ℘(z) and ℘(τz) are algebraically dependent. In this
case, the value j(τ) of the modular invariant j is an algebraic integer whose
degree is the class number of the quadratic field k = Q(τ).

Remark. From Gel’fond–Schneider Theorem (§ 10.1) one deduces the tran-
scendence of the number

eπ
√

163 = 262 537 412 640 768 743.999 999 999 999 250 072 59 . . .

If we set

τ =
1 + i

√
163

2
, q = e2πiτ = −e−π

√
163,

then the class number of the imaginary quadratic field Q(τ) is 1, we have
j(τ) = −(640 320)3 and

∣∣∣∣j(τ)− 1
q
− 744

∣∣∣∣ < 10−12.

Also ([6] § 2.4)
(
eπ
√

163 − 744
)1/3

= 640 319.999 999 999 999 999 999 999 999 390 31 . . .

Let ℘ be a Weierstraß elliptic function with field of endomorphisms k.
Hence k = Q if the associated elliptic curve has no complex multiplica-
tion, while in the other case k is an imaginary quadratic field, namely
k = Q(τ), where τ is the quotient of two linearly independent periods
of ℘. Let u1, . . . , ud be non-zero complex numbers. Then the functions
℘(u1z), . . . ,℘(udz) are algebraically independent (over C or over Q(g2, g3),
this is equivalent) if and only if the numbers u1, . . . , ud are linearly inde-
pendent over k. This generalizes the fact that ℘(z) and ℘(τz) are alge-
braically dependent if and only if the elliptic curve has complex multiplica-
tions. Much more general and deeper results of algebraic independence of
functions (exponential and elliptic functions, zeta functions. . . ) were proved
by W.D. Brownawell and K.K. Kubota [3].

If ℘ is a Weierstraß elliptic function with algebraic invariants g2 and g3, if
E is the associated elliptic curve and if k denotes its field of endomorphisms,
then the set

LE = Ω ∪
{
u ∈ C \ Ω ; ℘(u) ∈ Q}
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is a k-vector subspace of C: this is the set of elliptic logarithms of algebraic
points on E. It plays a role with respect to E similar to the role of L for
the multiplicative group Gm.

Let k = Q(
√
−d) be an imaginary quadratic field with class number

h(−d) = h. There are h non-isomorphic elliptic curves E1, . . . , Eh with ring
of endomorphisms the ring of integers of k. The numbers j(Ei) are conjugate
algebraic integers of degree h; each of them generates the Hilbert class field
H of k (maximal unramified abelian extension of k). The Galois group of
H/k is isomorphic to the ideal class group of k.

Since the group of roots of units of an imaginary quadratic field is
{−1,+1} except for Q(i) and Q(%), where % = e2πi/3, it follows that there
are exactly two elliptic curves over Q (up to isomorphism) having an au-
tomorphism group bigger than {−1,+1}. They correspond to Weierstraß
elliptic functions ℘ for which there exists a complex number λ #= ±1 with
λ2℘(λz) = ℘(z).

The first one has g3 = 0 and j = 1728. An explicit value for a pair of
fundamental periods of the elliptic curve

y2t = 4x3 − 4xt2

follows from computations by Legendre using Gauss’s lemniscate function
([30] § 22.8) and yields (see [1], as well as Appendix 1 of [28])

ω1 =
∫ ∞

1

dx√
x3 − x

=
1
2
B(1/4, 1/2) =

Γ(1/4)2

23/2π1/2
and ω2 = iω1. (162)

The lattice Z[i] has g2 = 4ω4
1, thus

∑

(m,n)∈Z2\{(0,0)}

(m + ni)−4 =
Γ(1/4)8

26 · 3 · 5 · π2
·

The second one has g2 = 0 and j = 0. Again from computations by Legendre
([30] § 22.81 II) one deduces that a pair of fundamental periods of the elliptic
curve

y2t = 4x3 − 4t3

is (see once more [1] and Appendice 1 of [28])

ω1 =
∫ ∞

1

dx√
x3 − 1

=
1
3
B(1/6, 1/2) =

Γ(1/3)3

24/3π
and ω2 = %ω1. (163)
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The lattice Z[%] has g3 = 4ω6
1, thus

∑

(m,n)∈Z2\{(0,0)}

(m + n%)−6 =
Γ(1/3)18

28 · 5 · 7 · π6
·

These two examples involve special values of Euler’s Gamma function

Γ(z) =
∫ ∞

0
e−ttz · dt

t
= e−γzz−1

∞∏

n=1

(
1 +

z

n

)−1
ez/n, (164)

where

γ = lim
n→∞

(
n∑

k=1

1
k
− log n

)
= 0.577 215 664 901 532 860 606 512 09 . . .

is Euler’s constant (§ 12.1 in [30]), while Euler’s Beta function is

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

=
∫ 1

0
xa−1(1− x)b−1dx.

More generally, the formula of Chowla and Selberg (1966) [5] (see also [2,
7, 8, 10, 12, 26] for related results) expresses periods of elliptic curves with
complex multiplications as products of Gamma values: if k is an imaginary
quadratic field and O an order in k, if E is an elliptic curve with complex
multiplications by O, then the corresponding lattice Ω determines a vector
space Ω⊗ZQ which is invariant under the action of k and thus has the form
k · ω for some ω ∈ C× defined up to elements in k×. In particular, if O is
the ring of integers Zk of k, then

ω = α
√

π
∏

0<a<d
(a,d)=1

Γ(a/d)wε(a)/4h,

where α is a non-zero algebraic number, w is the number of roots of unity
in k, h is the class number of k, ε is the Dirichlet character modulo the
discriminant d of k.

10.7.4 Standard relations among Gamma values

Euler’s Gamma function satisfies the following relations ([30] Chap. XII):
(Translation)

Γ(z + 1) = zΓ(z);
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(Reflection)

Γ(z)Γ(1− z) =
π

sin(πz)
;

(Multiplication) For any positive integer n,
n−1∏

k=0

Γ
(

z +
k

n

)
= (2π)(n−1)/2n−nz+(1/2)Γ(nz).

D. Rohrlich conjectured that any multiplicative relation among Gamma val-
ues is a consequence of these standard relations, while S. Lang was more
optimistic (see [15], [17] I Chap. 2 Appendix p. 66 and [2] Chap. 24):

Conjecture 165 (D. Rohrlich). Any multiplicative relation

πb/2
∏

a∈Q

Γ(a)ma ∈ Q

with b and ma in Z is a consequence of the standard relations.

Conjecture 166 (S. Lang). Any algebraic dependence relation with alge-
braic coefficients among the numbers (2π)−1/2Γ(a) with a ∈ Q is in the ideal
generated by the standard relations.

10.7.5 Quasi-periods of elliptic curves and elliptic integrals of the
second kind

Let Ω = Zω1 + Zω2 be a lattice in C. The Weierstraß canonical product
attached to this lattice is the entire function σΩ defined by ([30] § 20.42)

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
e

z
ω + z2

2ω2 ·

It has a simple zero at any point of Ω.
Hence the Weierstraß sigma function plays, for the lattice Ω, the role

which is played by the function

z
∏

n≥1

(
1− z

n

)
ez/n = −eγzΓ(−z)−1

for the set of positive integers N \ {0} = {1, 2, . . . } (see the infinite product
(164) for Euler’s Gamma function), and also by the function

π−1 sin(πz) = z
∏

n∈Z\{0}

(
1− z

n

)
ez/n
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for the set Z of rational integers ([4] Chap. IV § 2).

The Weierstraß sigma function σ associated with a lattice in C is an
entire function of order 2:

lim sup
r→∞

1
log r

· log log sup
|z|=r

|σ(z)| = 2;

the product σ2℘ is also an entire function of order 2 (this can be checked by
using infinite products, but it is easier to use the quasi-periodicity of σ, see
formula (167) below).

The logarithmic derivative of the sigma function is the Weierstraß zeta
function ζ = σ′/σ whose Laurent expansion at the origin is

ζ(z) =
1
z
−

∑

k≥2

skz
2k−1,

where, for k ∈ Z, k ≥ 2,

sk = sk(Ω) =
∑

ω∈Ω
ω "=0

ω−2k = ω−2k
1 Gk(τ)

The derivative of ζ is −℘. From

℘′′ = 6℘2 − (g2/2)

one deduces that sk(Ω) is a homogenous polynomial in Q[g2, g3] of weight
2k for the graduation of Q[g2, g3] determined by assigning to g2 the degree
4 and to g3 the degree 6.

As a side remark, we notice that for any u ∈ C \ Ω we have

Q(g2, g3) ⊂ Q
(
℘(u), ℘′(u), ℘′′(u)

)
.

Since its derivative is periodic, the function ζ is quasi-periodic: for each
ω ∈ Ω there is a complex number η = η(ω) such that

ζ(z + ω) = ζ(z) + η.

These numbers η are the quasi-periods of the elliptic curve. If (ω1, ω2) is a
pair of fundamental periods and if we set η1 = η(ω1) and η2 = η(ω2), then,
for (a, b) ∈ Z2,

η(aω1 + bω2) = aη1 + bη2.
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Coming back to the sigma function, one deduces that

σ(z + ωi) = −σ(z) exp
(
ηi

(
z + (ωi/2)

))
(i = 1, 2). (167)

The zeta function also satisfies an addition formula:

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1
2
· ℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)
·

The Legendre relation relating the periods and the quasi-periods

ω2η1 − ω1η2 = 2πi,

when ω2/ω1 has positive imaginary part, can be obtained by integrating
ζ(z) along the boundary of a fundamental parallelogram.

In the case of complex multiplication, if τ is the quotient of a pair of
fundamental periods of ℘, then the function ζ(τz) is algebraic over the field
Q

(
g2, g3, z,℘(z), ζ(z)

)
.

Examples For the curve y2t = 4x3 − 4xt2 the quasi-periods attached to the
pair of fundamental periods (162) are

η1 =
π

ω1
=

(2π)3/2

Γ(1/4)2
, η2 = −iη1; (168)

it follows that the fields Q(ω1, ω2, η1, η2) and Q
(
π,Γ(1/4)

)
have the same

algebraic closure over Q, hence the same transcendence degree. For the
curve y2t = 4x3 − 4t3 with periods (163), they are

η1 =
2π√
3ω1

=
27/3π2

31/2Γ(1/3)3
, η2 = %2η1. (169)

In this case the fields Q(ω1, ω2, η1, η2) and Q
(
π,Γ(1/3)

)
have the same al-

gebraic closure over Q, hence the same transcendence degree.

10.7.6 Elliptic integrals

Let
E = {(t : x : y) ∈ P2; y2t = 4x3 − g2xt2 − g3t

3}

be an elliptic curve. The field of rational (meromorphic) functions on E over
C is C(E) = C(℘, ℘′) = C(x, y) where x and y are related by the cubic
equation y2 = 4x3 − g2x − g3. Under the isomorphism C/Ω → E(C) given
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by (1 : ℘ : ℘′), the differential form dz is mapped to dx/y. The holomorphic
differential forms on C/Ω are λdz with λ ∈ C.

The differential form dζ = ζ ′/ζ is mapped to −xdx/y. The differential
forms of second kind on E(C) are adz+bdζ +dχ, where a and b are complex
numbers and χ ∈ C(x, y) is a meromorphic function on E .

Assume that the elliptic curve E is defined over Q: the invariants g2 and
g3 are algebraic. We shall be interested with differential forms which are
defined over Q. Those of second kind are adz + bdζ + dχ, where a and b are
algebraic numbers and χ ∈ Q(x, y).

An elliptic integral is an integral
∫

R(x, y)dx

where R is a rational function of x and y, while y2 is a polynomial in x
of degree 3 or 4 without multiple roots, with the proviso that the integral
cannot be integrated by means of elementary functions. One may transform
this integral as follows: one reduces it to an integral of dx/

√
P (x) where P

is a polynomial of 3rd or 4th degree; in case P has degree 4 one replaces
it with a degree 3 polynomial by sending one root to infinity; finally one
reduces it to a Weierstraß equation by means of a birational transformation.
The value of the integral is not modified.

For transcendence purposes, if the initial differential form is defined over
Q, then all these transformations involve only algebraic numbers.

10.7.7 Transcendence results of numbers related with elliptic func-
tions

The main references for this section are [13, 21, 27, 29].
The first transcendence result on periods of elliptic functions was proved

by C.L. Siegel as early as 1932.

Theorem 170 (Siegel, 1932). Let ℘ be a Weierstraß elliptic function with
period lattice Zω1 + Zω2. Assume that the invariants g2 and g3 of ℘ are
algebraic. Then at least one of the two numbers ω1, ω2 is transcendental.

In the case of complex multiplication, it follows from Theorem 170 that
any non-zero period of ℘ is transcendental.

From formulae (162) and (163) it follows as a consequence of Siegel’s 1932
result that both numbers Γ(1/4)4/π and Γ(1/3)3/π are transcendental.
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Other consequences of Siegel’s result concern the transcendence of the
length of an arc of an ellipse [21]

2
∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx

for algebraic a and b, as well as the transcendence of an arc of the lemniscate
(x2 + y2)2 = 2a2(x2 − y2) with a algebraic.

A further example of application of Siegel’s Theorem is the transcendence
of values of hypergeometric series related with elliptic integrals

K(z) =
∫ 1

0

dx√
(1− x2)(1− z2x2)

=
π

2
· 2F1

(
1/2, 1/2 ; 1

∣∣ z2
)
,

where 2F1 denotes Gauss hypergeometric series

2F1
(
a, b ; c

∣∣ z
)

=
∞∑

n=0

(a)n(b)n

(c)n
· zn

n!

with (a)n = a(a + 1) · · · (a + n− 1).
Further results on this topic were obtained by Th. Schneider in 1934 and

in a joint work by K. Mahler and J. Popken in 1935 using Siegel’s method.
These results were superseded by Th. Schneider’s work in 1936 where he
proved a number of definitive results on the subject, including:

Theorem 171 (Schneider, 1936). Assume that the invariants g2 and g3 of
℘ are algebraic. Then for any non-zero period ω of ℘, the numbers ω and
η(ω) are transcendental.

It follows from Theorem 171 that any non-zero period of an elliptic
integral of the first or second kind is transcendental:

Corollary 172. Let E be an elliptic curve over Q, p1 and p2 two algebraic
points on E(Q), w a differential form of first or second kind on E which is
defined over Q, holomorphic at p1 and p2 and which is not the differential
of a rational function. Let γ be a path on E from p1 to p2. In case p1 = p2

one assumes that γ is not homologous to 0. Then the number
∫

γ
w

is transcendental.
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Examples: Using Corollary 172 and formulae (168) and (169), one deduces
that the numbers

Γ(1/4)4/π3 and Γ(1/3)3/π2

are transcendental.
The main results of Schneider’s 1936 paper are as follows (see [21]):

Theorem 173 (Schneider, 1936). 1. Let ℘ be a Weierstraß elliptic func-
tion with algebraic invariants g2, g3. Let β be a non-zero algebraic number.
Then β is not a pole of ℘ and ℘(β) is transcendental.
More generally, if a and b are two algebraic numbers with (a, b) #= (0, 0),
then for any u ∈ C \ Ω at least one of the two numbers ℘(u), au + bζ(u) is
transcendental.
2. Let ℘ and ℘∗ be two algebraically independent elliptic functions with al-
gebraic invariants g2, g3, g∗2, g∗3. If t ∈ C is not a pole of ℘ or of ℘∗, then
at least one of the two numbers ℘(t) and ℘∗(t) is transcendental.
3. Let ℘ be a Weierstraß elliptic function with algebraic invariants g2, g3.
Then for any t ∈ C\Ω, at least one of the two numbers ℘(t), et is transcen-
dental.

It follows from Theorem 173.2 that the quotient of an elliptic integral of
the first kind (between algebraic points) by a non-zero period is either in the
field of endomorphisms (hence a rational number, or a quadratic number in
the field of complex multiplications), or a transcendental number.

Here is another important consequence of Theorem 173.2.

Corollary 174 (Schneider, 1936). Let τ ∈ H be a complex number in the
upper half plane -m(τ) > 0 such that j(τ) is algebraic. Then τ is algebraic
if and only if τ is imaginary quadratic.

In this connection we quote Schneider’s second problem in [21], which is
still open (see papers by Wakabayashi

Conjecture 175 (Schneiders’ second problem). Prove Corollary 174 with-
out using elliptic functions.

Sketch of proof of Corollary 174 as a consequence of part 2 of Theorem 173.
Assume that both τ ∈ H and j(τ) are algebraic. There exists an elliptic

function with algebraic invariants g2, g3 and periods ω1, ω2 such that

τ =
ω2

ω1
and j(τ) =

1728g3
2

g3
2 − 27g2

3

·
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Set ℘∗(z) = τ2℘(τz). Then ℘∗ is a Weierstraß function with algebraic in-
variants g∗2, g∗3. For u = ω1/2 the two numbers ℘(u) and ℘∗(u) are algebraic.
Hence the two functions ℘(z) and ℘∗(z) are algebraically dependent. It fol-
lows that the corresponding elliptic curve has non-trivial endomorphisms,
therefore τ is quadratic.

A quantitative refinement of Schneider’s Theorem on the transcendence
of j(τ) given by A. Faisant and G. Philibert in 1984 became useful 10 years
later in connection with Nesterenko’s result. (see § 12).

We will not review the results related with abelian integrals, but only
quote the first result on this topic, which involves the Jacobian of a Fermat
curve: in 1941 Schneider proved that for a and b in Q with a, b and a + b
not in Z, the number

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

is transcendental. We notice that in his 1932 paper, C.L. Siegel had already
announced partial results on the values of the Euler Gamma function.

Schneider’s above mentioned results deal with elliptic (and abelian) in-
tegrals of the first or second kind. His method can be extended to deal with
elliptic (and abelian) integrals of the third kind (this is Schneider’s third
problem in [21]).

As pointed out by J-P. Serre in 1979, it follows from the quasi-periodicity
of the Weierstraß sigma function (167) that the function

Fu(z) =
σ(z + u)
σ(z)σ(u)

e−zζ(u)

satisfies
Fu(z + ωi) = Fu(z)eηiu−ωiζ(u).

Theorem 176. Let u1 and u2 be two non-zero complex numbers. Assume
that g2, g3, ℘(u1), ℘(u2), β are algebraic and Zu1 ∩ Ω = {0}. Then the
number

σ(u1 + u2)
σ(u1)σ(u2)

e
(
β−ζ(u1)

)
u2

is transcendental.

From the next corollary, one can deduce that non-zero periods of elliptic
integrals of the third kind are transcendental.

Corollary 177. For any non-zero period ω and for any u ∈ C \ Ω the
number eωζ(u)−ηu+βω is transcendental.
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