Updated: May 16, 2010

Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N° 2, April 19, 2010
These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

2 Irrationality Criteria

2.1 Statement of a criterion

Proposition 4. Let ϑ be a real number. The following conditions are equivalent:
(i) ϑ is irrational.
(ii) For any $\epsilon>0$, there exists $(p, q) \in \mathbf{Z}^{2}$ such that $q>0$ and

$$
0<|q \vartheta-p|<\epsilon .
$$

(iii) For any $\epsilon>0$, there exist two linearly independent linear forms in two variables

$$
L_{0}\left(X_{0}, X_{1}\right)=a_{0} X_{0}+b_{0} X_{1} \quad \text { and } \quad L_{1}\left(X_{0}, X_{1}\right)=a_{1} X_{0}+b_{1} X_{1},
$$

with rational integer coefficients, such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon .
$$

(iv) For any real number $Q>1$, there exists an integer q in the range $1 \leq q<Q$ and a rational integer p such that

$$
0<|q \vartheta-p|<\frac{1}{Q} .
$$

(v) There exist infinitely many $p / q \in \mathbf{Q}$ such that

$$
\left|\vartheta-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

(vi) There exist infinitely many $p / q \in \mathbf{Q}$ such that

$$
\left|\vartheta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

The implication (vi) $\Rightarrow(\mathrm{v})$ is trivial. We shall prove (i) \Rightarrow (vi) later (in the section on continued fractions). We now prove the equivalence between the other conditions of Proposition 4 as follows:

$$
(\mathrm{iv}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{iv}) \Rightarrow(\mathrm{v}) \text { and }(\mathrm{v}) \Rightarrow(\mathrm{ii})
$$

Notice that given a positive integer q, there is at most one value of p such that $|q \vartheta-p|<1 / 2$, namely the nearest integer to $q \vartheta$. Hence, when we approximate ϑ by a rational number p / q, we have only one free parameter in $\mathbf{Z}_{>0}$, namely q.

In condition (v), there is no need to assume that the left hand side is not 0 : if one $p / q \in \mathbf{Q}$ produces 0 , then all other ones do not, and there are again infinitely many of them.

Proof of (iv) \Rightarrow (ii). Using (iv) with Q satisfying $Q>1$ and $Q \geq 1 / \epsilon$, we get (ii).

Proof of (v) \Rightarrow (ii). According to (v), there is an infinite sequence of distinct rational numbers $\left(p_{i} / q_{i}\right)_{i \geq 0}$ with $q_{i}>0$ such that

$$
\left|\vartheta-\frac{p_{i}}{q_{i}}\right|<\frac{1}{\sqrt{5} q_{i}^{2}} .
$$

For each q_{i}, there is a single value for the numerator p_{i} for which this inequality is satisfied. Hence the set of q_{i} is unbounded. Taking $q_{i} \geq 1 / \epsilon$ yields (ii).

Proof of (ii) \Rightarrow (iii). Let $\epsilon>0$. From (ii) we deduce the existence of $(p, q) \in$ $\mathbf{Z} \times \mathbf{Z}$ with $q>0$ and $\operatorname{gcd}(p, q)=1$ such that

$$
0<|q \vartheta-p|<\epsilon .
$$

We use (ii) once more with ϵ replaced by $|q \vartheta-p|$. There exists $\left(p^{\prime}, q^{\prime}\right) \in \mathbf{Z} \times \mathbf{Z}$ with $q^{\prime}>0$ such that

$$
\begin{equation*}
0<\left|q^{\prime} \vartheta-p^{\prime}\right|<|q \vartheta-p| . \tag{5}
\end{equation*}
$$

Define $L_{0}\left(X_{0}, X_{1}\right)=p X_{0}-q X_{1}$ and $L_{1}\left(X_{0}, X_{1}\right)=p^{\prime} X_{0}-q^{\prime} X_{1}$. It only remains to check that $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ are linearly independent. Otherwise, there exists $(s, t) \in \mathbf{Z}^{2} \backslash(0,0)$ such that $s L_{0}=t L_{1}$. Hence $s p=t p^{\prime}, s q=t q^{\prime}$, and $p / q=p^{\prime} / q^{\prime}$. Since $\operatorname{gcd}(p, q)=1$, we deduce $t=1$, $p^{\prime}=s p, q^{\prime}=s q$ and $q^{\prime} \vartheta-p^{\prime}=s(q \vartheta-p)$. This is not compatible with (5).

Proof of (iii) \Rightarrow (i). Assume $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$ with $\operatorname{gcd}(a, b)=1$ and $b>$ 0 . For any non-zero linear form $L \in \mathbf{Z} X_{0}+\mathbf{Z} X_{1}$, the condition $L(1, \vartheta) \neq 0$ implies $|L(1, \vartheta)| \geq 1 / b$, hence for $\epsilon=1 / b$ condition (iii) does not hold.

Proof of (i) \Rightarrow (iv) using Dirichlet's box principle. Let $Q>1$ be a given real number. Define $N=\lceil Q\rceil$: this means that N is the integer such that $N-1<Q \leq N$. Since $Q>1$, we have $N \geq 2$.

Let $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$. Consider the subset E of the unit interval $[0,1]$ which consists of the $N+1$ elements

$$
0,\{\vartheta\},\{2 \vartheta\},\{3 \vartheta\}, \ldots,\{(N-1) \vartheta\}, 1 .
$$

Since ϑ is irrational, these $N+1$ elements are pairwise distinct. Split the interval $[0,1]$ into N intervals

$$
I_{j}=\left[\frac{j}{N}, \frac{j+1}{N}\right] \quad(0 \leq j \leq N-1) .
$$

One at least of these N intervals, say $I_{j_{0}}$, contains at least two elements of E. Apart from 0 and 1 , all elements $\{q \vartheta\}$ in E with $1 \leq q \leq N-1$ are irrational, hence belong to the union of the open intervals $(j / N,(j+1) / N)$ with $0 \leq j \leq N-1$.

If $j_{0}=N-1$, then the interval

$$
I_{j_{0}}=I_{N-1}=\left[1-\frac{1}{N}, 1\right]
$$

contains 1 as well as another element of E of the form $\{q \vartheta\}$ with $1 \leq q \leq$ $N-1$. Set $p=\lfloor q \vartheta\rfloor+1$. Then we have $1 \leq q \leq N-1<Q$ and
$p-q \vartheta=\lfloor q \vartheta\rfloor+1-\lfloor q \vartheta\rfloor-\{q \vartheta\}=1-\{q \vartheta\}, \quad$ hence $\quad 0<p-q \vartheta<\frac{1}{N} \leq \frac{1}{Q}$.
Otherwise we have $0 \leq j_{0} \leq N-2$ and $I_{j_{0}}$ contains two elements $\left\{q_{1} \vartheta\right\}$ and $\left\{q_{2} \vartheta\right\}$ with $0 \leq q_{1}<q_{2} \leq N-1$. Set

$$
q=q_{2}-q_{1}, \quad p=\left\lfloor q_{2} \vartheta\right\rfloor-\left\lfloor q_{1} \vartheta\right\rfloor .
$$

Then we have $0<q=q_{2}-q_{1} \leq N-1<Q$ and

$$
|q \vartheta-p|=\left|\left\{q_{2} \vartheta\right\}-\left\{q_{1} \vartheta\right\}\right|<1 / N \leq 1 / Q .
$$

Remark. Theorem 1.A in Chap. II of 32 states that for any real number ϑ, for any real number $Q>1$, there exists an integer q in the range $1 \leq q<Q$ and a rational integer p such that

$$
\left|\vartheta-\frac{p}{q}\right| \leq \frac{1}{q Q} .
$$

The proof given there yields strict inequality $|q \vartheta-p|<1 / Q$ in case Q is not an integer. In the case where Q is an integer and ϑ is rational, the result does not hold with a strict inequality in general. For instance, if $\vartheta=a / b$ with $\operatorname{gcd}(a, b)=1$ and $b \geq 2$, there is a solution p / q to this problem with strict inequality for $Q=b+1$, but not for $Q=b$.

However, when Q is an integer and ϑ is irrational, the number $|q \vartheta-p|$ is irrational (recall that $q>0$), hence not equal to $1 / Q$.

Proof of (iv) \Rightarrow (v). Assume (iv). We already know that (iv) \Rightarrow (i), hence ϑ is irrational.

Let $\left\{q_{1}, \ldots, q_{N}\right\}$ be a finite set of positive integers. We are going to show that there exists a positive integer $q \notin\left\{q_{1}, \ldots, q_{N}\right\}$ satisfying the condition (v). Denote by $\|\cdot\|$ the distance to the nearest integer: for $x \in \mathbf{R}$,

$$
\|x\|=\min _{a \in \mathbf{Z}}|x-a| .
$$

Since ϑ is irrational, it follows that for $1 \leq j \leq N$, the number $\left\|q_{j} \vartheta\right\|$ is non-zero. Let $Q>1$ satisfy

$$
Q>\left(\min _{1 \leq j \leq N}\left\|q_{j} \vartheta\right\|\right)^{-1}
$$

From (iv) we deduce that there exists an integer q in the range $1 \leq q<Q$ such that

$$
0<\left\|q \vartheta_{i}\right\| \leq \frac{1}{Q}
$$

The right hand side is $<1 / q$, and the choice of Q implies $q \notin\left\{q_{1}, \ldots, q_{N}\right\}$.

In the next section, we give another proof of (i) \Rightarrow (iv) which rests on Minkowski geometry of numbers.

2.2 Geometry of numbers

Recall that a discrete subgroup of \mathbf{R}^{n} of maximal rank n is called a lattice of \mathbf{R}^{n}.

Let G be a lattice in \mathbf{R}^{n}. For each basis $\mathbf{e}=\left\{e_{1}, \ldots, e_{n}\right\}$ of G the parallelogram

$$
P_{\mathbf{e}}=\left\{x_{1} e_{1}+\cdots+x_{n} e_{n} ; 0 \leq x_{i}<1(1 \leq i \leq n)\right\}
$$

is a fundamental domain for G, which means a complete system of representative of classes modulo G. We get a partition of \mathbf{R}^{n} as

$$
\begin{equation*}
\mathbf{R}^{n}=\bigcup_{g \in G}\left(P_{\mathbf{e}}+g\right) \tag{6}
\end{equation*}
$$

A change of bases of G is obtained with a matrix with integer coefficients having determinant ± 1, hence the Lebesgue measure $\mu\left(P_{\mathbf{e}}\right)$ of $P_{\mathbf{e}}$ does not depend on \mathbf{e} : this number is called the volume of the lattice G and denoted by $v(G)$.

Here is an example of results obtained by H. Minkowski in the XIX-th century as an application of his geometry of numbers.

Theorem 7 (Minkowski). Let G be a lattice in \mathbf{R}^{n} and B a measurable subset of \mathbf{R}^{n}. Assume $\mu(B)>v(G)$. Then there exist $x \neq y$ in B such that $x-y \in G$.

Proof. From (6) we deduce that B is the disjoint union of the $B \cap\left(P_{\mathbf{e}}+g\right)$ with g running over G. Hence

$$
\mu(B)=\sum_{g \in G} \mu\left(B \cap\left(P_{\mathbf{e}}+g\right)\right) .
$$

Since Lebesgue measure is invariant under translation

$$
\mu\left(B \cap\left(P_{\mathbf{e}}+g\right)\right)=\mu\left((-g+B) \cap P_{\mathbf{e}}\right) .
$$

The sets $(-g+B) \cap P_{\mathbf{e}}$ are all contained in $P_{\mathbf{e}}$ and the sum of their measures is $\mu(B)>\mu\left(P_{\mathbf{e}}\right)$. Therefore they are not all pairwise disjoint - this is one of the versions of the Dirichlet box principle). There exists $g \neq g^{\prime}$ in G such that

$$
(-g+B) \cap\left(-g^{\prime}+B\right) \neq \emptyset .
$$

Let x and y in B satisfy $-g+x=-g^{\prime}+y$. Then $x-y=g-g^{\prime} \in G \backslash\{0\}$.

From Theorem 7 we deduce Minkowski's convex body Theorem (Theorem 2B, Chapter II of (32).

Corollary 8. Let G be a lattice in \mathbf{R}^{n} and let B be a measurable subset of \mathbf{R}^{n}, convex and symmetric with respect to the origin, such that $\mu(B)>$ $2^{n} v(G)$. Then $B \cap G \neq\{0\}$.

Proof. We use Theorem 7 with the set

$$
B^{\prime}=\frac{1}{2} B=\left\{x \in \mathbf{R}^{n} ; 2 x \in B\right\} .
$$

We have $\mu\left(B^{\prime}\right)=2^{-n} \mu(B)>v(G)$, hence by Theorem 7 there exists $x \neq y$ in B^{\prime} such that $x-y \in G$. Now $2 x$ and $2 y$ are in B, and since B is symmetric $-2 y \in B$. Finally B is convex, hence $(2 x-2 y) / 2=x-y \in G \cap B \backslash\{0\}$.

Corollary 9. With the notations of Corollary 8 , if B is also compact in \mathbf{R}^{n}, then the weaker inequality $\mu(B) \geq 2^{n} v(G)$ suffices to reach the conclusion.
Proof. Assume $\mu(B)=2^{n} v(G)$. For $\epsilon>0$, set $B_{\epsilon}=(1+\epsilon) B=\{(1+\epsilon) t ; t \in$ $B\}$. Since $\mu\left(B_{\epsilon}\right)>2^{n} v(G)$, we deduce from Corollary $8 B_{\epsilon} \cap G \neq\{0\}$. Since B_{ϵ} is compact and G discrete, $B_{\epsilon} \cap G \backslash\{0\}$ is a finite non-empty set. Also

$$
B_{\epsilon^{\prime}} \cap G \subset B_{\epsilon} \cap G
$$

for $\epsilon^{\prime}<\epsilon$. Hence there exists $t \in G \backslash\{0\}$ such that $t \in B_{\epsilon}$ for all $\epsilon>0$. Define $t_{\epsilon} \in B$ by $t=(1+\epsilon) t_{\epsilon}$. Since B is compact, there is a sequence $\epsilon_{n} \rightarrow 0$ such that $t_{\epsilon_{n}}$ has a limit in B. But $\lim _{\epsilon \rightarrow 0} t_{\epsilon}=t$. Hence $t \in B$.

Remark. The example of $G=\mathbf{Z}^{n}$ and $B=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n} ;\left|x_{i}\right|<1\right\}$ shows how sharp are Corollaries 8 and 9 .

Minkowski's Linear Forms Theorem (see, for instance, 32] Chap. II § 2 Th. 2 C) is the following result.

Theorem 10 (Minkowski's Linear Forms Theorem). Suppose that $\vartheta_{i j}(1 \leq$ $i, j \leq n$) are real numbers with determinant ± 1. Suppose that A_{1}, \ldots, A_{n} are positive numbers with $A_{1} \cdots A_{n}=1$. Then there exists an integer point $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \neq 0$ such that

$$
\left|\vartheta_{i 1} x_{1}+\cdots+\vartheta_{i n} x_{n}\right|<A_{i} \quad(1 \leq i \leq n-1)
$$

and

$$
\left|\vartheta_{n 1} x_{1}+\cdots+\vartheta_{n n} x_{n}\right| \leq A_{n} .
$$

Proof. We apply Corollary 8 with A_{n} replaced with $A_{n}+\epsilon$ for a sequence of ϵ which tends to 0 .

Here is a consequence of Theorem 10
Corollary 11. Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. For any real number $Q>1$, there exist p_{1}, \ldots, p_{m}, q in \mathbf{Z} such that $1 \leq q<Q$ and

$$
\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q Q^{1 / m}} .
$$

Proof of Corollary 11. We apply Theorem 10 to the $n \times n$ matrix (with $n=m+1$)

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-\vartheta_{1} & 1 & 0 & \cdots & 0 \\
-\vartheta_{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\vartheta_{m} & 0 & 0 & \cdots & 1
\end{array}\right)
$$

corresponding to the linear forms X_{0} and $-\vartheta_{i} X_{0}+X_{i}(1 \leq i \leq m)$, and with $A_{0}=Q, A_{1}=\cdots=A_{m}=Q^{-1 / m}$.

Proof of (i) \Rightarrow (iv) in Proposition 4 using Minkowski's geometry of numbers. Let $\epsilon>0$. The subset

$$
\mathcal{C}_{\epsilon}=\left\{\left(x_{0}, x_{1}\right) \in \mathbf{R}^{2} ;\left|x_{0}\right|<Q,\left|x_{0} \vartheta-x_{1}\right|<(1 / Q)+\epsilon\right\}
$$

of \mathbf{R}^{2} is convex, symmetric and has volume >4. By Minkowski's Convex Body Theorem (Corollary 8 below), it contains a non-zero element in \mathbf{Z}^{2}. Since \mathcal{C}_{ϵ} is also bounded, the intersection $\mathcal{C}_{\epsilon} \cap \mathbf{Z}^{2}$ is finite. Consider a nonzero element $\left(x_{0}, x_{1}\right)$ in this intersection with $\left|x_{0} \vartheta-x_{1}\right|$ minimal. Then $\left(x_{0}, x_{1}\right) \in \mathcal{C}_{\epsilon}$ for all $\epsilon>0$, hence $\left|x_{0} \vartheta-x_{1}\right| \leq 1 / Q+\epsilon$ for all $\epsilon>0$. Since this is true for all $\epsilon>0$, we deduce $\left|x_{0} \vartheta-x_{1}\right| \leq 1 / Q$. Finally, since ϑ is irrational, we also have $\left|x_{0} \vartheta-x_{1}\right| \neq 1 / Q$.

2.3 Irrationality of at least one number

Proposition 12. Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. The following conditions are equivalent:
(i) One at least of $\vartheta_{1}, \ldots, \vartheta_{m}$ is irrational.
(ii) For any $\epsilon>0$, there exist p_{1}, \ldots, p_{m}, q in \mathbf{Z} with $q>0$ such that

$$
0<\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right|<\epsilon .
$$

(iii) For any $\epsilon>0$, there exist $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m} in $m+1$ variables with coefficients in \mathbf{Z} in $m+1$ variables X_{0}, \ldots, X_{m}, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\epsilon
$$

(iv) For any real number $Q>1$, there exists p_{1}, \ldots, p_{m}, q in \mathbf{Z} such that $1 \leq q<Q$ and

$$
0<\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right| \leq \frac{1}{Q^{1 / m}}
$$

(v) There is an infinite set of $q \in \mathbf{Z}, q>0$, for which there exist p_{1}, \ldots, p_{m} in \mathbf{Z} satisfying

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right|<\frac{1}{q^{1+1 / m}}
$$

We shall prove Proposition 12 in the following way:

Proof of (iv) $\Rightarrow(\mathrm{v})$. We first deduce (i) from (iv). Indeed, if (i) does not hold and $\vartheta_{i}=a_{i} / b \in \mathbf{Q}$ for $1 \leq i \leq m$, then the condition

$$
\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right|<\frac{1}{b}
$$

implies $q \vartheta_{i}-p_{i}=0$ for $1 \leq i \leq m$, hence (iv) does not hold as soon as $Q>b^{m}$.

Let $\left\{q_{1}, \ldots, q_{N}\right\}$ be a finite set of positive integers. Using (iv) again, we are going to show that there exists a positive integer $q \notin\left\{q_{1}, \ldots, q_{N}\right\}$ satisfying the condition (v). Recall that $\|\cdot\|$ denotes the distance to the nearest integer. From (i) it follows that for $1 \leq j \leq N$, the number $\max _{1 \leq i \leq m}\left\|q_{j} \vartheta_{i}\right\|$ is non-zero. Let $Q>1$ be sufficiently large such that

$$
Q^{-1 / m}<\min _{1 \leq j \leq N} \max _{1 \leq i \leq m}\left\|q_{j} \vartheta_{i}\right\|
$$

We use (iv): there exists an integer q in the range $1 \leq q<Q$ such that

$$
0<\max _{1 \leq i \leq m}\left\|q \vartheta_{i}\right\| \leq Q^{-1 / m}
$$

The right hand side is $<q^{-1 / m}$, and the choice of Q implies $q \notin\left\{q_{1}, \ldots, q_{N}\right\}$.

Proof of $(\mathrm{v}) \Rightarrow$ (ii). Given $\epsilon>0$, there is a positive integer $q>\max \left\{1,1 / \epsilon^{m}\right\}$ satisfying the conclusion of (v). Then (ii) follows.

Proof of (ii) \Rightarrow (iii). Let $\epsilon>0$. From (ii) we deduce the existence of $\left(p_{1}, \ldots, p_{m}, q\right)$ in \mathbf{Z}^{m+1} with $q>0$ such that

$$
0<\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right|<\epsilon
$$

Without loss of generality we may assume $\operatorname{gcd}\left(p_{1}, \ldots, p_{m}, q\right)=1$. Define L_{1}, \ldots, L_{m} by $L_{i}\left(X_{0}, \ldots, X_{m}\right)=p_{i} X_{0}-q X_{i}$ for $1 \leq i \leq m$. Then L_{1}, \ldots, L_{m} are m linearly independent linear forms in $m+1$ variables with rational integer coefficients satisfying

$$
0<\max _{1 \leq i \leq m}\left|L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\epsilon
$$

We use (ii) once more with ϵ replaced by

$$
\max _{1 \leq i \leq m}\left|L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|=\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right|
$$

Hence there exists $p_{1}^{\prime}, \ldots, p_{m}^{\prime}, q^{\prime}$ in \mathbf{Z} with $q^{\prime}>0$ such that

$$
\begin{equation*}
0<\max _{1 \leq i \leq m}\left|q^{\prime} \vartheta_{i}-p_{i}^{\prime}\right|<\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right| \tag{13}
\end{equation*}
$$

It remains to check that one at least of the m linear forms

$$
L_{i}^{\prime}\left(X_{0}, \ldots, X_{m}\right)=p_{i}^{\prime} X_{0}-q^{\prime} X_{i}
$$

for $1 \leq i \leq m$ is linearly independent of L_{1}, \ldots, L_{m}. Otherwise, for $1 \leq i \leq$ m, there exist rational integers $s_{i}, t_{i 1}, \ldots, t_{i m}$, with $s_{i} \neq 0$, such that

$$
\begin{aligned}
s_{i}\left(p_{i}^{\prime} X_{0}-q^{\prime} X_{i}\right) & =t_{i 1} L_{1}+\cdots+t_{i m} L_{m} \\
& =\left(t_{i 1} p_{1}+\cdots+t_{i m} p_{m}\right) X_{0}-q\left(t_{i 1} X_{1}+\cdots+t_{i m} X_{m}\right)
\end{aligned}
$$

These relations imply, for $1 \leq i \leq m$,

$$
s_{i} q^{\prime}=q t_{i i}, \quad t_{k i}=0 \quad \text { and } \quad s_{i} p_{i}^{\prime}=p_{i} t_{i i} \quad \text { for } 1 \leq k \leq m, \quad k \neq i
$$

meaning that the two projective points $\left(p_{1}: \cdots: p_{m}: q\right)$ and $\left(p_{1}^{\prime}: \cdots: p_{m}^{\prime}\right.$: $\left.q^{\prime}\right)$ are the same. Since $\operatorname{gcd}\left(p_{1}, \ldots, p_{m}, q\right)=1$, it follows that $\left(p_{1}^{\prime}, \ldots, p_{m}^{\prime}, q^{\prime}\right)$ is an integer multiple of $\left(p_{1}, \ldots, p_{m}, q\right)$. This is not compatible with 13$)$.

Proof of (iii) \Rightarrow (i). We proceed by contradiction. Assume (i) is not true: there exists $\left(a_{1}, \ldots, a_{m}, b\right) \in \mathbf{Z}^{m+1}$ with $b>0$ such that $\vartheta_{k}=a_{k} / b$ for $1 \leq k \leq m$. Use (iii) with $\epsilon=1 / b$: we get $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m} in $\mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$. One at least of them, say L_{k}, does not vanish at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Then we have

$$
0<\left|L_{k}\left(b, a_{1}, \ldots, a_{m}\right)\right|=b\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<b \epsilon=1 .
$$

Since $L_{k}\left(b, a_{1}, \ldots, a_{m}\right)$ is a rational integer, we obtain a contradiction.

Proof of (i) \Rightarrow (iv). Use Corollary 11. From the assumption (i) we deduce

$$
\max _{1 \leq i \leq m}\left|q \vartheta_{i}-p_{i}\right| \neq 0
$$

Remark. This proof of the implication (i) \Rightarrow (iv) in Proposition 12 (compare with [32] Chap. II § 2 p. 35) relies on Minkowski's linear form Theorem. Another proof of (i) \Rightarrow (iv) in the special case where $Q^{1 / m}$ is an integer, by means of Dirichlet's box principle, can be found in [32] Chap. II Th. 1E p. 28. A third proof (using again the geometry of numbers, but based on a result by Blichfeldt) is given in [32] Chap. II $\S 2$ p. 32.

3 Criteria for linear independence

3.1 Hermite's method

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers and $a_{0}, a_{1}, \ldots, a_{m}$ rational integers, not all of which are 0 . The goal is to prove that, under certain conditions, the number

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

is not 0 .
Hermite's idea (see [18] and [13] Chap. 2 § 1.3) is to approximate simultaneously $\vartheta_{1}, \ldots, \vartheta_{m}$ by rational numbers $p_{1} / q, \ldots, p_{m} / q$ with the same denominator $q>0$.

Let q, p_{1}, \ldots, p_{m} be rational integers with $q>0$. For $1 \leq k \leq m$ set

$$
\epsilon_{k}=q \vartheta_{k}-p_{k} .
$$

Then $q L=M+R$ with

$$
M=a_{0} q+a_{1} p_{1}+\cdots+a_{m} p_{m} \in \mathbf{Z}
$$

and

$$
R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \in \mathbf{R} .
$$

If $M \neq 0$ and $|R|<1$ we deduce $L \neq 0$.
One of the main difficulties is often to check $M \neq 0$. This question gives rise to the so-called zero estimates or non-vanishing lemmas. In the present situation, we wish to find a $(m+1)$-tuple $\left(q, p_{1}, \ldots, p_{m}\right)$ such that $\left(p_{1} / q, \ldots, p_{m} / q\right)$ is a simultaneous rational approximation to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$, but we also require that it lies outside the hyperplane $a_{0} X_{0}+a_{1} X_{1}+\cdots+$ $a_{m} X_{m}=0$ of \mathbf{Q}^{m+1}. Our goal is to prove the linear independence over \mathbf{Q} of $1, \vartheta_{1}, \ldots, \vartheta_{m}$; hence this needs to be checked for all hyperplanes. The solution to this problem is to construct not only one tuple (q, p_{1}, \ldots, p_{m}) in $\mathbf{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent. This yields $m+1$ pairs $\left(M_{k}, R_{k}\right)(k=0, \ldots, m)$ in place of a single pair (M, R). From $\left(a_{0}, \ldots, a_{m}\right) \neq(0, \ldots, 0)$, one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

It turns out (Proposition 14 below) that nothing is lost by using such arguments: existence of linearly independent simultaneous rational approximations for $\vartheta_{1}, \ldots, \vartheta_{m}$ are characteristic of linearly independent real numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$.

3.2 Rational approximations

The following criterion is due to M. Laurent [22].
Proposition 14. Let $\underline{\vartheta}=\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \in \mathbf{R}^{m}$. Then the following conditions are equivalent:
(i) The numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.
(ii) For any $\epsilon>0$, there exist $m+1$ linearly independent elements $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ in \mathbf{Z}^{m+1}, say

$$
\mathbf{u}_{i}=\left(q_{i}, p_{1 i}, \ldots, p_{m i}\right) \quad(0 \leq i \leq m)
$$

with $q_{i}>0$, such that

$$
\begin{equation*}
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k i}}{q_{i}}\right| \leq \frac{\epsilon}{q_{i}} \quad(0 \leq i \leq m) . \tag{15}
\end{equation*}
$$

The condition of linear independence on the elements $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ means that the determinant

$$
\left|\begin{array}{cccc}
q_{0} & p_{10} & \cdots & p_{m 0} \\
\vdots & \vdots & \ddots & \vdots \\
q_{m} & p_{1 m} & \cdots & p_{m m}
\end{array}\right|
$$

is not 0 .
For $0 \leq i \leq m$, set

$$
\underline{r}_{i}=\left(\frac{p_{1 i}}{q_{i}}, \ldots, \frac{p_{m i}}{q_{i}}\right) \in \mathbf{Q}^{m} .
$$

Further define, for $\underline{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbf{R}^{m}$,

$$
|\underline{x}|=\max _{1 \leq i \leq m}\left|x_{i}\right| .
$$

Also for $\underline{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbf{R}^{m}$ and $\underline{y}=\left(y_{1}, \ldots, y_{m}\right) \in \mathbf{R}^{m}$ set

$$
\underline{x}-\underline{y}=\left(x_{1}-y_{1}, \ldots, x_{m}-y_{m}\right)
$$

so that

$$
|\underline{x}-\underline{y}|=\max _{1 \leq i \leq m}\left|x_{i}-y_{i}\right|
$$

Then the relation 15 in Proposition 14 can be written

$$
\left|\underline{\vartheta}-\underline{r}_{i}\right| \leq \frac{\epsilon}{q_{i}}, \quad(0 \leq i \leq m)
$$

The easy implication (which is also the useful one for Diophantine applications: linear independence, transcendence and algebraic independence) is $(\mathrm{ii}) \Rightarrow(\mathrm{i})$. We shall prove a more explicit version of it by checking that any tuple $\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbf{Z}^{m+1}$, with $q>0$, producing a tuple $\left(p_{1} / q, \ldots, p_{m} / q\right) \in \mathbf{Q}^{m}$ of sufficiently good rational approximations to $\underline{\vartheta}$ satisfies the same linear dependence relations as $1, \vartheta_{1}, \ldots, \vartheta_{m}$.

Lemma 16. Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. Assume that the numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q} : let a, b_{1}, \ldots, b_{m} be rational integers, not all of which are zero, satisfying

$$
a+b_{1} \vartheta_{1}+\cdots+b_{m} \vartheta_{m}=0
$$

Let ϵ be a real number satisfying

$$
0<\epsilon<\left(\sum_{k=1}^{m}\left|b_{k}\right|\right)^{-1}
$$

Assume further that $\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbf{Z}^{m+1}$ satisfies $q>0$ and

$$
\max _{1 \leq k \leq m}\left|q \vartheta_{k}-p_{k}\right| \leq \epsilon
$$

Then

$$
a q+b_{1} p_{1}+\cdots+b_{m} p_{m}=0
$$

Proof. In the relation

$$
q a+\sum_{k=1}^{m} b_{k} p_{k}=\sum_{k=1}^{m} b_{k}\left(p_{k}-q \vartheta_{k}\right),
$$

the right hand side has absolute value less than 1 and the left hand side is a rational integer, so it is 0 .

Proof of (ii) \Rightarrow (i) in Proposition 14. Let

$$
a X_{0}+b_{1} X_{1}+\cdots+b_{m} X_{m}
$$

be a non-zero linear form with integer coefficients. For sufficiently small ϵ, assumption (ii) show that there exist $m+1$ linearly independent elements $\mathbf{u}_{i} \in \mathbf{Z}^{m+1}$ such that the corresponding rational approximation satisfy the assumptions of Lemma 16. Since $\mathbf{u}_{0}, \ldots, \mathbf{u}_{m}$ is a basis of \mathbf{Q}^{m+1}, one at least of the $L\left(\mathbf{u}_{i}\right)$ is not 0 . Hence Lemma 16 implies

$$
a+b_{1} \vartheta_{1}+\cdots+b_{m} \vartheta_{m} \neq 0
$$

Proof of (i) \Rightarrow (ii) in Proposition 14, Let $\epsilon>0$. By Corollary 11, there exists $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right) \in \mathbf{Z}^{m+1}$ with $q>0$ such that

$$
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k}}{q}\right| \leq \frac{\epsilon}{q}
$$

Consider the subset $E_{\epsilon} \subset \mathbf{Z}^{m+1}$ of these tuples. Let V_{ϵ} be the \mathbf{Q}-vector subspace of \mathbf{Q}^{m+1} spanned by E_{ϵ}.

If $V_{\epsilon} \neq \mathbf{Q}^{m+1}$, then there is a hyperplane $a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{m} x_{m}=0$ containing E_{ϵ}. Any $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in E_{ϵ} has

$$
a_{0} q+a_{1} p_{1}+\cdots+a_{m} p_{m}=0 .
$$

For each $n \geq 1 / \epsilon$, let $\mathbf{u}=\left(q_{n}, p_{1 n}, \ldots, p_{m n}\right) \in E_{\epsilon}$ satisfy

$$
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k n}}{q_{n}}\right| \leq \frac{1}{n q_{n}} .
$$

Then

$$
a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}=\sum_{k=1}^{m} a_{k}\left(\vartheta_{k}-\frac{p_{k n}}{q_{n}}\right) .
$$

Hence

$$
\left|a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}\right| \leq \frac{1}{n q_{n}} \sum_{k=1}^{m}\left|a_{k}\right| .
$$

The right hand side tends to 0 as n tends to infinity, hence the left hand side vanishes, and $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are \mathbf{Q}-linearly dependent, which means that (i) does not hold.

Therefore, if (i) holds, then $V_{\epsilon}=\mathbf{Q}^{m+1}$, hence there are $m+1$ linearly independent elements in E_{ϵ}.

Michel WALDSCHMIDT
Université P. et M. Curie (Paris VI)
Institut Mathématique de Jussieu
Problèmes Diophantiens, Case 247
4, Place Jussieu
75252 Paris CEDEX 05, France
miw@math.jussieu.fr
http://www.math.jussieu.fr/~miw/
This text is available on the internet at the address
http://www.math.jussieu.fr/~miw/enseignement.html

