Updated: May 16, 2010

Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N°2, April 19, 2010

These are informal notes of my course given in April – June 2010 at IMPA (*Instituto Nacional de Matematica Pura e Aplicada*), Rio de Janeiro, Brazil.

2 Irrationality Criteria

2.1 Statement of a criterion

Proposition 4. Let ϑ be a real number. The following conditions are equivalent:

(i) ϑ is irrational.

(ii) For any $\epsilon > 0$, there exists $(p,q) \in \mathbb{Z}^2$ such that q > 0 and

$$0 < |q\vartheta - p| < \epsilon.$$

(iii) For any $\epsilon > 0$, there exist two linearly independent linear forms in two variables

$$L_0(X_0, X_1) = a_0 X_0 + b_0 X_1$$
 and $L_1(X_0, X_1) = a_1 X_0 + b_1 X_1$,

with rational integer coefficients, such that

$$\max\left\{\left|L_0(1,\vartheta)\right|, \left|L_1(1,\vartheta)\right|\right\} < \epsilon.$$

(iv) For any real number Q > 1, there exists an integer q in the range $1 \le q < Q$ and a rational integer p such that

$$0 < |q\vartheta - p| < \frac{1}{Q} \cdot$$

(v) There exist infinitely many $p/q \in \mathbf{Q}$ such that

$$\left|\vartheta - \frac{p}{q}\right| < \frac{1}{q^2}.$$

(vi) There exist infinitely many $p/q \in \mathbf{Q}$ such that

$$\left|\vartheta - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

The implication $(vi) \Rightarrow (v)$ is trivial. We shall prove $(i) \Rightarrow (vi)$ later (in the section on continued fractions). We now prove the equivalence between the other conditions of Proposition 4 as follows:

$$(iv) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i) \Rightarrow (iv) \Rightarrow (v) and (v) \Rightarrow (ii).$$

Notice that given a positive integer q, there is at most one value of p such that $|q\vartheta - p| < 1/2$, namely the nearest integer to $q\vartheta$. Hence, when we approximate ϑ by a rational number p/q, we have only one free parameter in $\mathbf{Z}_{>0}$, namely q.

In condition (v), there is no need to assume that the left hand side is not 0: if one $p/q \in \mathbf{Q}$ produces 0, then all other ones do not, and there are again infinitely many of them.

Proof of (iv) \Rightarrow (ii). Using (iv) with Q satisfying Q > 1 and $Q \ge 1/\epsilon$, we get (ii).

Proof of (v) \Rightarrow (ii). According to (v), there is an infinite sequence of distinct rational numbers $(p_i/q_i)_{i>0}$ with $q_i > 0$ such that

$$\left|\vartheta - \frac{p_i}{q_i}\right| < \frac{1}{\sqrt{5}q_i^2}$$

For each q_i , there is a single value for the numerator p_i for which this inequality is satisfied. Hence the set of q_i is unbounded. Taking $q_i \ge 1/\epsilon$ yields (ii).

Proof of (ii) \Rightarrow (iii). Let $\epsilon > 0$. From (ii) we deduce the existence of $(p,q) \in \mathbb{Z} \times \mathbb{Z}$ with q > 0 and gcd(p,q) = 1 such that

$$0 < |q\vartheta - p| < \epsilon.$$

We use (ii) once more with ϵ replaced by $|q\vartheta - p|$. There exists $(p', q') \in \mathbb{Z} \times \mathbb{Z}$ with q' > 0 such that

$$0 < |q'\vartheta - p'| < |q\vartheta - p|.$$
(5)

Define $L_0(X_0, X_1) = pX_0 - qX_1$ and $L_1(X_0, X_1) = p'X_0 - q'X_1$. It only remains to check that $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ are linearly independent. Otherwise, there exists $(s,t) \in \mathbb{Z}^2 \setminus (0,0)$ such that $sL_0 = tL_1$. Hence sp = tp', sq = tq', and p/q = p'/q'. Since gcd(p,q) = 1, we deduce t = 1, p' = sp, q' = sq and $q'\vartheta - p' = s(q\vartheta - p)$. This is not compatible with (5). Proof of (iii) \Rightarrow (i). Assume $\vartheta \in \mathbf{Q}$, say $\vartheta = a/b$ with gcd(a, b) = 1 and b > 0. For any non-zero linear form $L \in \mathbf{Z}X_0 + \mathbf{Z}X_1$, the condition $L(1, \vartheta) \neq 0$ implies $|L(1, \vartheta)| \ge 1/b$, hence for $\epsilon = 1/b$ condition (iii) does not hold.

Proof of (i) \Rightarrow (iv) using Dirichlet's box principle. Let Q > 1 be a given real number. Define $N = \lceil Q \rceil$: this means that N is the integer such that $N - 1 < Q \le N$. Since Q > 1, we have $N \ge 2$.

Let $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$. Consider the subset *E* of the unit interval [0, 1] which consists of the N + 1 elements

$$0, \{\vartheta\}, \{2\vartheta\}, \{3\vartheta\}, \ldots, \{(N-1)\vartheta\}, 1.$$

Since ϑ is irrational, these N+1 elements are pairwise distinct. Split the interval [0,1] into N intervals

$$I_j = \left[\frac{j}{N}, \frac{j+1}{N}\right] \quad (0 \le j \le N-1).$$

One at least of these N intervals, say I_{j_0} , contains at least two elements of E. Apart from 0 and 1, all elements $\{q\vartheta\}$ in E with $1 \le q \le N - 1$ are irrational, hence belong to the union of the open intervals (j/N, (j+1)/N)with $0 \le j \le N - 1$.

If $j_0 = N - 1$, then the interval

$$I_{j_0} = I_{N-1} = \left[1 - \frac{1}{N}, 1\right]$$

contains 1 as well as another element of E of the form $\{q\vartheta\}$ with $1 \le q \le N-1$. Set $p = \lfloor q\vartheta \rfloor + 1$. Then we have $1 \le q \le N-1 < Q$ and

$$p - q\vartheta = \lfloor q\vartheta \rfloor + 1 - \lfloor q\vartheta \rfloor - \{q\vartheta\} = 1 - \{q\vartheta\}, \quad \text{hence} \quad 0$$

Otherwise we have $0 \le j_0 \le N - 2$ and I_{j_0} contains two elements $\{q_1\vartheta\}$ and $\{q_2\vartheta\}$ with $0 \le q_1 < q_2 \le N - 1$. Set

$$q = q_2 - q_1, \quad p = \lfloor q_2 \vartheta \rfloor - \lfloor q_1 \vartheta \rfloor.$$

Then we have $0 < q = q_2 - q_1 \le N - 1 < Q$ and

$$|q\vartheta - p| = |\{q_2\vartheta\} - \{q_1\vartheta\}| < 1/N \le 1/Q.$$

Remark. Theorem 1.A in Chap. II of [32] states that for any real number ϑ , for any real number Q > 1, there exists an integer q in the range $1 \le q < Q$ and a rational integer p such that

$$\left|\vartheta - \frac{p}{q}\right| \leq \frac{1}{qQ} \cdot$$

The proof given there yields strict inequality $|q\vartheta - p| < 1/Q$ in case Q is not an integer. In the case where Q is an integer and ϑ is rational, the result does not hold with a strict inequality in general. For instance, if $\vartheta = a/b$ with gcd(a, b) = 1 and $b \ge 2$, there is a solution p/q to this problem with strict inequality for Q = b + 1, but not for Q = b.

However, when Q is an integer and ϑ is irrational, the number $|q\vartheta - p|$ is irrational (recall that q > 0), hence not equal to 1/Q.

Proof of (iv) \Rightarrow (v). Assume (iv). We already know that (iv) \Rightarrow (i), hence ϑ is irrational.

Let $\{q_1, \ldots, q_N\}$ be a finite set of positive integers. We are going to show that there exists a positive integer $q \notin \{q_1, \ldots, q_N\}$ satisfying the condition (v). Denote by $\|\cdot\|$ the distance to the nearest integer: for $x \in \mathbf{R}$,

$$||x|| = \min_{a \in \mathbf{Z}} |x - a|.$$

Since ϑ is irrational, it follows that for $1 \leq j \leq N$, the number $||q_j \vartheta||$ is non-zero. Let Q > 1 satisfy

$$Q > \left(\min_{1 \le j \le N} \|q_j \vartheta\|\right)^{-1}.$$

From (iv) we deduce that there exists an integer q in the range $1 \leq q < Q$ such that

$$0 < \|q\vartheta_i\| \le \frac{1}{Q} \cdot$$

The right hand side is < 1/q, and the choice of Q implies $q \notin \{q_1, \ldots, q_N\}$.

In the next section, we give another proof of (i) \Rightarrow (iv) which rests on *Minkowski geometry of numbers*.

2.2 Geometry of numbers

Recall that a discrete subgroup of \mathbf{R}^n of maximal rank n is called a *lattice* of \mathbf{R}^n .

Let G be a lattice in \mathbb{R}^n . For each basis $\mathbf{e} = \{e_1, \ldots, e_n\}$ of G the parallelogram

$$P_{\mathbf{e}} = \{x_1 e_1 + \dots + x_n e_n ; 0 \le x_i < 1 \ (1 \le i \le n)\}$$

is a fundamental domain for G, which means a complete system of representative of classes modulo G. We get a partition of \mathbf{R}^n as

$$\mathbf{R}^n = \bigcup_{g \in G} (P_\mathbf{e} + g) \tag{6}$$

A change of bases of G is obtained with a matrix with integer coefficients having determinant ± 1 , hence the Lebesgue measure $\mu(P_{\mathbf{e}})$ of $P_{\mathbf{e}}$ does not depend on \mathbf{e} : this number is called the *volume* of the lattice G and denoted by v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th century as an application of his *geometry of numbers*.

Theorem 7 (Minkowski). Let G be a lattice in \mathbb{R}^n and B a measurable subset of \mathbb{R}^n . Assume $\mu(B) > v(G)$. Then there exist $x \neq y$ in B such that $x - y \in G$.

Proof. From (6) we deduce that B is the disjoint union of the $B \cap (P_{\mathbf{e}} + g)$ with g running over G. Hence

$$\mu(B) = \sum_{g \in G} \mu\left(B \cap (P_{\mathbf{e}} + g)\right).$$

Since Lebesgue measure is invariant under translation

$$\mu \left(B \cap \left(P_{\mathbf{e}} + g \right) \right) = \mu \left(\left(-g + B \right) \cap P_{\mathbf{e}} \right)$$

The sets $(-g+B) \cap P_{\mathbf{e}}$ are all contained in $P_{\mathbf{e}}$ and the sum of their measures is $\mu(B) > \mu(P_{\mathbf{e}})$. Therefore they are not all pairwise disjoint – this is one of the versions of the *Dirichlet box principle*). There exists $g \neq g'$ in G such that

$$(-g+B) \cap (-g'+B) \neq \emptyset.$$

Let x and y in B satisfy -g + x = -g' + y. Then $x - y = g - g' \in G \setminus \{0\}$.

From Theorem 7 we deduce Minkowski's convex body Theorem (Theorem 2B, Chapter II of [32]).

Corollary 8. Let G be a lattice in \mathbb{R}^n and let B be a measurable subset of \mathbb{R}^n , convex and symmetric with respect to the origin, such that $\mu(B) > 2^n v(G)$. Then $B \cap G \neq \{0\}$.

Proof. We use Theorem 7 with the set

$$B' = \frac{1}{2}B = \{x \in \mathbf{R}^n \; ; \; 2x \in B\}$$

We have $\mu(B') = 2^{-n}\mu(B) > v(G)$, hence by Theorem 7 there exists $x \neq y$ in B' such that $x - y \in G$. Now 2x and 2y are in B, and since B is symmetric $-2y \in B$. Finally B is convex, hence $(2x - 2y)/2 = x - y \in G \cap B \setminus \{0\}$.

Corollary 9. With the notations of Corollary 8, if B is also compact in \mathbb{R}^n , then the weaker inequality $\mu(B) \geq 2^n v(G)$ suffices to reach the conclusion.

Proof. Assume $\mu(B) = 2^n v(G)$. For $\epsilon > 0$, set $B_{\epsilon} = (1+\epsilon)B = \{(1+\epsilon)t ; t \in B\}$. Since $\mu(B_{\epsilon}) > 2^n v(G)$, we deduce from Corollary 8 $B_{\epsilon} \cap G \neq \{0\}$. Since B_{ϵ} is compact and G discrete, $B_{\epsilon} \cap G \setminus \{0\}$ is a finite non–empty set. Also

$$B_{\epsilon'} \cap G \subset B_{\epsilon} \cap G$$

for $\epsilon' < \epsilon$. Hence there exists $t \in G \setminus \{0\}$ such that $t \in B_{\epsilon}$ for all $\epsilon > 0$. Define $t_{\epsilon} \in B$ by $t = (1 + \epsilon)t_{\epsilon}$. Since B is compact, there is a sequence $\epsilon_n \to 0$ such that t_{ϵ_n} has a limit in B. But $\lim_{\epsilon \to 0} t_{\epsilon} = t$. Hence $t \in B$.

Remark. The example of $G = \mathbb{Z}^n$ and $B = \{(x_1, \ldots, x_n) \in \mathbb{R}^n ; |x_i| < 1\}$ shows how sharp are Corollaries 8 and 9.

Minkowski's Linear Forms Theorem (see, for instance, [32] Chap. II § 2 Th. 2C) is the following result.

Theorem 10 (Minkowski's Linear Forms Theorem). Suppose that ϑ_{ij} $(1 \le i, j \le n)$ are real numbers with determinant ± 1 . Suppose that A_1, \ldots, A_n are positive numbers with $A_1 \cdots A_n = 1$. Then there exists an integer point $\underline{x} = (x_1, \ldots, x_n) \neq 0$ such that

$$|\vartheta_{i1}x_1 + \dots + \vartheta_{in}x_n| < A_i \qquad (1 \le i \le n-1)$$

and

$$|\vartheta_{n1}x_1 + \dots + \vartheta_{nn}x_n| \le A_n.$$

Proof. We apply Corollary 8 with A_n replaced with $A_n + \epsilon$ for a sequence of ϵ which tends to 0.

Here is a consequence of Theorem 10

Corollary 11. Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers. For any real number Q > 1, there exist p_1, \ldots, p_m, q in \mathbb{Z} such that $1 \le q < Q$ and

$$\max_{1 \le i \le m} \left| \vartheta_i - \frac{p_i}{q} \right| \le \frac{1}{qQ^{1/m}} \cdot$$

Proof of Corollary 11. We apply Theorem 10 to the $n \times n$ matrix (with n = m + 1)

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -\vartheta_1 & 1 & 0 & \cdots & 0 \\ -\vartheta_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\vartheta_m & 0 & 0 & \cdots & 1 \end{pmatrix}$$

corresponding to the linear forms X_0 and $-\vartheta_i X_0 + X_i$ $(1 \le i \le m)$, and with $A_0 = Q$, $A_1 = \cdots = A_m = Q^{-1/m}$.

Proof of (i) \Rightarrow (iv) in Proposition 4 using Minkowski's geometry of numbers. Let $\epsilon > 0$. The subset

$$\mathcal{C}_{\epsilon} = \left\{ (x_0, x_1) \in \mathbf{R}^2 ; |x_0| < Q, |x_0 \vartheta - x_1| < (1/Q) + \epsilon \right\}$$

of \mathbf{R}^2 is convex, symmetric and has volume > 4. By Minkowski's Convex Body Theorem (Corollary 8 below), it contains a non-zero element in \mathbf{Z}^2 . Since C_{ϵ} is also bounded, the intersection $\mathcal{C}_{\epsilon} \cap \mathbf{Z}^2$ is finite. Consider a nonzero element (x_0, x_1) in this intersection with $|x_0\vartheta - x_1|$ minimal. Then $(x_0, x_1) \in C_{\epsilon}$ for all $\epsilon > 0$, hence $|x_0\vartheta - x_1| \leq 1/Q + \epsilon$ for all $\epsilon > 0$. Since this is true for all $\epsilon > 0$, we deduce $|x_0\vartheta - x_1| \leq 1/Q$. Finally, since ϑ is irrational, we also have $|x_0\vartheta - x_1| \neq 1/Q$.

2.3 Irrationality of at least one number

Proposition 12. Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers. The following conditions are equivalent:

- (i) One at least of $\vartheta_1, \ldots, \vartheta_m$ is irrational.
- (ii) For any $\epsilon > 0$, there exist p_1, \ldots, p_m, q in \mathbf{Z} with q > 0 such that

$$0 < \max_{1 \le i \le m} |q\vartheta_i - p_i| < \epsilon.$$

(iii) For any $\epsilon > 0$, there exist m + 1 linearly independent linear forms L_0, \ldots, L_m in m + 1 variables with coefficients in \mathbf{Z} in m + 1 variables X_0, \ldots, X_m , such that

$$\max_{0 \le k \le m} |L_k(1, \vartheta_1, \dots, \vartheta_m)| < \epsilon.$$

(iv) For any real number Q > 1, there exists p_1, \ldots, p_m, q in \mathbb{Z} such that $1 \le q < Q$ and

$$0 < \max_{1 \le i \le m} |q\vartheta_i - p_i| \le \frac{1}{Q^{1/m}} \cdot$$

(v) There is an infinite set of $q \in \mathbf{Z}$, q > 0, for which there exist p_1, \ldots, p_m in \mathbf{Z} satisfying

$$0 < \max_{1 \le i \le m} \left| \vartheta_i - \frac{p_i}{q} \right| < \frac{1}{q^{1+1/m}} \cdot$$

We shall prove Proposition 12 in the following way:

Proof of (iv) \Rightarrow (v). We first deduce (i) from (iv). Indeed, if (i) does not hold and $\vartheta_i = a_i/b \in \mathbf{Q}$ for $1 \leq i \leq m$, then the condition

$$\max_{1 \le i \le m} |q\vartheta_i - p_i| < \frac{1}{b}$$

implies $q\vartheta_i - p_i = 0$ for $1 \le i \le m$, hence (iv) does not hold as soon as $Q > b^m$.

Let $\{q_1, \ldots, q_N\}$ be a finite set of positive integers. Using (iv) again, we are going to show that there exists a positive integer $q \notin \{q_1, \ldots, q_N\}$ satisfying the condition (v). Recall that $\|\cdot\|$ denotes the distance to the nearest integer. From (i) it follows that for $1 \leq j \leq N$, the number $\max_{1 \leq i \leq m} \|q_j \vartheta_i\|$ is non-zero. Let Q > 1 be sufficiently large such that

$$Q^{-1/m} < \min_{1 \le j \le N} \max_{1 \le i \le m} \|q_j \vartheta_i\|.$$

We use (iv): there exists an integer q in the range $1 \leq q < Q$ such that

$$0 < \max_{1 \le i \le m} \|q\vartheta_i\| \le Q^{-1/m}.$$

The right hand side is $q^{-1/m}$, and the choice of Q implies $q \notin \{q_1, \ldots, q_N\}$.

Proof of (v) \Rightarrow (ii). Given $\epsilon > 0$, there is a positive integer $q > \max\{1, 1/\epsilon^m\}$ satisfying the conclusion of (v). Then (ii) follows.

Proof of (ii) \Rightarrow (iii). Let $\epsilon > 0$. From (ii) we deduce the existence of (p_1, \ldots, p_m, q) in \mathbb{Z}^{m+1} with q > 0 such that

$$0 < \max_{1 \le i \le m} |q\vartheta_i - p_i| < \epsilon.$$

Without loss of generality we may assume $gcd(p_1, \ldots, p_m, q) = 1$. Define L_1, \ldots, L_m by $L_i(X_0, \ldots, X_m) = p_i X_0 - q X_i$ for $1 \le i \le m$. Then L_1, \ldots, L_m are *m* linearly independent linear forms in m + 1 variables with rational integer coefficients satisfying

$$0 < \max_{1 \le i \le m} |L_i(1, \vartheta_1, \dots, \vartheta_m)| < \epsilon.$$

We use (ii) once more with ϵ replaced by

$$\max_{1 \le i \le m} |L_i(1, \vartheta_1, \dots, \vartheta_m)| = \max_{1 \le i \le m} |q\vartheta_i - p_i|.$$

Hence there exists p'_1, \ldots, p'_m, q' in **Z** with q' > 0 such that

$$0 < \max_{1 \le i \le m} |q'\vartheta_i - p'_i| < \max_{1 \le i \le m} |q\vartheta_i - p_i|.$$

$$\tag{13}$$

It remains to check that one at least of the m linear forms

$$L'_i(X_0,\ldots,X_m) = p'_i X_0 - q' X_i$$

for $1 \leq i \leq m$ is linearly independent of L_1, \ldots, L_m . Otherwise, for $1 \leq i \leq m$, there exist rational integers $s_i, t_{i1}, \ldots, t_{im}$, with $s_i \neq 0$, such that

$$s_i(p'_i X_0 - q' X_i) = t_{i1} L_1 + \dots + t_{im} L_m$$

= $(t_{i1} p_1 + \dots + t_{im} p_m) X_0 - q(t_{i1} X_1 + \dots + t_{im} X_m).$

These relations imply, for $1 \leq i \leq m$,

$$s_i q' = q t_{ii}, \quad t_{ki} = 0 \quad \text{and} \quad s_i p'_i = p_i t_{ii} \quad \text{for } 1 \le k \le m, \quad k \ne i,$$

meaning that the two projective points $(p_1 : \cdots : p_m : q)$ and $(p'_1 : \cdots : p'_m : q')$ are the same. Since $gcd(p_1, \ldots, p_m, q) = 1$, it follows that (p'_1, \ldots, p'_m, q') is an integer multiple of (p_1, \ldots, p_m, q) . This is not compatible with (13).

Proof of (iii) \Rightarrow (i). We proceed by contradiction. Assume (i) is not true: there exists $(a_1, \ldots, a_m, b) \in \mathbb{Z}^{m+1}$ with b > 0 such that $\vartheta_k = a_k/b$ for $1 \le k \le m$. Use (iii) with $\epsilon = 1/b$: we get m+1 linearly independent linear forms L_0, \ldots, L_m in $\mathbb{Z}X_0 + \cdots + \mathbb{Z}X_m$. One at least of them, say L_k , does not vanish at $(1, \vartheta_1, \ldots, \vartheta_m)$. Then we have

$$0 < |L_k(b, a_1, \dots, a_m)| = b|L_k(1, \vartheta_1, \dots, \vartheta_m)| < b\epsilon = 1.$$

Since $L_k(b, a_1, \ldots, a_m)$ is a rational integer, we obtain a contradiction.

Proof of (i) \Rightarrow (iv). Use Corollary 11. From the assumption (i) we deduce

$$\max_{1 \le i \le m} |q\vartheta_i - p_i| \ne 0.$$

Remark. This proof of the implication (i) \Rightarrow (iv) in Proposition 12 (compare with [32] Chap. II § 2 p. 35) relies on Minkowski's linear form Theorem. Another proof of (i) \Rightarrow (iv) in the special case where $Q^{1/m}$ is an integer, by means of Dirichlet's box principle, can be found in [32] Chap. II Th. 1E p. 28. A third proof (using again the geometry of numbers, but based on a result by Blichfeldt) is given in [32] Chap. II § 2 p. 32.

3 Criteria for linear independence

3.1 Hermite's method

Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers and a_0, a_1, \ldots, a_m rational integers, not all of which are 0. The goal is to prove that, under certain conditions, the number

$$L = a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m$$

is not 0.

Hermite's idea (see [18] and [13] Chap. 2 § 1.3) is to approximate simultaneously $\vartheta_1, \ldots, \vartheta_m$ by rational numbers $p_1/q, \ldots, p_m/q$ with the same denominator q > 0.

Let q, p_1, \ldots, p_m be rational integers with q > 0. For $1 \le k \le m$ set

$$\epsilon_k = q\vartheta_k - p_k$$

Then qL = M + R with

$$M = a_0 q + a_1 p_1 + \dots + a_m p_m \in \mathbf{Z}$$

$$R = a_1 \epsilon_1 + \dots + a_m \epsilon_m \in \mathbf{R}.$$

If $M \neq 0$ and |R| < 1 we deduce $L \neq 0$.

One of the main difficulties is often to check $M \neq 0$. This question gives rise to the so-called zero estimates or non-vanishing lemmas. In the present situation, we wish to find a (m + 1)-tuple (q, p_1, \ldots, p_m) such that $(p_1/q, \ldots, p_m/q)$ is a simultaneous rational approximation to $(\vartheta_1, \ldots, \vartheta_m)$, but we also require that it lies outside the hyperplane $a_0X_0 + a_1X_1 + \cdots + a_mX_m = 0$ of \mathbf{Q}^{m+1} . Our goal is to prove the linear independence over \mathbf{Q} of $1, \vartheta_1, \ldots, \vartheta_m$; hence this needs to be checked for all hyperplanes. The solution to this problem is to construct not only one tuple (q, p_1, \ldots, p_m) in $\mathbf{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent. This yields m + 1 pairs (M_k, R_k) $(k = 0, \ldots, m)$ in place of a single pair (M, R). From $(a_0, \ldots, a_m) \neq (0, \ldots, 0)$, one deduces that one at least of M_0, \ldots, M_m is not 0.

It turns out (Proposition 14 below) that nothing is lost by using such arguments: existence of linearly independent simultaneous rational approximations for $\vartheta_1, \ldots, \vartheta_m$ are characteristic of linearly independent real numbers $1, \vartheta_1, \ldots, \vartheta_m$.

3.2 Rational approximations

The following criterion is due to M. Laurent [22].

Proposition 14. Let $\underline{\vartheta} = (\vartheta_1, \ldots, \vartheta_m) \in \mathbf{R}^m$. Then the following conditions are equivalent:

(i) The numbers $1, \vartheta_1, \ldots, \vartheta_m$ are linearly independent over **Q**.

ī

(ii) For any $\epsilon > 0$, there exist m+1 linearly independent elements $\mathbf{u}_0, \mathbf{u}_1, \ldots, \mathbf{u}_m$ in \mathbf{Z}^{m+1} , say

 $\mathbf{u}_i = (q_i, p_{1i}, \dots, p_{mi}) \quad (0 \le i \le m)$

with $q_i > 0$, such that

$$\max_{1 \le k \le m} \left| \vartheta_k - \frac{p_{ki}}{q_i} \right| \le \frac{\epsilon}{q_i} \quad (0 \le i \le m).$$
(15)

The condition of linear independence on the elements $\mathbf{u}_0, \mathbf{u}_1, \ldots, \mathbf{u}_m$ means that the determinant

and

is not 0.

For $0 \leq i \leq m$, set

$$\underline{r}_i = \left(\frac{p_{1i}}{q_i}, \dots, \frac{p_{mi}}{q_i}\right) \in \mathbf{Q}^m.$$

Further define, for $\underline{x} = (x_1, \ldots, x_m) \in \mathbf{R}^m$,

$$|\underline{x}| = \max_{1 \le i \le m} |x_i|.$$

Also for $\underline{x} = (x_1, \dots, x_m) \in \mathbf{R}^m$ and $\underline{y} = (y_1, \dots, y_m) \in \mathbf{R}^m$ set

$$\underline{x} - \underline{y} = (x_1 - y_1, \dots, x_m - y_m),$$

so that

$$|\underline{x} - \underline{y}| = \max_{1 \le i \le m} |x_i - y_i|.$$

Then the relation (15) in Proposition 14 can be written

$$|\underline{\vartheta} - \underline{r}_i| \le \frac{\epsilon}{q_i}, \quad (0 \le i \le m)$$

The easy implication (which is also the useful one for Diophantine applications: linear independence, transcendence and algebraic independence) is (ii) \Rightarrow (i) . We shall prove a more explicit version of it by checking that any tuple $(q, p_1, \ldots, p_m) \in \mathbb{Z}^{m+1}$, with q > 0, producing a tuple $(p_1/q, \ldots, p_m/q) \in \mathbb{Q}^m$ of sufficiently good rational approximations to $\underline{\vartheta}$ satisfies the same linear dependence relations as $1, \vartheta_1, \ldots, \vartheta_m$.

Lemma 16. Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers. Assume that the numbers $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} : let a, b_1, \ldots, b_m be rational integers, not all of which are zero, satisfying

$$a + b_1 \vartheta_1 + \dots + b_m \vartheta_m = 0.$$

Let ϵ be a real number satisfying

$$0 < \epsilon < \left(\sum_{k=1}^{m} |b_k|\right)^{-1}.$$

Assume further that $(q, p_1, \ldots, p_m) \in \mathbb{Z}^{m+1}$ satisfies q > 0 and

$$\max_{1 \le k \le m} |q\vartheta_k - p_k| \le \epsilon$$

Then

$$aq + b_1p_1 + \dots + b_mp_m = 0.$$

Proof. In the relation

$$qa + \sum_{k=1}^{m} b_k p_k = \sum_{k=1}^{m} b_k (p_k - q\vartheta_k),$$

the right hand side has absolute value less than 1 and the left hand side is a rational integer, so it is 0.

Proof of (ii) \Rightarrow (i) in Proposition 14. Let

$$aX_0 + b_1X_1 + \dots + b_mX_m$$

be a non-zero linear form with integer coefficients. For sufficiently small ϵ , assumption (ii) show that there exist m + 1 linearly independent elements $\mathbf{u}_i \in \mathbf{Z}^{m+1}$ such that the corresponding rational approximation satisfy the assumptions of Lemma 16. Since $\mathbf{u}_0, \ldots, \mathbf{u}_m$ is a basis of \mathbf{Q}^{m+1} , one at least of the $L(\mathbf{u}_i)$ is not 0. Hence Lemma 16 implies

$$a + b_1 \vartheta_1 + \dots + b_m \vartheta_m \neq 0.$$

Proof of (i) \Rightarrow (ii) in Proposition 14. Let $\epsilon > 0$. By Corollary 11, there exists $\mathbf{u} = (q, p_1, \dots, p_m) \in \mathbf{Z}^{m+1}$ with q > 0 such that

$$\max_{1 \le k \le m} \left| \vartheta_k - \frac{p_k}{q} \right| \le \frac{\epsilon}{q}.$$

Consider the subset $E_{\epsilon} \subset \mathbb{Z}^{m+1}$ of these tuples. Let V_{ϵ} be the **Q**-vector subspace of \mathbb{Q}^{m+1} spanned by E_{ϵ} .

If $V_{\epsilon} \neq \mathbf{Q}^{m+1}$, then there is a hyperplane $a_0x_0 + a_1x_1 + \cdots + a_mx_m = 0$ containing E_{ϵ} . Any $\mathbf{u} = (q, p_1, \dots, p_m)$ in E_{ϵ} has

$$a_0q + a_1p_1 + \dots + a_mp_m = 0.$$

For each $n \ge 1/\epsilon$, let $\mathbf{u} = (q_n, p_{1n}, \dots, p_{mn}) \in E_\epsilon$ satisfy

$$\max_{1 \le k \le m} \left| \vartheta_k - \frac{p_{kn}}{q_n} \right| \le \frac{1}{nq_n}.$$

Then

$$a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m = \sum_{k=1}^m a_k \left(\vartheta_k - \frac{p_{kn}}{q_n}\right).$$

Hence

$$|a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m| \le \frac{1}{nq_n} \sum_{k=1}^m |a_k|.$$

The right hand side tends to 0 as n tends to infinity, hence the left hand side vanishes, and $1, \vartheta_1, \ldots, \vartheta_m$ are **Q**-linearly dependent, which means that (i) does not hold.

Therefore, if (i) holds, then $V_{\epsilon} = \mathbf{Q}^{m+1}$, hence there are m+1 linearly independent elements in E_{ϵ} .

Michel WALDSCHMIDT Université P. et M. Curie (Paris VI) Institut Mathématique de Jussieu Problèmes Diophantiens, Case 247 4, Place Jussieu 75252 Paris CEDEX 05, France miw@math.jussieu.fr

http://www.math.jussieu.fr/~miw/ This text is available on the internet at the address http://www.math.jussieu.fr/~miw/enseignement.html