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These are informal notes of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

Content of the course:

1. Algebraic independence of the two functions ℘(z) and ez.
Legendre’s relation η2ω1 − η1ω2 = 2iπ. Proof: integrate ζ(z)dz on a funda-
mental parallelogram.
Application: algebraic independence of the two functions az + bζ(z) and
℘(z).

2. Section § 10.7.2: Morphisms between elliptic curves. The modular in-
variant.

3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multipli-
cations.
Algebraic independence of ℘ and ℘∗.
Schneider’s Theorem on the transcendence of j(τ) (corollary 174).

11 Algebraic independence

11.1 Chudnovskii’s results

References: [1], [3], Lecture 8. [5] § 5.2.

The text below is taken from [5] § 5.2.

In the 1970’s G.V. Chudnovsky proved strong results of algebraic inde-
pendence (small transcendence degree) related with elliptic functions. One
of his most spectacular contributions was obtained in 1976:
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Theorem 178 (G.V. Chudnovsky, 1976). Let ℘ be a Weierstraß ellip-
tic function with invariants g2, g3. Let (ω1, ω2) be a basis of the lattice
period of ℘ and η1 = η(ω1), η2 = η(ω2) the associated quasi-periods of
the associated Weierstraß zeta function. Then at least two of the numbers
g2, g3, ω1, ω2, η1, η2 are algebraically independent.

A more precise result is that, for any non-zero period ω, at least two
of the four numbers g2, g3, ω/π, η/ω (with η = η(ω)) are algebraically
independent.

In the case where g2 and g3 are algebraic one deduces from Theorem
178 that two among the four numbers ω1, ω2, η1, η2 are algebraically
independent; this statement is also a consequence of the next result:

Theorem 179 (G.V. Chudnovsky, 1981). Assume that g2 and g3 are alge-
braic. Let ω be a non-zero period of ℘, set η = η(ω) and let u be a complex
number which is not a period such that u and ω are Q-linearly independent:
u "∈ Qω ∪ Ω. Assume ℘(u) ∈ Q. Then the two numbers

ζ(u)− η

ω
u,

η

ω

are algebraically independent.

From Theorem 178 or Theorem 179 one deduces:

Corollary 180. Let ω be a non-zero period of ℘ and η = η(ω). If g2

and g3 are algebraic, then the two numbers π/ω and η/ω are algebraically
independent.

The following consequence of Corollary 180 shows that in the CM case,
Chudnovsky’s results are sharp:

Corollary 181. Assume that g2 and g3 are algebraic and the elliptic curve
has complex multiplications. Let ω be a non-zero period of ℘. Then the two
numbers ω and π are algebraically independent.

As a consequence of formulae (162) and (163), one deduces:

Corollary 182. The numbers π and Γ(1/4) are algebraically independent.
Also the numbers π and Γ(1/3) are algebraically independent.
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