Updated: June 23, 2010

Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N°20, June 23, 2010

These are informal notes of my course given in April – June 2010 at IMPA (*Instituto Nacional de Matematica Pura e Aplicada*), Rio de Janeiro, Brazil.

Content of the course:

1. Algebraic independence of the two functions $\wp(z)$ and e^z .

Legendre's relation $\eta_2 \omega_1 - \eta_1 \omega_2 = 2i\pi$. Proof: integrate $\zeta(z)dz$ on a fundamental parallelogram.

Application: algebraic independence of the two functions $az + b\zeta(z)$ and $\wp(z)$.

2. Section § 10.7.2: Morphisms between elliptic curves. The modular invariant.

3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multiplications.

Algebraic independence of \wp and \wp^* . Schneider's Theorem on the transcendence of $j(\tau)$ (corollary 174).

11 Algebraic independence

11.1 Chudnovskii's results

References: [1], [3], Lecture 8. [5] § 5.2.

The text below is taken from $[5] \S 5.2$.

In the 1970's G.V. Chudnovsky proved strong results of algebraic independence (small transcendence degree) related with elliptic functions. One of his most spectacular contributions was obtained in 1976: **Theorem 178** (G.V. Chudnovsky, 1976). Let \wp be a Weierstraß elliptic function with invariants g_2 , g_3 . Let (ω_1, ω_2) be a basis of the lattice period of \wp and $\eta_1 = \eta(\omega_1)$, $\eta_2 = \eta(\omega_2)$ the associated quasi-periods of the associated Weierstraß zeta function. Then at least two of the numbers g_2 , g_3 , ω_1 , ω_2 , η_1 , η_2 are algebraically independent.

A more precise result is that, for any non-zero period ω , at least two of the four numbers g_2 , g_3 , ω/π , η/ω (with $\eta = \eta(\omega)$) are algebraically independent.

In the case where g_2 and g_3 are algebraic one deduces from Theorem 178 that two among the four numbers ω_1 , ω_2 , η_1 , η_2 are algebraically independent; this statement is also a consequence of the next result:

Theorem 179 (G.V. Chudnovsky, 1981). Assume that g_2 and g_3 are algebraic. Let ω be a non-zero period of \wp , set $\eta = \eta(\omega)$ and let u be a complex number which is not a period such that u and ω are **Q**-linearly independent: $u \notin \mathbf{Q}\omega \cup \Omega$. Assume $\wp(u) \in \overline{\mathbf{Q}}$. Then the two numbers

$$\zeta(u) - \frac{\eta}{\omega}u, \quad \frac{\eta}{\omega}$$

are algebraically independent.

From Theorem 178 or Theorem 179 one deduces:

Corollary 180. Let ω be a non-zero period of \wp and $\eta = \eta(\omega)$. If g_2 and g_3 are algebraic, then the two numbers π/ω and η/ω are algebraically independent.

The following consequence of Corollary 180 shows that in the CM case, Chudnovsky's results are sharp:

Corollary 181. Assume that g_2 and g_3 are algebraic and the elliptic curve has complex multiplications. Let ω be a non-zero period of \wp . Then the two numbers ω and π are algebraically independent.

As a consequence of formulae (162) and (163), one deduces:

Corollary 182. The numbers π and $\Gamma(1/4)$ are algebraically independent. Also the numbers π and $\Gamma(1/3)$ are algebraically independent.

References

- G. V. CHUDNOVSKY "Algebraic independence of values of exponential and elliptic functions", in *Proceedings of the International Congress of Mathematicians (Helsinki, 1978)* (Helsinki), Acad. Sci. Fennica, 1980, p. 339–350.
- [2] M. WALDSCHMIDT, Les travaux de G. V. Čudnovskiĭ sur les nombres transcendants, in Séminaire Bourbaki, Vol. 1975/76, 28e année, Exp. No. 488, Springer, Berlin, 1977, pp. 274–292. Lecture Notes in Math., Vol. 567.

```
\tt http://archive.numdam.org/article/SB\_1975-1976\__18\__274\_0.pdf
```

- [3] —, Transcendence methods, vol. 52 of Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1979. http://www.math.jussieu.fr/miw/articles/pdf/QueensPaper52.pdf
- [4] —, Elliptic curves and complex multiplication English translation by Franz Lemmermeyer of notes by A. Faisant, R. Lardon and G. Philibert, Sém Arithm. Univ. St Etienne, 1981-82, N°4, 23 p. http://www.math.jussieu.fr/ miw/articles/ps/eccm.ps
- [5] —, *Elliptic functions and transcendence*, in Surveys in number theory, vol. 17 of Dev. Math., Springer, New York, 2008, pp. 143–188.