Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course ${ }^{\circ}{ }^{\circ} 20$, June 23, 2010

These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

Content of the course:

1. Algebraic independence of the two functions $\wp(z)$ and e^{z}. Legendre's relation $\eta_{2} \omega_{1}-\eta_{1} \omega_{2}=2 i \pi$. Proof: integrate $\zeta(z) d z$ on a fundamental parallelogram.
Application: algebraic independence of the two functions $a z+b \zeta(z)$ and $\wp(z)$.
2. Section $\S 10.7 .2$ Morphisms between elliptic curves. The modular invariant.
3. Section \S 10.7.3. Endomorphisms of an elliptic curve; complex multiplications.
Algebraic independence of \wp and \wp^{*}.
Schneider's Theorem on the transcendence of $j(\tau)$ (corollary 174).

11 Algebraic independence

11.1 Chudnovskii's results

References: [1], 3], Lecture 8. [5] §5.2.

The text below is taken from [5] 5.2.
In the 1970's G.V. Chudnovsky proved strong results of algebraic independence (small transcendence degree) related with elliptic functions. One of his most spectacular contributions was obtained in 1976:

Theorem 178 (G.V. Chudnovsky, 1976). Let \wp be a Weierstraß elliptic function with invariants g_{2}, g_{3}. Let $\left(\omega_{1}, \omega_{2}\right)$ be a basis of the lattice period of \wp and $\eta_{1}=\eta\left(\omega_{1}\right), \eta_{2}=\eta\left(\omega_{2}\right)$ the associated quasi-periods of the associated Weierstraß zeta function. Then at least two of the numbers $g_{2}, g_{3}, \omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}$ are algebraically independent.

A more precise result is that, for any non-zero period ω, at least two of the four numbers $g_{2}, g_{3}, \omega / \pi, \eta / \omega$ (with $\eta=\eta(\omega)$) are algebraically independent.

In the case where g_{2} and g_{3} are algebraic one deduces from Theorem 178 that two among the four numbers $\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}$ are algebraically independent; this statement is also a consequence of the next result:

Theorem 179 (G.V. Chudnovsky, 1981). Assume that g_{2} and g_{3} are algebraic. Let ω be a non-zero period of \wp, set $\eta=\eta(\omega)$ and let u be a complex number which is not a period such that u and ω are \mathbf{Q}-linearly independent: $u \notin \mathbf{Q} \omega \cup \Omega$. Assume $\wp(u) \in \overline{\mathbf{Q}}$. Then the two numbers

$$
\zeta(u)-\frac{\eta}{\omega} u, \quad \frac{\eta}{\omega}
$$

are algebraically independent.
From Theorem 178 or Theorem 179 one deduces:
Corollary 180. Let ω be a non-zero period of \wp and $\eta=\eta(\omega)$. If g_{2} and g_{3} are algebraic, then the two numbers π / ω and η / ω are algebraically independent.

The following consequence of Corollary 180 shows that in the CM case, Chudnovsky's results are sharp:

Corollary 181. Assume that g_{2} and g_{3} are algebraic and the elliptic curve has complex multiplications. Let ω be a non-zero period of \wp. Then the two numbers ω and π are algebraically independent.

As a consequence of formulae (162) and (163), one deduces:
Corollary 182. The numbers π and $\Gamma(1 / 4)$ are algebraically independent. Also the numbers π and $\Gamma(1 / 3)$ are algebraically independent.

References

[1] G. V. Chudnovsky -"Algebraic independence of values of exponential and elliptic functions", in Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, p. 339-350.
[2] M. Waldschmidt, Les travaux de G. V. Čudnovskǐ̌ sur les nombres transcendants, in Séminaire Bourbaki, Vol. 1975/76, 28e année, Exp. No. 488, Springer, Berlin, 1977, pp. 274-292. Lecture Notes in Math., Vol. 567.
http://archive.numdam.org/article/SB_1975-1976__18__274_0.pdf
[3] - , Transcendence methods, vol. 52 of Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1979.
http://www.math.jussieu.fr/ miw/articles/pdf/QueensPaper52.pdf
[4] - , Elliptic curves and complex multiplication English translation by Franz Lemmermeyer of notes by A. Faisant, R. Lardon and G. Philibert, Sém Arithm. Univ. St Etienne, 1981-82, NN, 23 p.
http://www.math.jussieu.fr/ miw/articles/ps/eccm.ps
[5] -, Elliptic functions and transcendence, in Surveys in number theory, vol. 17 of Dev. Math., Springer, New York, 2008, pp. 143-188.

