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The text below is taken from [4] § 5.2.

11.2 Modular functions and Ramanujan functions

S. Ramanujan introduced the following functions

P (q) = 1−24
∞∑

n=1

nqn

1− qn
, Q(q) = 1+240

∞∑

n=1

n3qn

1− qn
, R(q) = 1−504

∞∑

n=1

n5qn

1− qn
·

They are special cases of Fourier expansions of Eisenstein series. Recall the
Bernoulli numbers Bk defined by:

z

ez − 1
= 1− z

2
+

∞∑

k=1

(−1)k+1Bk
z2k

(2k)!
,

B1 = 1/6, B2 = 1/30, B3 = 1/42.

For k ≥ 1 the normalized Eisenstein series of weight k is

E2k(q) = 1 + (−1)k 4k

Bk

∞∑

n=1

n2k−1qn

1− qn
·

The connection with (161) is

E2k(q) =
1

2ζ(2k)
· Gk(τ),
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for k ≥ 2, where q = e2πiτ . In particular

G2(τ) =
π4

32 · 5 · E4(q), G3(τ) =
2π6

33 · 5 · 7 · E6(q).

With Ramanujan’s notation we have

P (q) = E2(q), Q(q) = E4(q), R(q) = E6(q).

The discriminant ∆ and the modular invariant J are related with these
functions by Jacobi’s product formula

∆ =
(2π)12

123
· (Q3−R2) = (2π)12q

∞∏

n=1

(1−qn)24 and J =
(2π)12Q3

∆
=

(24325G2)3

∆
·

Let q be a complex number, 0 < |q| < 1. There exists τ in the upper half
plane H such that q = e2πiτ . Select any twelfth root ω of ∆(q) . The
invariants g2 and g3 of the Weierstraß ℘ function attached to the lattice
(Z + Zτ)ω satisfy g3

2 − 27g2
3 = 1 and

P (q) = 3
ω

π
· η

π
, Q(q) =

3
4

(ω

π

)4
g2, R(q) =

27
8

(ω

π

)6
g3.

According to formulae (162) and (163), here are a few special values

• For τ = i, q = e−2π,

P (e−2π) =
3
π

, Q(e−2π) = 3
(ω1

π

)4
, (183)

R(e−2π) = 0 and ∆(e−2π) = 26ω12
1 ,

with

ω1 =
Γ(1/4)2√

8π
= 2.6220575542 . . .

• For τ = ', q = −e−π
√

3,

P (−e−π
√

3) =
2
√

3
π

, Q(−e−π
√

3) = 0, (184)

R(−e−π
√

3) =
27
2

(ω1

π

)6
, ∆(−e−π

√
3) = −2433ω12

1 ,

with

ω1 =
Γ(1/3)3

24/3π
= 2.428650648 . . .
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11.3 Nesterenko’s result

In 1976, D. Bertrand pointed out that Schneider’s Theorem 173 on the
transcendence of ω/π implies:
For any q ∈ C with 0 < |q| < 1, at least one of the two numbers Q(q), R(q)
is transcendental.

He also proved the p-adic analog by means of a new version of the
Schneider–Lang criterion for meromorphic functions (he allows one essential
singularity) which he applied to Jacobi–Tate elliptic functions. Two years
later he noticed that G.V. Chudnovsky’s Theorem 178 yields:
For any q ∈ C with 0 < |q| < 1, at least two of the numbers P (q), Q(q), R(q)
are algebraically independent.

The following result of Yu.V. Nesterenko goes one step further:

Theorem 185 (Nesterenko, 1996). For any q ∈ C with 0 < |q| < 1, three
of the four numbers q, P (q), Q(q), R(q) are algebraically independent.

Among the tools used by Nesterenko in his proof is the following result
due to K. Mahler:

The functions P , Q, R are algebraically independent over C(q).
Also he uses the fact that they satisfy a system of differential equations

for D = q d/dq discovered by S. Ramanujan in 1916:

12
DP

P
= P − Q

P
, 3

DQ

Q
= P − R

Q
, 2

DR

R
= P − Q2

R
·

One of the main steps in his original proof is his following zero estimate:

Theorem 186 (Nesterenko’s zero estimate). Let L0 and L be positive inte-
gers, A ∈ C[q, X1, X2, X3] a non-zero polynomial in four variables of degree
≤ L0 in q and ≤ L in each of the three other variables X1, X2, X3. Then
the multiplicity at the origin of the analytic function A

(
q, P (q), Q(q), R(q)

)

is at most 2 · 1045L0L3.

In the special case where J(q) is algebraic, P. Philippon produced an
alternative proof for Nesterenko’s result where this zero estimate 186 is not
used; instead of it, he used Philibert’s measure of algebraic independence
for ω/π and η/π. However Philibert’s proof requires a zero estimate for
algebraic groups.

Using (183) one deduces from Theorem 185

Corollary 187. The three numbers π, eπ, Γ(1/4) are algebraically indepen-
dent.
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while using (184) one deduces

Corollary 188. The three numbers π, eπ
√

3, Γ(1/3) are algebraically inde-
pendent.

Consequences of Corollary 187 are the transcendence of the numbers

σZ[i](1/2) = 25/4π1/2eπ/8Γ(1/4)−2

and (P. Bundschuh)
∞∑

n=0

1
n2 + 1

=
1
2

+
π

2
· eπ + e−π

eπ − e−π
·

D. Duverney, K. and K. Nishioka and I. Shiokawa as well as D. Bertrand
derived from Nesterenko’s Theorem 185 a number of interesting corollaries,
including the following ones

Corollary 189. Rogers-Ramanujan continued fraction:

RR(α) = 1 +
α

1 +
α2

1 +
α3

1 + . . .

is transcendental for any algebraic α with 0 < |α| < 1.

Corollary 190. Let (Fn)n≥0 be the Fibonacci sequence: F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2. Then the number

∞∑

n=1

1
F 2

n

is transcendental.

Jacobi Theta Series are defined by

θ2(q) = 2q1/4
∑

n≥0

qn(n+1) = 2q1/4
∞∏

n=1

(1− q4n)(1 + q2n),

θ3(q) =
∑

n∈Z
qn2

=
∞∏

n=1

(1− q2n)(1 + q2n−1)2,

θ4(q) = θ3(−q) =
∑

n∈Z
(−1)nqn2

=
∞∏

n=1

(1− q2n)(1− q2n−1)2.
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Corollary 191. . Let i, j and k ∈ {2, 3, 4} with i &= j. Let q ∈ C satisfy
0 < |q| < 1. Then each of the two fields

Q
(
q, θi(q), θj(q), Dθk(q)

)
and Q

(
q, θk(q), Dθk(q), D2θk(q)

)

has transcendence degree ≥ 3 over Q.

As an example, for an algebraic number q ∈ C with 0 < |q| < 1, the
three numbers ∑

n≥0

qn2
,

∑

n≥1

n2qn2
,

∑

n≥1

n4qn2

are algebraically independent. In particular the number

θ3(q) =
∑

n∈Z
qn2

is transcendental. The number θ3(q) was explicitly considered by Liouville
as far back as 1851.

The proof of Yu.V. Nesterenko is effective and yields quantitative refine-
ments (measures of algebraic independence).
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