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Diophantine approximation,
irrationality and transcendence

Michel Waldschmidt

Course N◦4, April 28, 2010

These are informal notes of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

This course was devoted to Liouville’s inequality (§ 4.1).
The present notes consist of

• Pages 65–85 of [38] (begining of Chapter 3: Heights).

• Liouville’s inequality for quadratic numbers.

• A short historical survey on Diophantine Approximation.
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4.1.2 Liouville’s inequality for quadratic numbers

Consider Lemma 24 in the special case d = 2 where α is a quadratic algebraic
number. Write its minimal polynomial f(X) = aX2 + bX + c and let ∆ :=
b2 − 4ac be its discriminant. Since we are interested in the approximation
of α by rational numbers, we assume ∆ > 0. If α = (−b ±

√
∆)/2a, then

the other root is α′ = (−b∓
√

∆)/2a and

f ′(α) = a(α− α′) = ±
√

∆.

Lemma 40. Let α be an algebraic number of degree 2 and minimal polyno-
mial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an integer
q0 such that, for any p/q ∈ Q with q ≥ q0,

∣∣∣∣α−
p

q

∣∣∣∣ ≥
1

(
√

∆ + ε)q2
·

The smallest positive discriminant of an irreducible quadratic polynomial
with coefficients in Z is 5, which is the value of the discriminant of X2−X−1,
with roots Φ and −Φ−1 where Φ = 1.6180339887499 . . . denotes the Golden
ratio.

The next result deals with the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Lemma 41. For any q ≥ 1 and any p ∈ Z,
∣∣∣∣Φ−

p

q

∣∣∣∣ >
1√

5q2 + (q/2)
·

On the other hand
lim

n→∞
F 2

n−1

∣∣∣∣Φ−
Fn

Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to
qΦ. From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2

(
p

q
− Φ

) (
p

q
+ Φ−1

)
.

The left hand side is a non-zero rational integer, hence has absolute value
at least 1. We now bound the absolute value of the right hand side from
above. Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 <

√
5 +

1
2q

·
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Hence
1 < q2

∣∣∣∣
p

q
− Φ

∣∣∣∣

(√
5 +

1
2q

)

The first part of Lemma 41 follows.
The real vector space of sequences (vn)n≥0 satisfying vn = vn−1+vn−2 has

dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5
(Φn − (−1)nΦ−n)

due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It
follows that Fn is the nearest integer to

1√
5
Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1

satisfies limn→∞ un = Φ.
By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

for n ≥ 1. The left hand side is F 2
n−1(un−Φ)(un +Φ−1), as we already saw.

Hence
F 2

n−1|Φ− un| =
1

Φ−1 + un

,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result
follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1

, (n ≥ 3).

Hence
un = 1 +

1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·
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Remark. It is known (see for instance [31] p. 25) that if k is a positive
integer, if an irrational real number ϑ has a continued fraction expansion
[a0; a1, a2, . . . ] with an ≥ k for infinitely many n, then

lim inf
q→∞

q2

∣∣∣∣ϑ−
p

q

∣∣∣∣ ≤
1√

4 + k2
·

4.1.3 Diophantine Approximation: historical survey

References for this section are [2, 31, 13, 1].
Definition Given a real irrational number ϑ, a function ϕ = N → R>0 is
an irrationality measure for ϑ if there exists an integer q0 > 0 such that, for
any p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ−

p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure
for ϑ.

From Dirichlet’s box principle (see (i)⇒ (iv) in Proposition 4) it follows
that any irrationality exponent κ satisfies κ ≥ 2. Irrational quadratic num-
bers have irrationality exponent 2. It is known (see for instance [31] Th. 5F
p. 22) that 2 is an irrationality exponent for an irrational real number ϑ
if and only if the sequence of partial quotients (a0, a1, . . .) in the continued
fraction expansion of ϑ is bounded: these are called the badly approximable
numbers.

From Liouville’s inequality in Lemma 24 it follows that any irrational
algebraic real number α of degree d has a finite irrationality exponent ≤ d.
Liouville numbers are by definition exactly the irrational real numbers which
have no finite irrationality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an
irrationality exponent and is the best: no positive number less than κ is
an irrationality exponent for ϑ. Examples due to Y. Bugeaud in connexion
with the triadic Cantor set (see [3]) are

∞∑

n=0

3−'λκ(n

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the

Norwegian mathematician Axel Thue who proved in 1909:
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Theorem 42 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

The fact that the irrationality exponent is < d has very important corol-
laries in the theory of Diophantine equations. We start with a special ex-
ample. Liouville’s estimate for the rational Diophantine approximation of
3
√

2 is ∣∣∣∣
3
√

2− p

q

∣∣∣∣ >
1

9q3

for sufficiently large q (use Lemma 24 with P (X) = X3 − 2, c = 3 3
√

2 < 9).
Thue was the first to achieve an improvement of the exponent 3. A explicit
estimate was then obtained by A. Baker, namely

∣∣∣∣
3
√

2− p

q

∣∣∣∣ >
1

106q2.955
,

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,

∣∣∣∣
3
√

2− p

q

∣∣∣∣ ≥
1

4 q2,5
·

From his own result, Thue deduced that for any fixed k ∈ Z \ {0}, there
are only finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation
x3−2y3 = k. The result of Baker shows more precisely that if (x, y) ∈ Z×Z
is a solution to x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√

x.

The connexion between Diophantine approximation to 3
√

2 and the Diophan-
tine equation x3 − 2y3 = k is explained in the next lemma.

Lemma 43. Let η be a positive real number. The two following properties
are equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,

∣∣∣∣
3
√

2− p

q

∣∣∣∣ >
c1

qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x
3−η.
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Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are
not true with η < 2. It is not expected that they are true with η = 2, but
it is expected that they are true for any η > 2.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z×Z have x > 0. Set k = x3 − 2y3. Since 2

is not the cube of a rational number we have k *= 0. If y = 0 assertion (ii)
plainly holds. So assume y *= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).

The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has
a positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic
form X2 +αXY +α2Y 2 is bounded form below by c0y2. From (i) we deduce

|k| = |y|3
∣∣∣∣

3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η = c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).

We want an upper bound for x: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

x3 ≤ c5|k|3/(3−η) and x3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the
nearest integer to qα, then |qα− p| > 1/2 and the estimate (i) is trivial. So
we assume |qα− p| ≤ 1/2. We need only the weaker estimate c7q < p < c8q
with some positive constants c7 and c8, showing that we may replace p by q
or q by p in our estimates, provided that we adjust the constants. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c10q

3

∣∣∣∣α−
p

q

∣∣∣∣ ,

and (i) easily follows.

Here is the most general result of Thue on Diophantine equations.
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Theorem 44 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X, Y ) = Y df(X/Y ).
Then the Diophantine equation F (x, y) = m has only finitely many solutions
(x, y) ∈ Z× Z.

The equation F (x, y) = m in Proposition 44 is called Thue equation.
The connexion between Thue equation and Liouville’s inequality has been
explained in Lemma 43 in the special case 3

√
2; the general case is similar.

Lemma 45. Let α be an algebraic number of degree d ≥ 3 and minimal
polynomial f ∈ Z[X], let F (X, Y ) = Y df(X/Y ) ∈ Z[X, Y ] be the associated
homogeneous polynomial. Let 0 < κ ≤ d. The following conditions are
equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,

∣∣∣∣α−
p

q

∣∣∣∣ ≥
c1

qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.

In 1921 C.L. Siegel sharpened Thue’s result 42 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)

is an irrationality exponent for α. With j = [
√

d] it follows that 2
√

d is
an irrationality exponent for α. Dyson and Gel’fond in 1947 independently
refined Siegel’s estimate and replaced the hypothesis in Thue’s Theorem 42
by κ >

√
2d. The essentially best possible estimate has been achieved by

K.F. Roth in 1955: any κ > 2 is an irrationality exponent for a real irrational
algebraic number α.

Theorem 46 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any
real algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| <
q−2−ε is finite.

It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree
at least 3 is badly approximable, but essentially nothing is known on the
continued fraction of such numbers: we do not know whether there exists an
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irrational algebraic number which is not quadratic and has bounded partial
quotient in its continued fraction expansion, but we do not know either
whether there exists a real algebraic number of degree at least 3 whose
sequence of partial quotients is not bounded!

If one restricts the denominators q of the rational approximations p/q
by requesting that their prime factor belong to a given finite set, then the
exponent 2 can be replaced by 1. This has been proved by D. Ridout in
1957.

Let S be a set of prime. A rational number is called a S–integer if it can
be written u/v where all prime factors of the denominator v belong to S.
For instance when a, b and m are rational integers with b *= 0, the number
a/bm is a S–integer for S the set of prime divisors of b.

Theorem 47 (D. Ridout, 1957). Let S be a finite set of prime numbers.
For any real algebraic number α, for any ε > 0, the set of p/q ∈ Q, with q
a S–integer and |α− p/q| < q−1−ε, is finite.

The theorems of Thue–Siegel–Roth and Ridout are very special cases of
Schmidt’s subspace Theorem (1972) together with its p-adic extension by
H.P. Schlickewei (1976). We do not state it in full generality but we give
only two special cases.

For x = (x1, . . . , xm) ∈ Zm, define

|x| = max{|x1|, . . . , |xm|}.

Theorem 48 (W.M. Schmidt (1970): simplified form). For m ≥ 2 let
L1, . . . , Lm be independent linear forms in m variables with algebraic coeffi-
cients. Let ε > 0. Then the set

{x = (x1, . . . , xm) ∈ Zm ; |L1(x) · · ·Lm(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 46 follows from Theorem 48 by taking

m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} not Q2 (that is a proper subspace
generated by an element (p0, q0) ∈ Q2. There is one such subspace with
q0 = 0, namely Q × {0} generated by (1, 0), the other ones have q0 *= 0.
Mapping such a rational subspace to the rational number p0/q0 yields a 1
to 1 correspondence. Hence Theorem 48 says that there is only a finite set
of exceptions p/q in Roth’s Theorem.
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For x a non–zero rational number, write the decomposition of x into
prime factors

x =
∏

p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

For x = (x1, . . . , xm) ∈ Zm and p a prime number, define

|x| = max{|x1|p, . . . , |xm|p}.

Theorem 49 (Schmidt’s Subspace Theorem). Let m ≥ 2 be a positive
integer, S a finite set of prime numbers. Let L1, . . . , Lm be independent
linear forms in m variables with algebraic coefficients. Further, for each
p ∈ S let L1,p, . . . , Lm,p be m independent linear forms in m variables with
rational coefficients. Let ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm such
that

|L1(x) · · ·Lm(x)
∏

p∈S

|L1,p(x) · · ·Lm,p(x)|p ≤ |x|−ε

is contained in the union of finitely many proper subspaces of Qm.

Ridout’s Theorem 47 is a corollary of Schmidt’s subspace Theorem: in
Theorem 49 take m = 2,

L1(x1, x2) = L1,p(x1, x2) = x1,

L2(x1, x2) = αx1 − x2, L2,p(x1, x2) = x2.

For (x1, x2) = (b, a) with b a S–integer and p ∈ S, we have

|L1(x1, x2)| = b, |L2(x1, x2)| = |bα− a|,
|L1p(x1, x2)|p = |b|p, |L2,p(x1, x2)|p = |a|p ≤ 1.

and ∏

p∈S

|b|p = b−1

since b is a S–integer.
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