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6 Continued fractions

We first consider generalized continued fractions of the form

a0 +
b1

a1 +
b2

a2 +
b3

. . .

,

which we denote by5

a0 +
b1 |
|a1

+
b2 |
|a2

+
b3|
. . .

·

Next we restrict to the special case where b1 = b2 = · · · = 1, which yield the
simple continued fractions

a0 +
1 |
|a1

+
1 |
|a2

+ · · · = [a0, a1, a2, . . . ],

already considered in section § 1.1.
5Another notation for a0 + b1 |

|a1
+ b2 |

|a2
+ · · · + bn|

an
introduced by Th. Muir and used by

Perron in [7] Chap. 1 is

K

„
b1, . . . , bn

a0, a1, . . . , an

«
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6.1 Generalized continued fractions

To start with, a0, . . . , an, . . . and b1, . . . , bn, . . . will be independent variables.
Later, we shall specialize to positive integers (apart from a0 which may be
negative).

Consider the three rational fractions

a0, a0 +
b1

a1
and a0 +

b1

a1 +
b2

a2

·

We write them as
A0

B0
,

A1

B1
and

A2

B2

with

A0 = a0, A1 = a0a1 + b1, A2 = a0a1a2 + a0b2 + a2b1,
B0 = 1, B1 = a1, B2 = a1a2 + b2.

Observe that

A2 = a2A1 + b2A0, B2 = a2B1 + b2B0.

Write these relations as
(

A2 A1

B2 B1

)
=

(
A1 A0

B1 B0

) (
a2 1
b2 0

)
.

Define inductively two sequences of polynomials with positive rational coef-
ficients An and Bn for n ≥ 3 by

(
An An−1

Bn Bn−1

)
=

(
An−1 An−2

Bn−1 Bn−2

) (
an 1
bn 0

)
. (50)

This means

An = anAn−1 + bnAn−2, Bn = anBn−1 + bnBn−2.

This recurrence relation holds for n ≥ 2. It will also hold for n = 1 if we set
A−1 = 1 and B−1 = 0:

(
A1 A0

B1 B0

)
=

(
a0 1
1 0

) (
a1 1
b1 0

)
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and it will hold also for n = 0 if we set b0 = 1, A−2 = 0 and B−2 = 1:
(

A0 A−1

B0 B−1

)
=

(
1 0
0 1

) (
a0 1
b0 0

)
.

Obviously, an equivalent definition is
(

An An−1

Bn Bn−1

)
=

(
a0 1
b0 0

) (
a1 1
b1 0

)
· · ·

(
an−1 1
bn−1 0

) (
an 1
bn 0

)
. (51)

These relations (51) hold for n ≥ −1, with the empty product (for n = −1)
being the identity matrix, as always.

Hence An ∈ Z[a0, . . . , an, b1, . . . , bn] is a polynomial in 2n + 1 variables,
while Bn ∈ Z[a1 . . . , an, b2, . . . , bn] is a polynomial in 2n− 1 variables.

Exercise 6. Check, for n ≥ −1,

Bn(a1, . . . , an, b2, . . . , bn) = An−1(a1, . . . , an, b2, . . . , bn).

Lemma 52. For n ≥ 0,

a0 +
b1 |
|a1

+ · · · + bn |
|an

=
An

Bn
·

Proof. By induction. We have checked the result for n = 0, n = 1 and
n = 2. Assume the formula holds with n− 1 where n ≥ 3. We write

a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

= a0 +
b1 |
|a1

+ · · · + bn−1 |
|x

with
x = an−1 +

bn

an
·

We have, by induction hypothesis and by the definition (50),

a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

=
An−1

Bn−1
=

an−1An−2 + bn−1An−3

an−1Bn−2 + bn−1Bn−3
·

Since An−2, An−3, Bn−2 and Bn−3 do not depend on the variable an−1, we
deduce

a0 +
b1 |
|a1

+ · · · + bn−1 |
|x =

xAn−2 + bn−1An−3

xBn−2 + bn−1Bn−3
·

The product of the numerator by an is

(anan−1 + bn)An−2 + anbn−1An−3 = an(an−1An−2 + bn−1An−3) + bnAn−2

= anAn−1 + bnAn−2 = An
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and similarly, the product of the denominator by an is

(anan−1 + bn)Bn−2 + anbn−1Bn−3 = an(an−1Bn−2 + bn−1Bn−3) + bnBn−2

= anBn−1 + bnBn−2 = Bn.

From (51), taking the determinant, we deduce, for n ≥ −1,

AnBn−1 −An−1Bn = (−1)n+1b0 · · · bn. (53)

which can be written, for n ≥ 1,

An

Bn
− An−1

Bn−1
=

(−1)n+1b0 · · · bn

Bn−1Bn
· (54)

Adding the telescoping sum, we get, for n ≥ 0,

An

Bn
= A0 +

n∑

k=1

(−1)k+1b0 · · · bk

Bk−1Bk
· (55)

We now substitute for a0, a1, . . . and b1, b2, . . . rational integers, all of
which are ≥ 1, apart from a0 which may be ≤ 0. We denote by pn (resp.
qn) the value of An (resp. Bn) for these special values. Hence pn and qn are
rational integers, with qn > 0 for n ≥ 0. A consequence of Lemma 52 is

pn

qn
= a0 +

b1 |
|a1

+ · · · + bn |
|an

for n ≥ 0.

We deduce from (50),

pn = anpn−1 + bnpn−2, qn = anqn−1 + bnqn−2 for n ≥ 0,

and from (53),

pnqn−1 − pn−1qn = (−1)n+1b0 · · · bn for n ≥ −1,

which can be written, for n ≥ 1,

pn

qn
− pn−1

qn−1
=

(−1)n+1b0 · · · bn

qn−1qn
· (56)

Adding the telescoping sum (or using (55)), we get the alternating sum

pn

qn
= a0 +

n∑

k=1

(−1)k+1b0 · · · bk

qk−1qk
· (57)
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Recall that for real numbers a, b, c, d, with b and d positive, we have

a

b
<

c

d
=⇒ a

b
<

a + c

b + d
<

c

d
· (58)

Since an and bn are positive for n ≥ 0, we deduce that for n ≥ 2, the rational
number

pn

qn
=

anpn−1 + bnpn−2

anqn−1 + bnqn−2

lies between pn−1/qn−1 and pn−2/qn−2. Therefore we have

p2

q2
<

p4

q4
< · · · <

p2n

q2n
< · · · <

p2m+1

q2m+1
< · · · <

p3

q3
<

p1

q1
· (59)

From (56), we deduce, for n ≥ 3, qn−1 > qn−2, hence qn > (an + bn)qn−2.
The previous discussion was valid without any restriction, now we as-

sume an ≥ bn for all sufficiently large n, say n ≥ n0. Then for n > n0, using
qn > 2bnqn−2, we get
∣∣∣∣
pn

qn
− pn−1

qn−1

∣∣∣∣ =
b0 · · · bn

qn−1qn
<

bn · · · b0

2n−n0bnbn−1 · · · bn0+1qn0qn0−1
=

bn0 · · · b0

2n−n0qn0qn0−1

and the right hand side tends to 0 as n tends to infinity. Hence the sequence
(pn/qn)n≥0 has a limit, which we denote by

x = a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

+ · · ·

From (57), it follows that x is also given by an alternating series

x = a0 +
∞∑

k=1

(−1)k+1b0 · · · bk

qk−1qk
·

We now prove that x is irrational. Define, for n ≥ 0,

xn = an +
bn+1 |
|an+1

+ · · ·

so that x = x0 and, for all n ≥ 0,

xn = an +
bn+1

xn+1
, xn+1 =

bn+1

xn − an

and an < xn < an + 1. Hence for n ≥ 0, xn is rational if and only if
xn+1 is rational, and therefore, if x is rational, then all xn for n ≥ 0 are
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also rational. Assume x is rational. Consider the rational numbers xn with
n ≥ n0 and select a value of n for which the denominator v of xn is minimal,
say xn = u/v. From

xn+1 =
bn+1

xn − an
=

bn+1v

u− anv
with 0 < u− anv < v,

it follows that xn+1 has a denominator strictly less than v, which is a con-
tradiction. Hence x is irrational.

Conversely, given an irrational number x and a sequence b1, b2, . . . of pos-
itive integers, there is a unique integer a0 and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1, such that

x = a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

+ · · ·

Indeed, the unique solution is given inductively as follows: a0 = &x', x1 =
b1/{x}, and once a0, . . . , an−1 and x1, . . . , xn are known, then an and xn+1

are given by
an = &xn', xn+1 = bn+1/{xn},

so that for n ≥ 1 we have 0 < xn − an < 1 and

x = a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|xn

·

Here is what we have proved.

Proposition 60. Given a rational integer a0 and two sequences a0, a1, . . .
and b1, b2, . . . of positive rational integers with an ≥ bn for all sufficiently
large n, the infinite continued fraction

a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

+ · · ·

exists and is an irrational number.
Conversely, given an irrational number x and a sequence b1, b2, . . . of posi-
tive integers, there is a unique a0 ∈ Z and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1 such that

x = a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

+ · · ·
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These results are useful for proving the irrationality of π and er when
r is a non–zero rational number, following the proof by Lambert. See for
instance Chapter 7 (Lambert’s Irrationality Proofs) of David Angell’s course
on Irrationality and Transcendence(6) at the University of New South Wales:

http://www.maths.unsw.edu.au/ angell/5535/
The following example is related with Lambert’s proof [20]:

tanh z =
z|
|1 +

z2|
| 3 +

z2|
| 5 + · · · + z2 |

|2n + 1
+ · · ·

Here, z is a complex number and the right hand side is a complex valued
function. Here are other examples (see Sloane’s Encyclopaedia of Integer
Sequences(7))

1√
e− 1

= 1 +
2|
|3 +

4|
|5 +

6|
|7 +

8|
|9 + · · · = 1.541 494 082 . . . (A113011)

1
e− 1

=
1|
|1 +

2|
|2 +

3|
|3 +

4|
|4 + · · · = 0.581 976 706 . . . (A073333)

Remark. A variant of the algorithm of simple continued fractions is the
following. Given two sequences (an)n≥0 and (bn)n≥0 of elements in a field
K and an element x in K, one defines a sequence (possibly finite) (xn)n≥1

of elements in K as follows. If x = a0, the sequence is empty. Otherwise
x1 is defined by x = a0 + (b1/x1). Inductively, once x1, . . . , xn are defined,
there are two cases:

• If xn = an, the algorithm stops.

• Otherwise, xn+1 is defined by

xn+1 =
bn+1

xn − an
, so that xn = an +

bn+1

xn+1
·

If the algorithm does not stop, then for any n ≥ 1, one has

x = a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|xn

·

In the special case where a0 = a1 = · · · = b1 = b2 = · · · = 1, the set of x such
that the algorithm stops after finitely many steps is the set (Fn+1/Fn)n≥1 of

6I found this reference from the website of John Cosgrave
http://staff.spd.dcu.ie/johnbcos/transcendental−numbers.htm.

7 http://www.research.att.com/∼njas/sequences/
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quotients of consecutive Fibonacci numbers. In this special case, the limit of

a0 +
b1 |
|a1

+ · · · + bn−1 |
|an−1

+
bn |
|an

is the Golden ratio, which is independent of x, of course!

6.2 Simple continued fractions

We restrict now the discussion of § 6.1 to the case where b1 = b2 = · · · =
bn = · · · = 1. We keep the notations An and Bn which are now polynomials
in Z[a0, a1, . . . , an] and Z[a1, . . . , an] respectively, and when we specialize to
integers a0, a1, . . . , an . . . with an ≥ 1 for n ≥ 1 we use the notations pn and
qn for the values of An and Bn.

The recurrence relations (50) are now, for n ≥ 0,
(

An An−1

Bn Bn−1

)
=

(
An−1 An−2

Bn−1 Bn−2

) (
an 1
1 0

)
, (61)

while (51) becomes, for n ≥ −1,
(

An An−1

Bn Bn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
an−1 1

1 0

) (
an 1
1 0

)
. (62)

From Lemma 52 one deduces, for n ≥ 0,

[a0, . . . , an] =
An

Bn
·

Taking the determinant in (62), we deduce the following special case of (53)

AnBn−1 −An−1Bn = (−1)n+1. (63)

The specialization of these relations to integral values of a0, a1, a2 . . . yields
(

pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

) (
an 1
1 0

)
for n ≥ 0, (64)

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
an−1 1

1 0

) (
an 1
1 0

)
for n ≥ −1,

(65)
[a0, . . . , an] =

pn

qn
for n ≥ 0 (66)
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and
pnqn−1 − pn−1qn = (−1)n+1 for n ≥ −1. (67)

From (67), it follows that for n ≥ 0, the fraction pn/qn is in lowest terms:
gcd(pn, qn) = 1.

Transposing (65) yields, for n ≥ −1,
(

pn qn

pn−1 qn−1

)
=

(
an 1
1 0

) (
an−1 1

1 0

)
· · ·

(
a1 1
1 0

) (
a0 1
1 0

)

from which we deduce, for n ≥ 1,

[an, . . . , a0] =
pn

pn−1
and [an, . . . , a1] =

qn

qn−1

Lemma 68. For n ≥ 0,

pnqn−2 − pn−2qn = (−1)nan.

Proof. We multiply both sides of (64) on the left by the inverse of the matrix
(

pn−1 pn−2

qn−1 qn−2

)
which is (−1)n

(
qn−2 −pn−2

−qn−1 pn−1

)
.

We get

(−1)n

(
pnqn−2 − pn−2qn pn−1qn−2 − pn−2qn−1

−pnqn−1 + pn−1qn 0

)
=

(
an 1
1 0

)

6.2.1 Finite simple continued fraction of a rational number

Let u0 and u1 be two integers with u1 positive. The first step in Euclid’s
algorithm to find the gcd of u0 and u1 consists in dividing u0 by u1:

u0 = a0u1 + u2

with a0 ∈ Z and 0 ≤ u2 < u1. This means
u0

u1
= a0 +

u2

u1
,

which amonts to dividing the rational number x0 = u0/u1 by 1 with quotient
a0 and remainder u2/u1 < 1. This algorithms continues with

um = amum+1 + um+2,
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where am is the integral part of xm = um/um+1 and 0 ≤ um+2 < um+1,
until some u!+2 is 0, in which case the algorithms stops with

u! = a!u!+1.

Since the gcd of um and um+1 is the same as the gcd of um+1 and um+2, it
follows that the gcd of u0 and u1 is u!+1. This is how one gets the regular
continued fraction expansion x0 = [a0, a1, . . . , a!], where " = 0 in case x0 is
a rational integer, while a! ≥ 2 if x0 is a rational number which is not an
integer.

Exercise 7. Compare with the geometrical construction of the continued
fraction given in § 1.1.
Give a variant of this geometrical construction where rectangles are replaced
by segments.

Repeating what was already said in § 1.2, we can state

Proposition 69. Any finite regular continued fraction

[a0, a1, . . . , an],

where a0, a1, . . . , an are rational numbers with ai ≥ 2 for 1 ≤ i ≤ n and
n ≥ 0, represents a rational number. Conversely, any rational number x has
two representations as a continued fraction, the first one, given by Euclid’s
algorithm, is

x = [a0, a1, . . . , an]

and the second one is

x = [a0, a1, . . . , an−1, an − 1, 1].

If x ∈ Z, then n = 0 and the two simple continued fractions representa-
tions of x are [x] and [x− 1, 1], while if x is not an integer, then n ≥ 1 and
an ≥ 2.

We shall use later (in the proof of Lemma 81 in § 6.3.7) the fact that
any rational number has one simple continued fraction expansion with an
odd number of terms and one with an even number of terms.

6.2.2 Infinite simple continued fraction of an irrational number

Given a rational integer a0 and an infinite sequence of positive integers
a1, a2, . . . , the continued fraction

[a0, a1, . . . , an, . . . ]
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represents an irrational number. Conversely, given an irrational number x,
there is a unique representation of x as an infinite simple continued fraction

x = [a0, a1, . . . , an, . . . ]

Definitions The numbers an are the partial quotients, the rational numbers

pn

qn
= [a0, a1, . . . , an]

are the convergents (in French réduites), and the numbers

xn = [an, an+1, . . .]

are the complete quotients.

From these definitions we deduce, for n ≥ 0,

x = [a0, a1, . . . , an, xn+1] =
xn+1pn + pn−1

xn+1qn + qn−1
. (70)

Lemma 71. For n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Proof. From (70) one deduces

x− pn

qn
=

xn+1pn + pn−1

xn+1qn + qn−1
− pn

qn
=

(−1)n

(xn+1qn + qn−1)qn
·

Corollary 72. For n ≥ 0,

1
qn+1 + qn

< |qnx− pn| <
1

qn+1
·

Proof. Since an+1 is the integral part of xn+1, we have

an+1 < xn+1 < an+1 + 1.

Using the recurrence relation qn+1 = an+1qn + qn−1, we deduce

qn+1 < xn+1qn + qn−1 < an+1qn + qn−1 + qn = qn+1 + qn.
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In particular, since xn+1 > an+1 and qn−1 > 0, one deduces from Lemma
71

1
(an+1 + 2)q2

n
<

∣∣∣∣x−
pn

qn

∣∣∣∣ <
1

an+1q2
n
· (73)

Therefore any convergent p/q of x satisfies |x− p/q| < 1/q2 (compare with
(i) ⇒ (v) in Proposition 4). Moreover, if an+1 is large, then the approx-
imation pn/qn is sharp. Hence, large partial quotients yield good rational
approximations by truncating the continued fraction expansion just before
the given partial quotient.
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