Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course $\mathrm{N}^{\circ} 5$, May 3, 2010

These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

6 Continued fractions

We first consider generalized continued fractions of the form

$$
a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{\ddots}}},
$$

which we denote by 5^{5}

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\frac{b_{2} \mid}{\mid a_{2}}+\frac{b_{3} \mid}{\ddots} .
$$

Next we restrict to the special case where $b_{1}=b_{2}=\cdots=1$, which yield the simple continued fractions

$$
a_{0}+\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\cdots=\left[a_{0}, a_{1}, a_{2}, \ldots\right],
$$

already considered in section $\S 1.1$.

[^0]
6.1 Generalized continued fractions

To start with, $a_{0}, \ldots, a_{n}, \ldots$ and $b_{1}, \ldots, b_{n}, \ldots$ will be independent variables. Later, we shall specialize to positive integers (apart from a_{0} which may be negative).

Consider the three rational fractions

$$
a_{0}, \quad a_{0}+\frac{b_{1}}{a_{1}} \quad \text { and } \quad a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}}} .
$$

We write them as

$$
\frac{A_{0}}{B_{0}}, \quad \frac{A_{1}}{B_{1}} \quad \text { and } \quad \frac{A_{2}}{B_{2}}
$$

with

$$
\begin{array}{lll}
A_{0}=a_{0}, & A_{1}=a_{0} a_{1}+b_{1}, & A_{2}=a_{0} a_{1} a_{2}+a_{0} b_{2}+a_{2} b_{1}, \\
B_{0}=1, & B_{1}=a_{1}, & B_{2}=a_{1} a_{2}+b_{2} .
\end{array}
$$

Observe that

$$
A_{2}=a_{2} A_{1}+b_{2} A_{0}, \quad B_{2}=a_{2} B_{1}+b_{2} B_{0} .
$$

Write these relations as

$$
\left(\begin{array}{ll}
A_{2} & A_{1} \\
B_{2} & B_{1}
\end{array}\right)=\left(\begin{array}{ll}
A_{1} & A_{0} \\
B_{1} & B_{0}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 1 \\
b_{2} & 0
\end{array}\right) .
$$

Define inductively two sequences of polynomials with positive rational coefficients A_{n} and B_{n} for $n \geq 3$ by

$$
\left(\begin{array}{ll}
A_{n} & A_{n-1} \tag{50}\\
B_{n} & B_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
A_{n-1} & A_{n-2} \\
B_{n-1} & B_{n-2}
\end{array}\right)\left(\begin{array}{ll}
a_{n} & 1 \\
b_{n} & 0
\end{array}\right) .
$$

This means

$$
A_{n}=a_{n} A_{n-1}+b_{n} A_{n-2}, \quad B_{n}=a_{n} B_{n-1}+b_{n} B_{n-2} .
$$

This recurrence relation holds for $n \geq 2$. It will also hold for $n=1$ if we set $A_{-1}=1$ and $B_{-1}=0$:

$$
\left(\begin{array}{ll}
A_{1} & A_{0} \\
B_{1} & B_{0}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 1 \\
b_{1} & 0
\end{array}\right)
$$

and it will hold also for $n=0$ if we set $b_{0}=1, A_{-2}=0$ and $B_{-2}=1$:

$$
\left(\begin{array}{ll}
A_{0} & A_{-1} \\
B_{0} & B_{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a_{0} & 1 \\
b_{0} & 0
\end{array}\right) .
$$

Obviously, an equivalent definition is

$$
\left(\begin{array}{ll}
A_{n} & A_{n-1} \tag{51}\\
B_{n} & B_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
a_{0} & 1 \\
b_{0} & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 1 \\
b_{1} & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n-1} & 1 \\
b_{n-1} & 0
\end{array}\right)\left(\begin{array}{ll}
a_{n} & 1 \\
b_{n} & 0
\end{array}\right) .
$$

These relations (51) hold for $n \geq-1$, with the empty product (for $n=-1$) being the identity matrix, as always.

Hence $A_{n} \in \mathbf{Z}\left[a_{0}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right]$ is a polynomial in $2 n+1$ variables, while $B_{n} \in \mathbf{Z}\left[a_{1} \ldots, a_{n}, b_{2}, \ldots, b_{n}\right]$ is a polynomial in $2 n-1$ variables.
Exercise 6. Check, for $n \geq-1$,

$$
B_{n}\left(a_{1}, \ldots, a_{n}, b_{2}, \ldots, b_{n}\right)=A_{n-1}\left(a_{1}, \ldots, a_{n}, b_{2}, \ldots, b_{n}\right) .
$$

Lemma 52. For $n \geq 0$,

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n} \mid}{\mid a_{n}}=\frac{A_{n}}{B_{n}} .
$$

Proof. By induction. We have checked the result for $n=0, n=1$ and $n=2$. Assume the formula holds with $n-1$ where $n \geq 3$. We write

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid x}
$$

with

$$
x=a_{n-1}+\frac{b_{n}}{a_{n}} .
$$

We have, by induction hypothesis and by the definition (50),

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}=\frac{A_{n-1}}{B_{n-1}}=\frac{a_{n-1} A_{n-2}+b_{n-1} A_{n-3}}{a_{n-1} B_{n-2}+b_{n-1} B_{n-3}} .
$$

Since $A_{n-2}, A_{n-3}, B_{n-2}$ and B_{n-3} do not depend on the variable a_{n-1}, we deduce

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid x}=\frac{x A_{n-2}+b_{n-1} A_{n-3}}{x B_{n-2}+b_{n-1} B_{n-3}} .
$$

The product of the numerator by a_{n} is

$$
\begin{aligned}
\left(a_{n} a_{n-1}+b_{n}\right) A_{n-2}+a_{n} b_{n-1} A_{n-3} & =a_{n}\left(a_{n-1} A_{n-2}+b_{n-1} A_{n-3}\right)+b_{n} A_{n-2} \\
& =a_{n} A_{n-1}+b_{n} A_{n-2}=A_{n}
\end{aligned}
$$

and similarly, the product of the denominator by a_{n} is

$$
\begin{aligned}
\left(a_{n} a_{n-1}+b_{n}\right) B_{n-2}+a_{n} b_{n-1} B_{n-3} & =a_{n}\left(a_{n-1} B_{n-2}+b_{n-1} B_{n-3}\right)+b_{n} B_{n-2} \\
& =a_{n} B_{n-1}+b_{n} B_{n-2}=B_{n} .
\end{aligned}
$$

From (51), taking the determinant, we deduce, for $n \geq-1$,

$$
\begin{equation*}
A_{n} B_{n-1}-A_{n-1} B_{n}=(-1)^{n+1} b_{0} \cdots b_{n} \tag{53}
\end{equation*}
$$

which can be written, for $n \geq 1$,

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}-\frac{A_{n-1}}{B_{n-1}}=\frac{(-1)^{n+1} b_{0} \cdots b_{n}}{B_{n-1} B_{n}} \tag{54}
\end{equation*}
$$

Adding the telescoping sum, we get, for $n \geq 0$,

$$
\begin{equation*}
\frac{A_{n}}{B_{n}}=A_{0}+\sum_{k=1}^{n} \frac{(-1)^{k+1} b_{0} \cdots b_{k}}{B_{k-1} B_{k}} \tag{55}
\end{equation*}
$$

We now substitute for a_{0}, a_{1}, \ldots and b_{1}, b_{2}, \ldots rational integers, all of which are ≥ 1, apart from a_{0} which may be ≤ 0. We denote by p_{n} (resp. q_{n}) the value of A_{n} (resp. B_{n}) for these special values. Hence p_{n} and q_{n} are rational integers, with $q_{n}>0$ for $n \geq 0$. A consequence of Lemma 52 is

$$
\frac{p_{n}}{q_{n}}=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n} \mid}{\mid a_{n}} \quad \text { for } \quad n \geq 0
$$

We deduce from 50),

$$
p_{n}=a_{n} p_{n-1}+b_{n} p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+b_{n} q_{n-2} \quad \text { for } \quad n \geq 0
$$

and from (53),

$$
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n+1} b_{0} \cdots b_{n} \quad \text { for } \quad n \geq-1
$$

which can be written, for $n \geq 1$,

$$
\begin{equation*}
\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n+1} b_{0} \cdots b_{n}}{q_{n-1} q_{n}} . \tag{56}
\end{equation*}
$$

Adding the telescoping sum (or using (55)), we get the alternating sum

$$
\begin{equation*}
\frac{p_{n}}{q_{n}}=a_{0}+\sum_{k=1}^{n} \frac{(-1)^{k+1} b_{0} \cdots b_{k}}{q_{k-1} q_{k}} . \tag{57}
\end{equation*}
$$

Recall that for real numbers a, b, c, d, with b and d positive, we have

$$
\begin{equation*}
\frac{a}{b}<\frac{c}{d} \Longrightarrow \frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d} . \tag{58}
\end{equation*}
$$

Since a_{n} and b_{n} are positive for $n \geq 0$, we deduce that for $n \geq 2$, the rational number

$$
\frac{p_{n}}{q_{n}}=\frac{a_{n} p_{n-1}+b_{n} p_{n-2}}{a_{n} q_{n-1}+b_{n} q_{n-2}}
$$

lies between p_{n-1} / q_{n-1} and p_{n-2} / q_{n-2}. Therefore we have

$$
\begin{equation*}
\frac{p_{2}}{q_{2}}<\frac{p_{4}}{q_{4}}<\cdots<\frac{p_{2 n}}{q_{2 n}}<\cdots<\frac{p_{2 m+1}}{q_{2 m+1}}<\cdots<\frac{p_{3}}{q_{3}}<\frac{p_{1}}{q_{1}} . \tag{59}
\end{equation*}
$$

From (56), we deduce, for $n \geq 3, q_{n-1}>q_{n-2}$, hence $q_{n}>\left(a_{n}+b_{n}\right) q_{n-2}$.
The previous discussion was valid without any restriction, now we assume $a_{n} \geq b_{n}$ for all sufficiently large n, say $n \geq n_{0}$. Then for $n>n_{0}$, using $q_{n}>2 b_{n} q_{n-2}$, we get

$$
\left|\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}\right|=\frac{b_{0} \cdots b_{n}}{q_{n-1} q_{n}}<\frac{b_{n} \cdots b_{0}}{2^{n-n_{0}} b_{n} b_{n-1} \cdots b_{n_{0}+1} q_{n_{0}} q_{n_{0}-1}}=\frac{b_{n_{0}} \cdots b_{0}}{2^{n-n_{0}} q_{n_{0}} q_{n_{0}-1}}
$$

and the right hand side tends to 0 as n tends to infinity. Hence the sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ has a limit, which we denote by

$$
x=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}+\cdots
$$

From (57), it follows that x is also given by an alternating series

$$
x=a_{0}+\sum_{k=1}^{\infty} \frac{(-1)^{k+1} b_{0} \cdots b_{k}}{q_{k-1} q_{k}} .
$$

We now prove that x is irrational. Define, for $n \geq 0$,

$$
x_{n}=a_{n}+\frac{b_{n+1} \mid}{\mid a_{n+1}}+\cdots
$$

so that $x=x_{0}$ and, for all $n \geq 0$,

$$
x_{n}=a_{n}+\frac{b_{n+1}}{x_{n+1}}, \quad x_{n+1}=\frac{b_{n+1}}{x_{n}-a_{n}}
$$

and $a_{n}<x_{n}<a_{n}+1$. Hence for $n \geq 0, x_{n}$ is rational if and only if x_{n+1} is rational, and therefore, if x is rational, then all x_{n} for $n \geq 0$ are
also rational. Assume x is rational. Consider the rational numbers x_{n} with $n \geq n_{0}$ and select a value of n for which the denominator v of x_{n} is minimal, say $x_{n}=u / v$. From

$$
x_{n+1}=\frac{b_{n+1}}{x_{n}-a_{n}}=\frac{b_{n+1} v}{u-a_{n} v} \quad \text { with } \quad 0<u-a_{n} v<v
$$

it follows that x_{n+1} has a denominator strictly less than v, which is a contradiction. Hence x is irrational.

Conversely, given an irrational number x and a sequence b_{1}, b_{2}, \ldots of positive integers, there is a unique integer a_{0} and a unique sequence $a_{1}, \ldots, a_{n}, \ldots$ of positive integers satisfying $a_{n} \geq b_{n}$ for all $n \geq 1$, such that

$$
x=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}+\cdots
$$

Indeed, the unique solution is given inductively as follows: $a_{0}=\lfloor x\rfloor, x_{1}=$ $b_{1} /\{x\}$, and once a_{0}, \ldots, a_{n-1} and x_{1}, \ldots, x_{n} are known, then a_{n} and x_{n+1} are given by

$$
a_{n}=\left\lfloor x_{n}\right\rfloor, \quad x_{n+1}=b_{n+1} /\left\{x_{n}\right\},
$$

so that for $n \geq 1$ we have $0<x_{n}-a_{n}<1$ and

$$
x=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid x_{n}} .
$$

Here is what we have proved.
Proposition 60. Given a rational integer a_{0} and two sequences a_{0}, a_{1}, \ldots and b_{1}, b_{2}, \ldots of positive rational integers with $a_{n} \geq b_{n}$ for all sufficiently large n, the infinite continued fraction

$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}+\cdots
$$

exists and is an irrational number.
Conversely, given an irrational number x and a sequence b_{1}, b_{2}, \ldots of positive integers, there is a unique $a_{0} \in \mathbf{Z}$ and a unique sequence $a_{1}, \ldots, a_{n}, \ldots$ of positive integers satisfying $a_{n} \geq b_{n}$ for all $n \geq 1$ such that

$$
x=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}+\cdots
$$

These results are useful for proving the irrationality of π and e^{r} when r is a non-zero rational number, following the proof by Lambert. See for instance Chapter 7 (Lambert's Irrationality Proofs) of David Angell's course on Irrationality and Transcendence ${ }^{(6)}$) at the University of New South Wales:
http://www.maths.unsw.edu.au/ angell/5535/
The following example is related with Lambert's proof [20]:

$$
\tanh z=\frac{z \mid}{\mid 1}+\frac{z^{2} \mid}{\mid 3}+\frac{z^{2} \mid}{\mid 5}+\cdots+\frac{z^{2} \mid}{\mid 2 n+1}+\cdots
$$

Here, z is a complex number and the right hand side is a complex valued function. Here are other examples (see Sloane's Encyclopaedia of Integer Sequences(7)

$$
\begin{array}{lll}
\frac{1}{\sqrt{e}-1}=1+\frac{2 \mid}{\mid 3}+\frac{4 \mid}{\mid 5}+\frac{6 \mid}{\mid 7}+\frac{8 \mid}{\mid 9}+\cdots & =1.541494082 \ldots \tag{A113011}\\
\frac{1}{e-1}=\frac{1 \mid}{\mid 1}+\frac{2 \mid}{\mid 2}+\frac{3 \mid}{\mid 3}+\frac{4 \mid}{\mid 4}+\cdots & =0.581976706 \ldots
\end{array}
$$

(A073333)
Remark. A variant of the algorithm of simple continued fractions is the following. Given two sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ of elements in a field K and an element x in K, one defines a sequence (possibly finite) $\left(x_{n}\right)_{n \geq 1}$ of elements in K as follows. If $x=a_{0}$, the sequence is empty. Otherwise x_{1} is defined by $x=a_{0}+\left(b_{1} / x_{1}\right)$. Inductively, once x_{1}, \ldots, x_{n} are defined, there are two cases:

- If $x_{n}=a_{n}$, the algorithm stops.
- Otherwise, x_{n+1} is defined by

$$
x_{n+1}=\frac{b_{n+1}}{x_{n}-a_{n}}, \quad \text { so that } \quad x_{n}=a_{n}+\frac{b_{n+1}}{x_{n+1}} .
$$

If the algorithm does not stop, then for any $n \geq 1$, one has

$$
x=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid x_{n}} .
$$

In the special case where $a_{0}=a_{1}=\cdots=b_{1}=b_{2}=\cdots=1$, the set of x such that the algorithm stops after finitely many steps is the set $\left(F_{n+1} / F_{n}\right)_{n \geq 1}$ of

[^1]quotients of consecutive Fibonacci numbers. In this special case, the limit of
$$
a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\cdots+\frac{b_{n-1} \mid}{\mid a_{n-1}}+\frac{b_{n} \mid}{\mid a_{n}}
$$
is the Golden ratio, which is independent of x, of course!

6.2 Simple continued fractions

We restrict now the discussion of $\S 6.1$ to the case where $b_{1}=b_{2}=\cdots=$ $b_{n}=\cdots=1$. We keep the notations A_{n} and B_{n} which are now polynomials in $\mathbf{Z}\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ and $\mathbf{Z}\left[a_{1}, \ldots, a_{n}\right]$ respectively, and when we specialize to integers $a_{0}, a_{1}, \ldots, a_{n} \ldots$ with $a_{n} \geq 1$ for $n \geq 1$ we use the notations p_{n} and q_{n} for the values of A_{n} and B_{n}.

The recurrence relations (50) are now, for $n \geq 0$,

$$
\left(\begin{array}{ll}
A_{n} & A_{n-1} \tag{61}\\
B_{n} & B_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
A_{n-1} & A_{n-2} \\
B_{n-1} & B_{n-2}
\end{array}\right)\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right),
$$

while (51) becomes, for $n \geq-1$,

$$
\left(\begin{array}{ll}
A_{n} & A_{n-1} \tag{62}\\
B_{n} & B_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) .
$$

From Lemma 52 one deduces, for $n \geq 0$,

$$
\left[a_{0}, \ldots, a_{n}\right]=\frac{A_{n}}{B_{n}}
$$

Taking the determinant in (62), we deduce the following special case of 53)

$$
\begin{equation*}
A_{n} B_{n-1}-A_{n-1} B_{n}=(-1)^{n+1} . \tag{63}
\end{equation*}
$$

The specialization of these relations to integral values of $a_{0}, a_{1}, a_{2} \ldots$ yields

$$
\begin{gather*}
\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
p_{n-1} & p_{n-2} \\
q_{n-1} & q_{n-2}
\end{array}\right)\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) \quad \text { for } n \geq 0, \tag{64}\\
\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) \quad \text { for } n \geq-1, \tag{66}\\
{\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}} \quad \text { for } n \geq 0} \tag{65}
\end{gather*}
$$

and

$$
\begin{equation*}
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n+1} \quad \text { for } n \geq-1 . \tag{67}
\end{equation*}
$$

From (67), it follows that for $n \geq 0$, the fraction p_{n} / q_{n} is in lowest terms: $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$.

Transposing (65) yields, for $n \geq-1$,

$$
\left(\begin{array}{cc}
p_{n} & q_{n} \\
p_{n-1} & q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{n-1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)
$$

from which we deduce, for $n \geq 1$,

$$
\left[a_{n}, \ldots, a_{0}\right]=\frac{p_{n}}{p_{n-1}} \quad \text { and } \quad\left[a_{n}, \ldots, a_{1}\right]=\frac{q_{n}}{q_{n-1}}
$$

Lemma 68. For $n \geq 0$,

$$
p_{n} q_{n-2}-p_{n-2} q_{n}=(-1)^{n} a_{n} .
$$

Proof. We multiply both sides of (64) on the left by the inverse of the matrix

$$
\left(\begin{array}{cc}
p_{n-1} & p_{n-2} \\
q_{n-1} & q_{n-2}
\end{array}\right) \quad \text { which is } \quad(-1)^{n}\left(\begin{array}{cc}
q_{n-2} & -p_{n-2} \\
-q_{n-1} & p_{n-1}
\end{array}\right) .
$$

We get

$$
(-1)^{n}\left(\begin{array}{cc}
p_{n} q_{n-2}-p_{n-2} q_{n} & p_{n-1} q_{n-2}-p_{n-2} q_{n-1} \\
-p_{n} q_{n-1}+p_{n-1} q_{n} & 0
\end{array}\right)=\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)
$$

6.2.1 Finite simple continued fraction of a rational number

Let u_{0} and u_{1} be two integers with u_{1} positive. The first step in Euclid's algorithm to find the gcd of u_{0} and u_{1} consists in dividing u_{0} by u_{1} :

$$
u_{0}=a_{0} u_{1}+u_{2}
$$

with $a_{0} \in \mathbf{Z}$ and $0 \leq u_{2}<u_{1}$. This means

$$
\frac{u_{0}}{u_{1}}=a_{0}+\frac{u_{2}}{u_{1}},
$$

which amonts to dividing the rational number $x_{0}=u_{0} / u_{1}$ by 1 with quotient a_{0} and remainder $u_{2} / u_{1}<1$. This algorithms continues with

$$
u_{m}=a_{m} u_{m+1}+u_{m+2}
$$

where a_{m} is the integral part of $x_{m}=u_{m} / u_{m+1}$ and $0 \leq u_{m+2}<u_{m+1}$, until some $u_{\ell+2}$ is 0 , in which case the algorithms stops with

$$
u_{\ell}=a_{\ell} u_{\ell+1}
$$

Since the gcd of u_{m} and u_{m+1} is the same as the gcd of u_{m+1} and u_{m+2}, it follows that the gcd of u_{0} and u_{1} is $u_{\ell+1}$. This is how one gets the regular continued fraction expansion $x_{0}=\left[a_{0}, a_{1}, \ldots, a_{\ell}\right]$, where $\ell=0$ in case x_{0} is a rational integer, while $a_{\ell} \geq 2$ if x_{0} is a rational number which is not an integer.

Exercise 7. Compare with the geometrical construction of the continued fraction given in $\S 1.1$.
Give a variant of this geometrical construction where rectangles are replaced by segments.

Repeating what was already said in $\S 1.2$, we can state
Proposition 69. Any finite regular continued fraction

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right],
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are rational numbers with $a_{i} \geq 2$ for $1 \leq i \leq n$ and $n \geq 0$, represents a rational number. Conversely, any rational number x has two representations as a continued fraction, the first one, given by Euclid's algorithm, is

$$
x=\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

and the second one is

$$
x=\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}-1,1\right] .
$$

If $x \in \mathbf{Z}$, then $n=0$ and the two simple continued fractions representations of x are $[x]$ and $[x-1,1]$, while if x is not an integer, then $n \geq 1$ and $a_{n} \geq 2$.

We shall use later (in the proof of Lemma 81 in $\S 6.3 .7$) the fact that any rational number has one simple continued fraction expansion with an odd number of terms and one with an even number of terms.

6.2.2 Infinite simple continued fraction of an irrational number

Given a rational integer a_{0} and an infinite sequence of positive integers a_{1}, a_{2}, \ldots, the continued fraction

$$
\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]
$$

represents an irrational number. Conversely, given an irrational number x, there is a unique representation of x as an infinite simple continued fraction

$$
x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]
$$

Definitions The numbers a_{n} are the partial quotients, the rational numbers

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

are the convergents (in French réduites), and the numbers

$$
x_{n}=\left[a_{n}, a_{n+1}, \ldots\right]
$$

are the complete quotients.
From these definitions we deduce, for $n \geq 0$,

$$
\begin{equation*}
x=\left[a_{0}, a_{1}, \ldots, a_{n}, x_{n+1}\right]=\frac{x_{n+1} p_{n}+p_{n-1}}{x_{n+1} q_{n}+q_{n-1}} . \tag{70}
\end{equation*}
$$

Lemma 71. For $n \geq 0$,

$$
q_{n} x-p_{n}=\frac{(-1)^{n}}{x_{n+1} q_{n}+q_{n-1}} .
$$

Proof. From (70) one deduces

$$
x-\frac{p_{n}}{q_{n}}=\frac{x_{n+1} p_{n}+p_{n-1}}{x_{n+1} q_{n}+q_{n-1}}-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{\left(x_{n+1} q_{n}+q_{n-1}\right) q_{n}} .
$$

Corollary 72. For $n \geq 0$,

$$
\frac{1}{q_{n+1}+q_{n}}<\left|q_{n} x-p_{n}\right|<\frac{1}{q_{n+1}} .
$$

Proof. Since a_{n+1} is the integral part of x_{n+1}, we have

$$
a_{n+1}<x_{n+1}<a_{n+1}+1 .
$$

Using the recurrence relation $q_{n+1}=a_{n+1} q_{n}+q_{n-1}$, we deduce

$$
q_{n+1}<x_{n+1} q_{n}+q_{n-1}<a_{n+1} q_{n}+q_{n-1}+q_{n}=q_{n+1}+q_{n} .
$$

In particular, since $x_{n+1}>a_{n+1}$ and $q_{n-1}>0$, one deduces from Lemma 71

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} q_{n}^{2}} \tag{73}
\end{equation*}
$$

Therefore any convergent p / q of x satisfies $|x-p / q|<1 / q^{2}$ (compare with (i) $\Rightarrow(\mathrm{v})$ in Proposition (4). Moreover, if a_{n+1} is large, then the approximation p_{n} / q_{n} is sharp. Hence, large partial quotients yield good rational approximations by truncating the continued fraction expansion just before the given partial quotient.

[^0]: ${ }^{5}$ Another notation for $a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\frac{b_{2} \mid}{\mid a_{2}}+\cdots+\frac{b_{n} \mid}{a_{n}}$ introduced by Th. Muir and used by Perron in [7] Chap. 1 is

 $$
 K\binom{b_{1}, \ldots, b_{n}}{a_{0}, a_{1}, \ldots, a_{n}}
 $$

[^1]: ${ }^{6}$ I found this reference from the website of John Cosgrave
 http://staff.spd.dcu.ie/johnbcos/transcendental_numbers.htm
 7 http://www.research.att.com/~njas/sequences/

