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6.3.6 The main lemma

The theory which follows is well–known (a classical reference is the book
[7] by O. Perron), but the point of view which we develop here is slightly
different from most classical texts on the subject. We follow [2, 3, 9]. An
important role in our presentation of the subject is the following result
(Lemma 4.1 in [8]).

Lemma 81. Let ε = ±1 and let a, b, c, d be rational integers satisfying

ad− bc = ε

and d ≥ 1. Then there is a unique finite sequence of rational integers
a0, . . . , as with s ≥ 1 and a1, . . . , as−1 positive, such that

(
a b
c d

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as 1
1 0

)
(82)

These integers are also characterized by

b

d
= [a0, a1, . . . , as−1],

c

d
= [as, . . . , a1], (−1)s+1 = ε. (83)

For instance, when d = 1, for b and c rational integers,
(

bc + 1 b
c 1

)
=

(
b 1
1 0

) (
c 1
1 0

)

and (
bc− 1 b

c 1

)
=

(
b− 1 1

1 0

) (
1 1
1 0

) (
c− 1 1

1 0

)
.
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Proof. We start with unicity. If a0, . . . , as satisfy the conclusion of Lemma
81, then by using (82), we find b/d = [a0, a1, . . . , as−1]. Taking the trans-
pose, we also find c/d = [as, . . . , a1]. Next, taking the determinant, we
obtain (−1)s+1 = ε. The last equality fixes the parity of s, and each of the
rational numbers b/d, c/d has a unique continued fraction expansion whose
length has a given parity (cf. Proposition 69). This proves the unicity of the
factorisation when it exists.

For the existence, we consider the simple continued fraction expansion
of c/d with length of parity given by the last condition in (83), say c/d =
[as, . . . , a1]. Let a0 be a rational integer such that the distance between b/d
and [a0, a1, . . . , as−1] is ≤ 1/2. Define a′, b′, c′, d′ by

(
a′ b′

c′ d′

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as 1
1 0

)
.

We have
d′ > 0, a′d′ − b′c′ = ε,

c′

d′
= [as, . . . , a1] =

c

d

and
b′

d′
= [a0, a1, . . . , as−1],

∣∣∣∣
b′

d′
− b

d

∣∣∣∣ ≤
1
2
·

From gcd(c, d) = gcd(c′, d′) = 1, c/d = c′/d′ and d > 0, d′ > 0 we deduce
c′ = c, d′ = d. From the equality between the determinants we deduce
a′ = a + kc, b′ = b + kd for some k ∈ Z, and from

b′

d′
− b

d
= k

we conclude k = 0, (a′, b′, c′, d′) = (a, b, c, d). Hence (82) follows.

Corollary 84. Assume the hypotheses of Lemma 81 are satisfied.
a) If c > d, then as ≥ 1 and

a

c
= [a0, a1, . . . , as].

b) If b > d, then a0 ≥ 1 and

a

b
= [as, . . . , a1, a0].
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The following examples show that the hypotheses of the corollary are
not superfluous: (

1 b
0 1

)
=

(
b 1
1 0

) (
0 1
1 0

)
,

(
b− 1 b

1 1

)
=

(
b− 1 1

1 0

) (
1 1
1 0

) (
0 1
1 0

)

and (
c− 1 1

c 1

)
=

(
0 1
1 0

) (
1 1
1 0

) (
c− 1 1

1 0

)
.

Proof of Corollary 84. Any rational number u/v > 1 has two continued frac-
tions. One of them starts with 0 only if u/v = 1 and the continued fraction
is [0, 1]. Hence the assumption c > d implies as > 0. This proves part a),
and part b) follows by transposition (or repeating the proof).

Another consequence of Lemma 81 is the following classical result (Satz
13 p. 47 of [7]).

Corollary 85. Let a, b, c, d be rational integers with ad − bc = ±1 and
c > d > 0. Let x and y be two irrational numbers satisfying y > 1 and

x =
ay + b

cy + d
·

Let x = [a0, a1, . . .] be the simple continued fraction expansion of x. Then
there exists s ≥ 1 such that

a = ps, b = ps−1, c = qs, r = qs−1, y = xs+1.

Proof. Using lemma 81, we write
(

a b
c d

)
=

(
a′0 1
1 0

) (
a′1 1
1 0

)
· · ·

(
a′s 1
1 0

)

with a′1, . . . , a
′
s−1 positive and

b

d
= [a′0, a

′
1, . . . , a

′
s−1],

c

d
= [a′s, . . . , a

′
1].

From c > d and corollary 84, we deduce a′s > 0 and

a

c
= [a′0, a

′
1, . . . , a

′
s] =

p′s
q′s

, x =
p′sy + p′s−1

q′sy + q′s−1

= [a′0, a
′
1, . . . , a

′
s, y].

Since y > 1, it follows that a′i = ai, p′i = q′i for 0 ≤ i ≤ s and y = xs+1.
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6.3.7 Simple Continued fraction of
√

D

An infinite sequence (an)n≥1 is periodic if there exists a positive integer s
such that

an+s = an for all n ≥ 1. (86)

In this case, the finite sequence (a1, . . . , as) is called a period of the original
sequence. For the sake of notation, we write

(a1, a2, . . . ) = (a1, . . . , as).

If s0 is the smallest positive integer satisfying (86), then the set of s satisfying
(86) is the set of positive multiples of s0. In this case (a1, . . . , as0) is called
the fundamental period of the original sequence.

Theorem 87. Let D be a positive integer which is not a square. Write the
simple continued fraction of

√
D as [a0, a1, . . .] with a0 = &

√
D'.

a) The sequence (a1, a2, . . .) is periodic.
b) Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 = ±1.
Then there exists s ≥ 1 such that x/y = [a0, . . . , as−1] and

(a1, a2, . . . , as−1, 2a0)

is a period of the sequence (a1, a2, . . .). Further, as−i = ai for 1 ≤ i ≤ s− 1
9).
c) Let (a1, a2, . . . , as−1, 2a0) be a period of the sequence (a1, a2, . . .). Set
x/y = [a0, . . . , as−1]. Then x2 −Dy2 = (−1)s.
d) Let s0 be the length of the fundamental period. Then for i ≥ 0 not multiple
of s0, we have ai ≤ a0.

If (a1, a2, . . . , as−1, 2a0) is a period of the sequence (a1, a2, . . .), then
√

D = [a0, a1, . . . , as−1, 2a0] = [a0, a1, . . . , as−1, a0 +
√

D].

Consider the fundamental period (a1, a2, . . . , as0−1, as0) of the sequence (a1, a2, . . .).
By part b) of Theorem 87 we have as0 = 2a0, and by part d), it follows that
s0 is the smallest index i such that ai > a0.

From b) and c) in Theorem 87, it follows that the fundamental solution
(x1, y1) to Pell’s equation x2−Dy2 = ±1 is given by x1/y1 = [a0, . . . , as0−1],

9One says that the word a1, . . . , as−1 is a palindrome. This result is proved in the first
paper published by Evariste Galois at the age of 17:
Démonstration d’un théorème sur les fractions continues périodiques.
Annales de Mathématiques Pures et Appliquées, 19 (1828-1829), p. 294-301.
http://archive.numdam.org/article/AMPA−1828-1829−−19−−294−0.pdf.
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and that x2
1 − Dy2

1 = (−1)s0 . Therefore, if s0 is even, then there is no
solution to the Pell’s equation x2 − Dy2 = −1. If s0 is odd, then (x1, y1)
is the fundamental solution to Pell’s equation x2 − Dy2 = −1, while the
fundamental solution (x2, y2) to Pell’s equation x2 − Dy2 = 1 is given by
x2/y2 = [a0, . . . , a2s−1].

It follows also from Theorem 87 that the (ns0 − 1)-th convergent

xn/yn = [a0, . . . , ans0−1]

satisfies
xn + yn

√
D = (x1 + y1

√
D)n. (88)

We shall check this relation directly (Lemma 92).

Proof. Start with a positive solution (x, y) to Pell’s equation x2−Dy2 = ±1,
which exists according to Proposition 75. Since Dy ≥ x and x > y, we may
use lemma 81 and corollary 84 with

a = Dy, b = c = x, d = y

and write (
Dy x
x y

)
=

(
a′0 1
1 0

) (
a′1 1
1 0

)
· · ·

(
a′s 1
1 0

)
(89)

with positive integers a′0, . . . , a
′
s and with a′0 = &

√
D'. Then the contin-

ued fraction expansion of Dy/x is [a′0, . . . , a′s] and the continued fraction
expansion of x/y is [a′0, . . . , a′s−1].

Since the matrix on the left hand side of (89) is symmetric, the word
a′0, . . . , a

′
s is a palindrome. In particular a′s = a′0.

Consider the periodic continued fraction

δ = [a′0, a′1, . . . , a′s−1, 2a′0].

This number δ satisfies

δ = [a′0, a
′
1, . . . , a

′
s−1, a

′
0 + δ].

Using the inverse of the matrix
(

a′0 1
1 0

)
which is

(
0 1
1 −a′0

)
,

we write (
a′0 + δ 1

1 0

)
=

(
a′0 1
1 0

) (
1 0
δ 1

)
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Hence the product of matrices associated with the continued fraction of δ
(

a′0 1
1 0

) (
a′1 1
1 0

)
· · ·

(
a′s−1 1

1 0

) (
a′0 + δ 1

1 0

)

is (
Dy x
x y

) (
1 0
δ 1

)
=

(
Dy + δx x
x + δy y

)
.

It follows that
δ =

Dy + δx

x + δy
,

hence δ2 = D. As a consequence, a′i = ai for 0 ≤ i ≤ s − 1 while a′s = a0,
as = 2a0.

This proves that if (x, y) is a non–trivial solution to Pell’s equation x2−
Dy2 = ±1, then the continued fraction expansion of

√
D is of the form

√
D = [a0, a1, . . . , as−1, 2a0] (90)

with a1, . . . , as−1 a palindrome, and x/y is given by the convergent

x/y = [a0, a1, . . . , as−1]. (91)

Consider a convergent pn/qn = [a0, a1, . . . , an]. If an+1 = 2a0, then (73)
with x =

√
D implies the upper bound

∣∣∣∣
√

D − pn

qn

∣∣∣∣ ≤
1

2a0q2
n
,

and it follows from Corollary 79 that (pn, qn) is a solution to Pell’s equation
p2

n − Dq2
n = ±1. This already shows that ai < 2a0 when i + 1 is not the

length of a period. We refine this estimate to ai ≤ a0.
Assume an+1 ≥ a0 +1. Since the sequence (am)m≥1 is periodic of period

length s0, for any m congruent to n modulo s0, we have am+1 > a0. For
these m we have ∣∣∣∣

√
D − pm

qm

∣∣∣∣ ≤
1

(a0 + 1)q2
m
·

For sufficiently large m congruent to n modulo s we have

(a0 + 1)q2
m > q2

m

√
D + 1.

Corollary 79 implies that (pm, qm) is a solution to Pell’s equation p2
m−Dq2

m =
±1. Finally, Theorem 87 implies that m + 1 is a multiple of s0, hence n + 1
also.
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6.3.8 Connection between the two formulae for the n-th positive
solution to Pell’s equation

Lemma 92. Let D be a positive integer which is not a square. Consider
the simple continued fraction expansion

√
D = [a0, a1, . . . , as0−1, 2a0] where

s0 is the length of the fundamental period. Then the fundamental solution
(x1, y1) to Pell’s equation x2 −Dy2 = ±1 is given by the continued fraction
expansion x1/y1 = [a0, a1, . . . , as0−1]. Let n ≥ 1 be a positive integer. Define
(xn, yn) by xn/yn = [a0, a1, . . . , ans0−1]. Then xn + yn

√
D = (x1 + y1

√
D)n.

This result is a consequence of the two formulae we gave for the n-th
solution (xn, yn) to Pell’s equation x2 − Dy2 = ±1. We check this result
directly.

Proof. From Lemma 81 and relation (89), one deduces
(

Dyn xn

xn yn

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ans0−1 1

1 0

) (
a0 1
1 0

)
.

Since (
Dyn xn

xn yn

) (
0 1
1 −a0

)
=

(
xn Dyn − a0xn

yn xn − a0yn

)
,

we obtain
(

a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ans0−1 1

1 0

)
=

(
xn Dyn − a0xn

yn xn − a0yn

)
. (93)

Notice that the determinant is (−1)ns0 = x2
n −Dy2

n. Formula (93) for n + 1
and the periodicity of the sequence (a1, . . . , an, . . . ) with as0 = 2a0 give :
(

xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn

yn xn − a0yn

) (
2a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as0−1 1

1 0

)
.

Take first n = 1 in (93) and multiply on the left by
(

2a0 1
1 0

) (
0 1
1 −a0

)
=

(
1 a0

0 1

)
.

Since
(

1 a0

0 1

) (
x1 Dy1 − a0x1

y1 x1 − a0y1

)
=

(
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.
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we deduce
(

2a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as0−1 1

1 0

)
=

(
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.

Therefore
(

xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn

yn xn − a0yn

) (
x1 + a0y1 (D − a2

0)y1

y1 x1 − a0y1

)
.

The first column gives

xn+1 = xnx1 + Dyny1 and yn+1 = x1yn + xny1,

which was to be proved.

6.3.9 Records

For large D, Pell’s equation may obviously have small integer solutions.
Examples are

For D = m2 − 1 with m ≥ 2 the numbers x = m, y = 1 satisfy
x2 −Dy2 = 1,

for D = m2+1 with m ≥ 1 the numbers x = m, y = 1 satisfy x2−Dy2 =
−1,

for D = m2 ± m with m ≥ 2 the numbers x = 2m ± 1 satisfy y = 2,
x2 −Dy2 = 1,

for D = t2m2 + 2m with m ≥ 1 and t ≥ 1 the numbers x = t2m + 1,
y = t satisfy x2 −Dy2 = 1.

On the other hand, relatively small values of D may lead to large fun-
damental solutions. Tables are available on the internet10.

For D a positive integer which is not a square, denote by S(D) the base
10 logarithm of x1, when (x1, y1) is the fundamental solution to x2−Dy2 = 1.
The integral part of S(D) is the number of digits of the fundamental solution
x1. For instance, when D = 61, the fundamental solution (x1, y1) is

x1 = 1766 319 049, y1 = 226 153 980

and S(61) = log10 x1 = 9.247 069 . . .

10For instance:
Tomás Oliveira e Silva: Record-Holder Solutions of Pell’s Equation
http://www.ieeta.pt/∼tos/pell.html.
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An integer D is a record holder for S if S(D′) < S(D) for all D′ < D.
Here are the record holders up to 1021:

D 2 5 10 13 29 46 53 61 109
S(D) 0.477 0.954 1.278 2.812 3.991 4.386 4.821 9.247 14.198

D 181 277 397 409 421 541 661 1021
S(D) 18.392 20.201 20.923 22.398 33.588 36.569 37.215 47.298

Some further records with number of digits successive powers of 10:

D 3061 169789 12765349 1021948981 85489307341
S(D) 104.051 1001.282 10191.729 100681.340 1003270.151

6.3.10 A criterion for the existence of a solution to the negative
Pell equation

Here is a recent result on the existence of a solution to Pell’s equation
x2 −Dy2 = −1

Proposition 94 (R.A. Mollin, A. Srinivasan11). Let d be a positive integer
which is not a square. Let (x0, y0) be the fundamental solution to Pell’s
equation x2 − dy2 = 1. Then the equation x2 − dy2 = −1 has a solution if
and only if x0 ≡ −1 (mod 2d).

Proof. If a2 − db2 = −1 is the fundamental solution to x2 − dy2 = −1, then
x0 + y0

√
d = (a + b

√
d)2, hence

x0 = a2 + db2 = 2db2 − 1 ≡ −1 (mod 2d).

Conversely, if x0 = 2dk − 1, then x2
0 = 4d2k2 − 4dk + 1 = dy2

0 + 1, hence
4dk2 − 4k = y2

0. Therefore y0 is even, y0 = 2z, and k(dk − 1) = z2. Since k
and dk − 1 are relatively prime, both are squares, k = b2 and dk − 1 = a2,
which gives a2 − db2 = −1.

6.3.11 Arithmetic varieties

Let D be a positive integer which is not a square. Define G = {(x, y) ∈
R2 ; x2 −Dy2 = 1}.

11Pell equation: non-principal Lagrange criteria and central norms; Canadian Math.
Bull., to appear
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The map
G −→ R×

(x, y) *−→ t = x + y
√

D

is bijective: the inverse of that map is obtained by writing u = 1/t, 2x =
t + u, 2y

√
D = t− u, so that t = x + y

√
D and u = x− y

√
D. By transfer

of structure, this endows G with a multiplicative group structure, which is
isomorphic to R×, for which

G −→ GL2(R)

(x, y) *−→
(

x Dy
y x

)
.

is an injective group homomorphism. Let G(R) be its image, which is
therefore isomorphic to R×.

A matrix
(

a b
c d

)
respects the quadratic form x2 −Dy2 if and only if

(ax + by)2 −D(cx + dy)2 = x2 −Dy2,

which can be written

a2 −Dc2 = 1, b2 −Dd2 = D, ab = cdD.

Hence the group of matrices of determinant 1 with coefficients in Z which
respect the quadratic form x2 −Dy2 is the group

G(Z) =
{(

a Dc
c a

)
∈ GL2(Z)

}
.

According to the work of Siegel, Harish–Chandra, Borel and Godement,
the quotient of G(R) by G(Z) is compact. Hence G(Z) is infinite (of rank 1
over Z), which means that there are infinitely many solutions to the equation
a2 −Dc2 = 1.

This is not a new proof of Proposition 75, but an interpretation and a
generalization. Such results are valid for arithmetic varieties12.

12See for instance Nicolas Bergeron, “Sur la forme de certains espaces provenant de
constructions arithmétiques”, Images des Mathématiques, (2004).
http://people.math.jussieu.fr/∼bergeron/Recherche−files/Images.pdf.
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