Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course ${ }^{\circ} 7$, May 10, 2010

These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

6.3.6 The main lemma

The theory which follows is well-known (a classical reference is the book [7] by O. Perron), but the point of view which we develop here is slightly different from most classical texts on the subject. We follow [2, 3, 9]. An important role in our presentation of the subject is the following result (Lemma 4.1 in [8]).

Lemma 81. Let $\epsilon= \pm 1$ and let a, b, c, d be rational integers satisfying

$$
a d-b c=\epsilon
$$

and $d \geq 1$. Then there is a unique finite sequence of rational integers a_{0}, \ldots, a_{s} with $s \geq 1$ and a_{1}, \ldots, a_{s-1} positive, such that

$$
\left(\begin{array}{ll}
a & b \tag{82}\\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s} & 1 \\
1 & 0
\end{array}\right)
$$

These integers are also characterized by

$$
\begin{equation*}
\frac{b}{d}=\left[a_{0}, a_{1}, \ldots, a_{s-1}\right], \quad \frac{c}{d}=\left[a_{s}, \ldots, a_{1}\right], \quad(-1)^{s+1}=\epsilon . \tag{83}
\end{equation*}
$$

For instance, when $d=1$, for b and c rational integers,

$$
\left(\begin{array}{cc}
b c+1 & b \\
c & 1
\end{array}\right)=\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c & 1 \\
1 & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
b c-1 & b \\
c & 1
\end{array}\right)=\left(\begin{array}{cc}
b-1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
c-1 & 1 \\
1 & 0
\end{array}\right) .
$$

Proof. We start with unicity. If a_{0}, \ldots, a_{s} satisfy the conclusion of Lemma 81, then by using (82), we find $b / d=\left[a_{0}, a_{1}, \ldots, a_{s-1}\right]$. Taking the transpose, we also find $c / d=\left[a_{s}, \ldots, a_{1}\right]$. Next, taking the determinant, we obtain $(-1)^{s+1}=\epsilon$. The last equality fixes the parity of s, and each of the rational numbers $b / d, c / d$ has a unique continued fraction expansion whose length has a given parity (cf. Proposition69). This proves the unicity of the factorisation when it exists.

For the existence, we consider the simple continued fraction expansion of c / d with length of parity given by the last condition in (83), say $c / d=$ $\left[a_{s}, \ldots, a_{1}\right]$. Let a_{0} be a rational integer such that the distance between b / d and $\left[a_{0}, a_{1}, \ldots, a_{s-1}\right]$ is $\leq 1 / 2$. Define $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ by

$$
\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s} & 1 \\
1 & 0
\end{array}\right)
$$

We have

$$
d^{\prime}>0, \quad a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=\epsilon, \quad \frac{c^{\prime}}{d^{\prime}}=\left[a_{s}, \ldots, a_{1}\right]=\frac{c}{d}
$$

and

$$
\frac{b^{\prime}}{d^{\prime}}=\left[a_{0}, a_{1}, \ldots, a_{s-1}\right], \quad\left|\frac{b^{\prime}}{d^{\prime}}-\frac{b}{d}\right| \leq \frac{1}{2}
$$

From $\operatorname{gcd}(c, d)=\operatorname{gcd}\left(c^{\prime}, d^{\prime}\right)=1, c / d=c^{\prime} / d^{\prime}$ and $d>0, d^{\prime}>0$ we deduce $c^{\prime}=c, d^{\prime}=d$. From the equality between the determinants we deduce $a^{\prime}=a+k c, b^{\prime}=b+k d$ for some $k \in \mathbf{Z}$, and from

$$
\frac{b^{\prime}}{d^{\prime}}-\frac{b}{d}=k
$$

we conclude $k=0,\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=(a, b, c, d)$. Hence 82) follows.

Corollary 84. Assume the hypotheses of Lemma 81 are satisfied.
a) If $c>d$, then $a_{s} \geq 1$ and

$$
\frac{a}{c}=\left[a_{0}, a_{1}, \ldots, a_{s}\right] .
$$

b) If $b>d$, then $a_{0} \geq 1$ and

$$
\frac{a}{b}=\left[a_{s}, \ldots, a_{1}, a_{0}\right] .
$$

The following examples show that the hypotheses of the corollary are not superfluous:

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
b-1 & b \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
b-1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

and

$$
\left(\begin{array}{cc}
c-1 & 1 \\
c & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
c-1 & 1 \\
1 & 0
\end{array}\right) .
$$

Proof of Corollary 84. Any rational number $u / v>1$ has two continued fractions. One of them starts with 0 only if $u / v=1$ and the continued fraction is $[0,1]$. Hence the assumption $c>d$ implies $a_{s}>0$. This proves part a), and part b) follows by transposition (or repeating the proof).

Another consequence of Lemma 81 is the following classical result (Satz 13 p. 47 of [7]).

Corollary 85. Let a, b, c, d be rational integers with $a d-b c= \pm 1$ and $c>d>0$. Let x and y be two irrational numbers satisfying $y>1$ and

$$
x=\frac{a y+b}{c y+d}
$$

Let $x=\left[a_{0}, a_{1}, \ldots\right]$ be the simple continued fraction expansion of x. Then there exists $s \geq 1$ such that

$$
a=p_{s}, \quad b=p_{s-1}, \quad c=q_{s}, \quad r=q_{s-1}, \quad y=x_{s+1}
$$

Proof. Using lemma 81, we write

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a_{0}^{\prime} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1}^{\prime} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s}^{\prime} & 1 \\
1 & 0
\end{array}\right)
$$

with $a_{1}^{\prime}, \ldots, a_{s-1}^{\prime}$ positive and

$$
\frac{b}{d}=\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{s-1}^{\prime}\right], \quad \frac{c}{d}=\left[a_{s}^{\prime}, \ldots, a_{1}^{\prime}\right]
$$

From $c>d$ and corollary 84 , we deduce $a_{s}^{\prime}>0$ and

$$
\frac{a}{c}=\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{s}^{\prime}\right]=\frac{p_{s}^{\prime}}{q_{s}^{\prime}}, \quad x=\frac{p_{s}^{\prime} y+p_{s-1}^{\prime}}{q_{s}^{\prime} y+q_{s-1}^{\prime}}=\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{s}^{\prime}, y\right]
$$

Since $y>1$, it follows that $a_{i}^{\prime}=a_{i}, p_{i}^{\prime}=q_{i}^{\prime}$ for $0 \leq i \leq s$ and $y=x_{s+1}$.

6.3.7 Simple Continued fraction of \sqrt{D}

An infinite sequence $\left(a_{n}\right)_{n \geq 1}$ is periodic if there exists a positive integer s such that

$$
\begin{equation*}
a_{n+s}=a_{n} \quad \text { for all } n \geq 1 \tag{86}
\end{equation*}
$$

In this case, the finite sequence $\left(a_{1}, \ldots, a_{s}\right)$ is called a period of the original sequence. For the sake of notation, we write

$$
\left(a_{1}, a_{2}, \ldots\right)=\left(\overline{a_{1}, \ldots, a_{s}}\right) .
$$

If s_{0} is the smallest positive integer satisfying (86), then the set of s satisfying (86) is the set of positive multiples of s_{0}. In this case $\left(a_{1}, \ldots, a_{s_{0}}\right)$ is called the fundamental period of the original sequence.

Theorem 87. Let D be a positive integer which is not a square. Write the simple continued fraction of \sqrt{D} as $\left[a_{0}, a_{1}, \ldots\right]$ with $a_{0}=\lfloor\sqrt{D}\rfloor$.
a) The sequence $\left(a_{1}, a_{2}, \ldots\right)$ is periodic.
b) Let (x, y) be a positive integer solution to Pell's equation $x^{2}-D y^{2}= \pm 1$. Then there exists $s \geq 1$ such that $x / y=\left[a_{0}, \ldots, a_{s-1}\right]$ and

$$
\left(a_{1}, a_{2}, \ldots, a_{s-1}, 2 a_{0}\right)
$$

is a period of the sequence $\left(a_{1}, a_{2}, \ldots\right)$. Further, $a_{s-i}=a_{i}$ for $1 \leq i \leq s-1$ 9).
c) Let $\left(a_{1}, a_{2}, \ldots, a_{s-1}, 2 a_{0}\right)$ be a period of the sequence $\left(a_{1}, a_{2}, \ldots\right)$. Set $x / y=\left[a_{0}, \ldots, a_{s-1}\right]$. Then $x^{2}-D y^{2}=(-1)^{s}$.
d) Let s_{0} be the length of the fundamental period. Then for $i \geq 0$ not multiple of s_{0}, we have $a_{i} \leq a_{0}$.

If ($a_{1}, a_{2}, \ldots, a_{s-1}, 2 a_{0}$) is a period of the sequence $\left(a_{1}, a_{2}, \ldots\right)$, then

$$
\sqrt{D}=\left[a_{0}, \overline{a_{1}, \ldots, a_{s-1}, 2 a_{0}}\right]=\left[a_{0}, a_{1}, \ldots, a_{s-1}, a_{0}+\sqrt{D}\right] .
$$

Consider the fundamental period $\left(a_{1}, a_{2}, \ldots, a_{s_{0}-1}, a_{s_{0}}\right)$ of the sequence (a_{1}, a_{2}, \ldots). By part b) of Theorem 87 we have $a_{s_{0}}=2 a_{0}$, and by part d), it follows that s_{0} is the smallest index i such that $a_{i}>a_{0}$.

From b) and c) in Theorem 87, it follows that the fundamental solution $\left(x_{1}, y_{1}\right)$ to Pell's equation $x^{2}-\overline{D y^{2}}= \pm 1$ is given by $x_{1} / y_{1}=\left[a_{0}, \ldots, a_{s_{0}-1}\right]$,

[^0]and that $x_{1}^{2}-D y_{1}^{2}=(-1)^{s_{0}}$. Therefore, if s_{0} is even, then there is no solution to the Pell's equation $x^{2}-D y^{2}=-1$. If s_{0} is odd, then $\left(x_{1}, y_{1}\right)$ is the fundamental solution to Pell's equation $x^{2}-D y^{2}=-1$, while the fundamental solution $\left(x_{2}, y_{2}\right)$ to Pell's equation $x^{2}-D y^{2}=1$ is given by $x_{2} / y_{2}=\left[a_{0}, \ldots, a_{2 s-1}\right]$.

It follows also from Theorem 87 that the $\left(n s_{0}-1\right)$-th convergent

$$
x_{n} / y_{n}=\left[a_{0}, \ldots, a_{n s_{0}-1}\right]
$$

satisfies

$$
\begin{equation*}
x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n} . \tag{88}
\end{equation*}
$$

We shall check this relation directly (Lemma 92).
Proof. Start with a positive solution (x, y) to Pell's equation $x^{2}-D y^{2}= \pm 1$, which exists according to Proposition 75. Since $D y \geq x$ and $x>y$, we may use lemma 81 and corollary 84 with

$$
a=D y, \quad b=c=x, \quad d=y
$$

and write

$$
\left(\begin{array}{cc}
D y & x \tag{89}\\
x & y
\end{array}\right)=\left(\begin{array}{cc}
a_{0}^{\prime} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1}^{\prime} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s}^{\prime} & 1 \\
1 & 0
\end{array}\right)
$$

with positive integers $a_{0}^{\prime}, \ldots, a_{s}^{\prime}$ and with $a_{0}^{\prime}=\lfloor\sqrt{D}\rfloor$. Then the continued fraction expansion of $D y / x$ is $\left[a_{0}^{\prime}, \ldots, a_{s}^{\prime}\right]$ and the continued fraction expansion of x / y is $\left[a_{0}^{\prime}, \ldots, a_{s-1}^{\prime}\right]$.

Since the matrix on the left hand side of (89) is symmetric, the word $a_{0}^{\prime}, \ldots, a_{s}^{\prime}$ is a palindrome. In particular $a_{s}^{\prime}=a_{0}^{\prime}$.

Consider the periodic continued fraction

$$
\delta=\left[a_{0}^{\prime}, \overline{a_{1}^{\prime}, \ldots, a_{s-1}^{\prime}, 2 a_{0}^{\prime}}\right] .
$$

This number δ satisfies

$$
\delta=\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots, a_{s-1}^{\prime}, a_{0}^{\prime}+\delta\right] .
$$

Using the inverse of the matrix

$$
\left(\begin{array}{cc}
a_{0}^{\prime} & 1 \\
1 & 0
\end{array}\right) \quad \text { which is } \quad\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{0}^{\prime}
\end{array}\right)
$$

we write

$$
\left(\begin{array}{cc}
a_{0}^{\prime}+\delta & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a_{0}^{\prime} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\delta & 1
\end{array}\right)
$$

Hence the product of matrices associated with the continued fraction of δ

$$
\left(\begin{array}{cc}
a_{0}^{\prime} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1}^{\prime} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s-1}^{\prime} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{0}^{\prime}+\delta & 1 \\
1 & 0
\end{array}\right)
$$

is

$$
\left(\begin{array}{cc}
D y & x \\
x & y
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\delta & 1
\end{array}\right)=\left(\begin{array}{cc}
D y+\delta x & x \\
x+\delta y & y
\end{array}\right)
$$

It follows that

$$
\delta=\frac{D y+\delta x}{x+\delta y}
$$

hence $\delta^{2}=D$. As a consequence, $a_{i}^{\prime}=a_{i}$ for $0 \leq i \leq s-1$ while $a_{s}^{\prime}=a_{0}$, $a_{s}=2 a_{0}$.

This proves that if (x, y) is a non-trivial solution to Pell's equation $x^{2}-$ $D y^{2}= \pm 1$, then the continued fraction expansion of \sqrt{D} is of the form

$$
\begin{equation*}
\sqrt{D}=\left[a_{0}, \overline{a_{1}, \ldots, a_{s-1}, 2 a_{0}}\right] \tag{90}
\end{equation*}
$$

with a_{1}, \ldots, a_{s-1} a palindrome, and x / y is given by the convergent

$$
\begin{equation*}
x / y=\left[a_{0}, a_{1}, \ldots, a_{s-1}\right] \tag{91}
\end{equation*}
$$

Consider a convergent $p_{n} / q_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. If $a_{n+1}=2 a_{0}$, then 73) with $x=\sqrt{D}$ implies the upper bound

$$
\left|\sqrt{D}-\frac{p_{n}}{q_{n}}\right| \leq \frac{1}{2 a_{0} q_{n}^{2}}
$$

and it follows from Corollary 79 that $\left(p_{n}, q_{n}\right)$ is a solution to Pell's equation $p_{n}^{2}-D q_{n}^{2}= \pm 1$. This already shows that $a_{i}<2 a_{0}$ when $i+1$ is not the length of a period. We refine this estimate to $a_{i} \leq a_{0}$.

Assume $a_{n+1} \geq a_{0}+1$. Since the sequence $\left(a_{m}\right)_{m \geq 1}$ is periodic of period length s_{0}, for any m congruent to n modulo s_{0}, we have $a_{m+1}>a_{0}$. For these m we have

$$
\left|\sqrt{D}-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{\left(a_{0}+1\right) q_{m}^{2}}
$$

For sufficiently large m congruent to n modulo s we have

$$
\left(a_{0}+1\right) q_{m}^{2}>q_{m}^{2} \sqrt{D}+1
$$

Corollary 79 implies that $\left(p_{m}, q_{m}\right)$ is a solution to Pell's equation $p_{m}^{2}-D q_{m}^{2}=$ ± 1. Finally, Theorem 87 implies that $m+1$ is a multiple of s_{0}, hence $n+1$ also.

6.3.8 Connection between the two formulae for the n-th positive solution to Pell's equation

Lemma 92. Let D be a positive integer which is not a square. Consider the simple continued fraction expansion $\sqrt{D}=\left[a_{0}, \overline{a_{1}, \ldots, a_{s_{0}-1}, 2 a_{0}}\right]$ where s_{0} is the length of the fundamental period. Then the fundamental solution $\left(x_{1}, y_{1}\right)$ to Pell's equation $x^{2}-D y^{2}= \pm 1$ is given by the continued fraction expansion $x_{1} / y_{1}=\left[a_{0}, a_{1}, \ldots, a_{s_{0}-1}\right]$. Let $n \geq 1$ be a positive integer. Define $\left(x_{n}, y_{n}\right)$ by $x_{n} / y_{n}=\left[a_{0}, a_{1}, \ldots, a_{n s_{0}-1}\right]$. Then $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$.

This result is a consequence of the two formulae we gave for the n-th solution (x_{n}, y_{n}) to Pell's equation $x^{2}-D y^{2}= \pm 1$. We check this result directly.

Proof. From Lemma 81 and relation (89), one deduces

$$
\left(\begin{array}{cc}
D y_{n} & x_{n} \\
x_{n} & y_{n}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n s_{0}-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right) .
$$

Since

$$
\left(\begin{array}{cc}
D y_{n} & x_{n} \\
x_{n} & y_{n}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right)=\left(\begin{array}{cc}
x_{n} & D y_{n}-a_{0} x_{n} \\
y_{n} & x_{n}-a_{0} y_{n}
\end{array}\right)
$$

we obtain

$$
\left(\begin{array}{cc}
a_{0} & 1 \tag{93}\\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{n s_{0}-1} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
x_{n} & D y_{n}-a_{0} x_{n} \\
y_{n} & x_{n}-a_{0} y_{n}
\end{array}\right)
$$

Notice that the determinant is $(-1)^{n s_{0}}=x_{n}^{2}-D y_{n}^{2}$. Formula (93) for $n+1$ and the periodicity of the sequence $\left(a_{1}, \ldots, a_{n}, \ldots\right)$ with $a_{s_{0}}=2 a_{0}$ give :

$$
\left(\begin{array}{cc}
x_{n+1} & D y_{n+1}-a_{0} x_{n+1} \\
y_{n+1} & x_{n+1}-a_{0} y_{n+1}
\end{array}\right)=\left(\begin{array}{cc}
x_{n} & D y_{n}-a_{0} x_{n} \\
y_{n} & x_{n}-a_{0} y_{n}
\end{array}\right)\left(\begin{array}{cc}
2 a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
a_{s_{0}-1} & 1 \\
1 & 0
\end{array}\right) .
$$

Take first $n=1$ in (93) and multiply on the left by

$$
\left(\begin{array}{cc}
2 a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -a_{0}
\end{array}\right)=\left(\begin{array}{cc}
1 & a_{0} \\
0 & 1
\end{array}\right) .
$$

Since

$$
\left(\begin{array}{cc}
1 & a_{0} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x_{1} & D y_{1}-a_{0} x_{1} \\
y_{1} & x_{1}-a_{0} y_{1}
\end{array}\right)=\left(\begin{array}{cc}
x_{1}+a_{0} y_{1} & \left(D-a_{0}^{2}\right) y_{1} \\
y_{1} & x_{1}-a_{0} y_{1}
\end{array}\right) .
$$

we deduce

$$
\left(\begin{array}{cc}
2 a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s_{0}-1} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
x_{1}+a_{0} y_{1} & \left(D-a_{0}^{2}\right) y_{1} \\
y_{1} & x_{1}-a_{0} y_{1}
\end{array}\right) .
$$

Therefore

$$
\left(\begin{array}{cc}
x_{n+1} & D y_{n+1}-a_{0} x_{n+1} \\
y_{n+1} & x_{n+1}-a_{0} y_{n+1}
\end{array}\right)=\left(\begin{array}{cc}
x_{n} & D y_{n}-a_{0} x_{n} \\
y_{n} & x_{n}-a_{0} y_{n}
\end{array}\right)\left(\begin{array}{cc}
x_{1}+a_{0} y_{1} & \left(D-a_{0}^{2}\right) y_{1} \\
y_{1} & x_{1}-a_{0} y_{1}
\end{array}\right) .
$$

The first column gives

$$
x_{n+1}=x_{n} x_{1}+D y_{n} y_{1} \quad \text { and } \quad y_{n+1}=x_{1} y_{n}+x_{n} y_{1},
$$

which was to be proved.

6.3.9 Records

For large D, Pell's equation may obviously have small integer solutions. Examples are

For $D=m^{2}-1$ with $m \geq 2$ the numbers $x=m, y=1$ satisfy $x^{2}-D y^{2}=1$,
for $D=m^{2}+1$ with $m \geq 1$ the numbers $x=m, y=1$ satisfy $x^{2}-D y^{2}=$ -1 ,
for $D=m^{2} \pm m$ with $m \geq 2$ the numbers $x=2 m \pm 1$ satisfy $y=2$, $x^{2}-D y^{2}=1$,
for $D=t^{2} m^{2}+2 m$ with $m \geq 1$ and $t \geq 1$ the numbers $x=t^{2} m+1$, $y=t$ satisfy $x^{2}-D y^{2}=1$.

On the other hand, relatively small values of D may lead to large fundamental solutions. Tables are available on the interne

For D a positive integer which is not a square, denote by $S(D)$ the base 10 logarithm of x_{1}, when $\left(x_{1}, y_{1}\right)$ is the fundamental solution to $x^{2}-D y^{2}=1$. The integral part of $S(D)$ is the number of digits of the fundamental solution x_{1}. For instance, when $D=61$, the fundamental solution $\left(x_{1}, y_{1}\right)$ is

$$
x_{1}=1766319049, \quad y_{1}=226153980
$$

and $S(61)=\log _{10} x_{1}=9.247069 \ldots$

[^1]An integer D is a record holder for S if $S\left(D^{\prime}\right)<S(D)$ for all $D^{\prime}<D$.
Here are the record holders up to 1021:

D	2	5	10	13	29	46	53	61	109
$S(D)$	0.477	0.954	1.278	2.812	3.991	4.386	4.821	9.247	14.198

D	181	277	397	409	421	541	661	1021
$S(D)$	18.392	20.201	20.923	22.398	33.588	36.569	37.215	47.298

Some further records with number of digits successive powers of 10 :

D	3061	169789	12765349	1021948981	85489307341
$S(D)$	104.051	1001.282	10191.729	100681.340	1003270.151

6.3.10 A criterion for the existence of a solution to the negative Pell equation

Here is a recent result on the existence of a solution to Pell's equation $x^{2}-D y^{2}=-1$

Proposition 94 (R.A. Mollin, A. Srinivasan ${ }^{11]}$. Let d be a positive integer which is not a square. Let $\left(x_{0}, y_{0}\right)$ be the fundamental solution to Pell's equation $x^{2}-d y^{2}=1$. Then the equation $x^{2}-d y^{2}=-1$ has a solution if and only if $x_{0} \equiv-1(\bmod 2 d)$.

Proof. If $a^{2}-d b^{2}=-1$ is the fundamental solution to $x^{2}-d y^{2}=-1$, then $x_{0}+y_{0} \sqrt{d}=(a+b \sqrt{d})^{2}$, hence

$$
x_{0}=a^{2}+d b^{2}=2 d b^{2}-1 \equiv-1 \quad(\bmod 2 d) .
$$

Conversely, if $x_{0}=2 d k-1$, then $x_{0}^{2}=4 d^{2} k^{2}-4 d k+1=d y_{0}^{2}+1$, hence $4 d k^{2}-4 k=y_{0}^{2}$. Therefore y_{0} is even, $y_{0}=2 z$, and $k(d k-1)=z^{2}$. Since k and $d k-1$ are relatively prime, both are squares, $k=b^{2}$ and $d k-1=a^{2}$, which gives $a^{2}-d b^{2}=-1$.

6.3.11 Arithmetic varieties

Let D be a positive integer which is not a square. Define $\mathcal{G}=\{(x, y) \in$ $\left.\mathbf{R}^{2} ; x^{2}-D y^{2}=1\right\}$.

[^2]The map

$$
\begin{array}{clc}
\mathcal{G} & \longrightarrow & \mathbf{R}^{\times} \\
(x, y) & \longmapsto & t=x+y \sqrt{D}
\end{array}
$$

is bijective: the inverse of that map is obtained by writing $u=1 / t, 2 x=$ $t+u, 2 y \sqrt{D}=t-u$, so that $t=x+y \sqrt{D}$ and $u=x-y \sqrt{D}$. By transfer of structure, this endows \mathcal{G} with a multiplicative group structure, which is isomorphic to \mathbf{R}^{\times}, for which

$$
\begin{array}{ccc}
\mathcal{G} & \longrightarrow & \mathrm{GL}_{2}(\mathbf{R}) \\
(x, y) & \longmapsto\left(\begin{array}{cc}
x & D y \\
y & x
\end{array}\right) .
\end{array}
$$

is an injective group homomorphism. Let $G(\mathbf{R})$ be its image, which is therefore isomorphic to \mathbf{R}^{\times}.

A matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ respects the quadratic form $x^{2}-D y^{2}$ if and only if

$$
(a x+b y)^{2}-D(c x+d y)^{2}=x^{2}-D y^{2}
$$

which can be written

$$
a^{2}-D c^{2}=1, \quad b^{2}-D d^{2}=D, \quad a b=c d D
$$

Hence the group of matrices of determinant 1 with coefficients in \mathbf{Z} which respect the quadratic form $x^{2}-D y^{2}$ is the group

$$
G(\mathbf{Z})=\left\{\left(\begin{array}{cc}
a & D c \\
c & a
\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Z})\right\}
$$

According to the work of Siegel, Harish-Chandra, Borel and Godement, the quotient of $G(\mathbf{R})$ by $G(\mathbf{Z})$ is compact. Hence $G(\mathbf{Z})$ is infinite (of rank 1 over \mathbf{Z}), which means that there are infinitely many solutions to the equation $a^{2}-D c^{2}=1$.

This is not a new proof of Proposition 75, but an interpretation and a generalization. Such results are valid for arithmetic varietie $\12.

[^3]
References

[1] E. J. Barbeau, Pell's equation, Problem Books in Mathematics, Springer-Verlag, New York, 2003.
[2] E. Bombieri, Continued fractions and the Markoff tree, Expo. Math., 25 (2007), pp. 187-213.
[3] E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, in Computational algebra and number theory (Sydney, 1992), vol. 325 of Math. Appl., Kluwer Acad. Publ., Dordrecht, 1995, pp. 137-152.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford University Press, Oxford, sixth ed., 2008. Revised by D. R. Heath-Brown and J. H. Silverman.
[5] M. J. Jacobson, Jr. and H. C. Williams, Solving the Pell equation, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2009.
[6] H. W. Lenstra, Jr., Solving the Pell equation, Notices Amer. Math. Soc., 49 (2002), pp. 182-192.
[7] O. Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957.
[8] D. Roy, On the continued fraction expansion of a class of numbers, in Diophantine approximation, vol. 16 of Dev. Math., SpringerWienNewYork, Vienna, 2008, pp. 347-361. http://arxiv.org/abs/math/0409233.
[9] A. J. van der Poorten, An introduction to continued fractions, in Diophantine analysis (Kensington, 1985), vol. 109 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1986, pp. 99-138.

[^0]: ${ }^{9}$ One says that the word a_{1}, \ldots, a_{s-1} is a palindrome. This result is proved in the first paper published by Evariste Galois at the age of 17:
 Démonstration d'un théorème sur les fractions continues périodiques.
 Annales de Mathématiques Pures et Appliquées, 19 (1828-1829), p. 294-301.
 http://archive.numdam.org/article/AMPA_1828-1829_-19_-294_0.pdf.

[^1]: ${ }^{10}$ For instance:
 Tomás Oliveira e Silva: Record-Holder Solutions of Pell's Equation http://www.ieeta.pt/~tos/pell.html.

[^2]: ${ }^{11}$ Pell equation: non-principal Lagrange criteria and central norms; Canadian Math. Bull., to appear

[^3]: ${ }^{12}$ See for instance Nicolas Bergeron, "Sur la forme de certains espaces provenant de constructions arithmétiques", Images des Mathématiques, (2004). http://people.math.jussieu.fr/~bergeron/Recherche_files/Images.pdf

