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Addition to Lemma 81.
In [1], § 4, there is a variant of the matrix formula (64) for the simple
continued fraction of a real number.

Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0,
as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two
formulae

(
1 a0

0 1

) (
1 0
a1 1

)
· · ·

(
1 an

0 1

)
=

(
pn−1 pn

qn−1 qn

)
if n is even

(
1 a0

0 1

) (
1 0
a1 1

)
. · · ·

(
1 0
an 1

)
=

(
pn pn−1

qn qn−1

)
if n is odd





(95)

Define two matrices U (up) and L (low) in GL2(R) of determinant +1 by

U =
(

1 1
0 1

)
and L =

(
1 0
1 1

)
.

For p and q in Z, we have

Up =
(

1 p
0 1

)
and Lq =

(
1 0
q 1

)
,

so that these formulae (95) are

Ua0La1 · · ·Uan =
(

pn−1 pn

qn−1 qn

)
if n is even

and
Ua0La1 · · ·Lan =

(
pn pn−1

qn qn−1

)
if n is odd.
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The connexion with Euclid’s algorithm is

U−p

(
a b
c d

)
=

(
a− pc b− pd

c d

)
and L−q

(
a b
c d

)
=

(
a b

c− qa d− qb

)
.

The corresponding variant of Lemma 81 is also given in [1], § 4: If a, b, c,
d are rational integers satisfying b > a > 0, d > c ≥ 0 and ad− bc = 1, then
there exist rational integers a0, . . . , an with n even and a1, . . . , an positive,
such that (

a b
c d

)
=

(
1 a0

0 1

) (
1 0
a1 1

)
· · ·

(
1 an

0 1

)

These integers are uniquely determined by b/d = [a0, . . . , an] with n even.

6.3.12 Periodic continued fractions

An infinite sequence (an)n≥0 is said to be ultimately periodic if there exists
n0 ≥ 0 and s ≥ 1 such that

an+s = an for all n ≥ n0. (96)

The set of s satisfying this property (6.3.12) is the set of positive multiples
of an integer s0, and (an0 , an0+1, . . . , an0+s0−1) is called the fundamental
period.

A continued fraction with a sequence of partial quotients satisfying (96)
will be written

[a0, a1, . . . , an0−1, an0 , . . . , an0+s−1].

Example. For D a positive integer which is not a square, setting a0 = #
√

D%,
we have by Theorem 87

a0 +
√

D = [2a0, a1, . . . , as−1] and
1√

D − a0
= [a1, . . . , as−1, 2a0].

Lemma 97 (Euler 1737). If an infinite continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic, then x is a quadratic irrational number.

Proof. Since the continued fraction of x is infinite, x is irrational. Assume
first that the continued fraction is periodic, namely that (96) holds with
n0 = 0:

x = [a0, . . . , as−1].
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This can be written
x = [a0, . . . , as−1, x].

Hence
x =

ps−1x + ps−2

qs−1x + qs−2
·

It follows that
qs−1X

2 + (qs−2 − ps−1)X − ps−2

is a non–zero quadratic polynomial with integer coefficients having x as a
root. Since x is irrational, this polynomial is irreducible and x is quadratic.

In the general case where (96) holds with n0 > 0, we write

x = [a0, a1, . . . , an0−1, an0 , . . . , an0+s−1] = [a0, a1, . . . , an0−1, y],

where y = [an0 , . . . , an0+s−1] is a periodic continued fraction, hence is quadratic.
But

x =
pn0−1y + pn0−2

qn0−1y + qn0−2
,

hence x ∈ Q(y) is also quadratic irrational.

Lemma 98 (Lagrange, 1770). If x is a quadratic irrational number, then
its continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic.

Proof. For n ≥ 0, define dn = qnx− pn. According to Corollary 72, we have
|dn| < 1/qn+1.

Let AX2 + BX + C with A > 0 be an irreducible quadratic polynomial
having x as a root. For each n ≥ 2, we deduce from (70) that the convergent
xn is a root of a quadratic polynomial AnX2 + BnX + Cn, with

An = Ap2
n−1 + Bpn−1qn−1 + Cq2

n−1,

Bn = 2Apn−1pn−2 + B(pn−1qn−2 + pn−2qn−1) + 2Cqn−1qn−2,

Cn = An−1.

Using Ax2 + Bx + C = 0, we deduce

An = (2Ax + B)dn−1qn−1 + Ad2
n−1,

Bn = (2Ax + B)(dn−1qn−2 + dn−2qn−1) + 2Adn−1dn−2.
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There are similar formulae expressing A, B, C as homogeneous linear com-
binations of An, Bn, Cn, and since (A, B,C) '= (0, 0, 0), it follows that
(An, Bn, Cn) '= (0, 0, 0). Since xn is irrational, one deduces An '= 0.

From the inequalities

qn−1|dn−2| < 1, qn−2|dn−1| < 1, qn−1 < qn, |dn−1dn−2| < 1,

one deduces

max{|An|, |Bn|/2, |Cn|} < A + |2Ax + B|.

This shows that |An|, |Bn| and |Cn| are bounded independently of n. There-
fore there exists n0 ≥ 0 and s > 0 such that xn0 = xn0+s. From this we
deduce that the continued fraction of xn0 is purely periodic, hence the con-
tinued fraction of x is ultimately periodic.

A reduced quadratic irrational number is an irrational number x > 1
which is a root of a degree 2 polynomial ax2 + bx + c with rational integer
coefficients, such that the other root x′ of this polynomial, which is the
Galois conjugate of x, satisfies −1 < x′ < 0. If x is reduced, then so is
−1/x′.

Lemma 99. A continued fraction

x = [a0, a1, . . . , an . . .]

is purely periodic if and only if x is a reduced quadratic irrational number.
In this case, if x = [a0, a1, . . . , as−1] and if x′ is the Galois conjugate of x,
then

−1/x′ = [as−1, . . . , a1, a0]

Proof. Assume first that the continued fraction of x is purely periodic:

x = [a0, a1, . . . , as−1].

From as = a0 we deduce a0 > 0, hence x > 1. From x = [a0, a1, . . . , as−1, x]
and the unicity of the continued fraction expansion, we deduce

x =
ps−1x + ps−2

qs−1x + qs−2
and x = xs.

Therefore x is a root of the quadratic polynomial

Ps(X) = qs−1X
2 + (qs−2 − ps−1)X − ps−2.
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This polynomial Ps has a positive root, namely x > 1, and a negative root
x′, with the product xx′ = −ps−2/qs−1. We transpose the relation

(
ps−1 ps−2

qs−1 qs−2

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as−1 1

1 0

)

and obtain
(

ps−1 qs−1

ps−2 qs−2

)
=

(
as−1 1

1 0

)
· · ·

(
a1 1
1 0

) (
a0 1
1 0

)
.

Define
y = [as−1, . . . , a1, a0],

so that y > 1,

y = [as−1, . . . , a1, a0, y] =
ps−1y + qs−1

ps−2y + qs−2

and y is the positive root of the polynomial

Qs(X) = ps−2X
2 + (qs−2 − ps−1)X − qs−1.

The polynomials Ps and Qs are related by Qs(X) = −X2Ps(−1/X). Hence
y = −1/x′.

For the converse, assume x > 1 and −1 < x′ < 0. Let (xn)n≥1 be the
sequence of complete quotients of x. For n ≥ 1, define x′n as the Galois
conjugate of xn. One deduces by induction that x′n = an + 1/x′n+1, that
−1 < x′n < 0 (hence xn is reduced), and that an is the integral part of
−1/x′n+1.

If the continued fraction expansion of x were not purely periodic, we
would have

x = [a0, . . . , ah−1, ah, . . . , ah+s−1]
with ah−1 '= ah+s−1. By periodicity we have xh = [ah, . . . , ah+s−1, xh], hence
xh = xh+s, x′h = x′h+s. From x′h = x′h+s, taking integral parts, we deduce
ah−1 = ah+s−1, a contradiction.

Corollary 100. If r > 1 is a rational number which is not a square, then
the continued fraction expansion of

√
r is of the form

√
r = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome and a0 = [
√

r].
Conversely, if the continued fraction expansion of an irrational number t > 1
is of the form

t = [a0, a1, . . . , as−1, 2a0]
with a1, . . . , as−1 a palindrome, then t2 is a rational number.
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Proof. If t2 = r is rational > 1, then for and a0 = [
√

t] the number x = t+a0

is reduced. Since t′ + t = 0, we have

− 1
x′

=
1

x− 2a0
·

Hence
x = [2a0, a1, . . . , as−1], − 1

x′
= [as−1, . . . , a1, 2a0]

and a1, . . . , as−1 a palindrome.
Conversely, if t = [a0, a1, . . . , as−1, 2a0] with a1, . . . , as−1 a palindrome,

then x = t + a0 is periodic, hence reduced, and its Galois conjugate x′

satisfies
− 1

x′
= [a1, . . . , as−1, 2a0] =

1
x− 2a0

,

which means t + t′ = 0, hence t2 ∈ Q.

Lemma 101 (Serret, 1878). Let x and y be two irrational numbers with
continued fractions

x = [a0, a1, . . . , an . . .] and y = [b0, b1, . . . , bm . . .]

respectively. Then the two following properties are equivalent.

(i) There exists a matrix
(

a b
c d

)
with rational integer coefficients and de-

terminant ±1 such that
y =

ax + b

cx + d
·

(ii) There exists n0 ≥ 0 and m0 ≥ 0 such that an0+k = bm0+k for all k ≥ 0.

Condition (i) means that x and y are equivalent modulo the action of
GL2(Z) by homographies.

Condition (ii) means that there exists integers n0, m0 and a real number
t > 1 such that

x = [a0, a1, . . . , an0−1, t] and y = [b0, b1, . . . , bm0−1, t].

Example.

If x = [a0, a1, x2], then −x =

{
[−a0 − 1, 1, a1 − 1, x2] if a1 ≥ 2,
[−a0 − 1, 1 + x2] if a1 = 1.

(102)
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Proof. We already know by (70) that if xn is a complete quotient of x, then
x and xn are equivalent modulo GL2(Z). Condition (ii) means that there
is a partial quotient of x and a partial quotient of y which are equal. By
transitivity of the GL2(Z) equivalence, (ii) implies (i).

Conversely, assume (i):

y =
ax + b

cx + d
·

Let n be a sufficiently large number. From
(

a b
c d

) (
pn pn−1

qn qn−1

)
=

(
un un−1

vn vn−1

)

with
un = apn + bqn, un−1 = apn−1 + bqn−1,
vn = cpn + dqn, vn−1 = cpn−1 + dqn−1,

we deduce
y =

unxn+1 + un−1

vnxn+1 + vn−1
·

We have vn = (cx + d)qn + cδn with δn = pn − qnx. We have qn → ∞,
qn ≥ qn−1 + 1 and δn → 0 as n → ∞. Hence, for sufficiently large n, we
have vn > vn−1 > 0. From part 1 of Corollary 84, we deduce

(
un un−1

vn vn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
as 1
1 0

)

with a0, . . . , as in Z and a1, . . . , as positive. Hence

y = [a0, a1, . . . , as, xn+1].

A computational proof of (i) ⇒ (ii). Another proof is given by Bombieri [2]
(Theorem A.1 p. 209). He uses the fact that GL2(Z) is generated by the
two matrices (

1 1
0 1

)
and

(
0 1
1 0

)
.

The associated fractional linear transformations are K and J defined by

K(x) = x + 1 and J(x) = 1/x.

We have J2 = 1 and

K([a0, t]) = [a0 + 1, t], K−1([a0, t]) = [a0 − 1, t].
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Also J([a0, t]) = [0, a0, t]) if a0 > 0 and J([0, t]) = [t]). According to (102),
the continued fractions of x and −x differ only by the first terms. This
completes the proof. 13

6.4 Diophantine approximation and simple continued frac-
tions

Lemma 103 (Lagrange, 1770). The sequence (|qnx − pn|)n≥0 is strictly
decreasing: for n ≥ 1 we have

|qnx− pn| < |qn−1x− pn−1|.

Proof. We use Lemma 71 twice: on the one hand

|qnx− pn| =
1

xn+1qn + qn−1
<

1
qn + qn−1

because xn+1 > 1, on the other hand

|qn−1x− pn−1| =
1

xnqn−1 + qn−2
>

1
(an + 1)qn−1 + qn−2

=
1

qn + qn−1

because xn < an + 1.

Corollary 104. The sequence (|x − pn/qn|)n≥0 is strictly decreasing: for
n ≥ 1 we have ∣∣∣∣x−

pn

qn

∣∣∣∣ <

∣∣∣∣x−
pn−1

qn−1

∣∣∣∣ .

Proof. For n ≥ 1, since qn−1 < qn, we have
∣∣∣∣x−

pn

qn

∣∣∣∣ =
1
qn

|qnx−pn| <
1
qn

|qn−1x−pn−1| =
qn−1

qn

∣∣∣∣x−
pn−1

qn−1

∣∣∣∣ <

∣∣∣∣x−
pn−1

qn−1

∣∣∣∣ .

Here is the law of best approximation of the simple continued fraction.
13Bombieri in [2] gives formulae for J([a0, t]) when a0 ≤ −1. He distinguishes eight

cases, namely four cases when a0 = −1 (a1 > 2, a1 = 2, a1 = 1 and a3 > 1, a1 = a3 = 1),
two cases when a0 = −2 (a1 > 1, a1 = 1) and two cases when a0 ≤ −3 (a1 > 1, a1 = 1).
Here, (102) enables us to simplify his proof by reducing to the case a0 ≥ 0.
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Lemma 105. Let n ≥ 0 and (p, q) ∈ Z× Z with q > 0 satisfy

|qx− p| < |qnx− pn|.

Then q ≥ qn+1.

Proof. The system of two linear equations in two unknowns u, v

{
pnu + pn+1v = p
qnu + qn+1v = q

(106)

has determinant ±1, hence there is a solution (u, v) ∈ Z× Z.
Since p/q '= pn/qn, we have v '= 0.
If u = 0, then v = q/qn+1 > 0, hence v ≥ 1 and qn ≥ qn+1.
We now assume uv '= 0.
Since q, qn and qn+1 are > 0, it is not possible for u and v to be both

negative. In case u and v are positive, the desired result follows from the
second relation of (106). Hence one may suppose u and v of opposite signs.
Since qnx − pn and qn+1x − pn+1 also have opposite signs, the numbers
u(qnx− pn) and v(qn+1x− pn+1) have same sign, and therefore

|qnx− pn| = |u(qnx− pn)| + |v(qn+1x− pn+1)| = |qx− p| < |qnx− pn|,

which is a contradiction.

A consequence of Lemma 105 is that the sequence of pn/qn produces
the best rational approximations to x in the following sense: any rational
number p/q with denominator q < qn has |qx − p| > |qnx − pn|. This is
sometimes referred to as best rational approximations of type 0.

Corollary 107. The sequence (qn)n≥0 of denominators of the convergents
of a real irrational number x is the increasing sequence of positive integers
for which

‖qnx‖ < ‖qx‖ for 1 ≤ q < qn.

As a consequence,
‖qnx‖ = min

1≤q≤qn

‖qx‖.

The theory of continued fractions is developed starting from Corollary 107
as a definition of the sequence (qn)n≥0 in Cassels’s book [5].
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Corollary 108. Let n ≥ 0 and p/q ∈ Q with q > 0 satisfy
∣∣∣∣x−

p

q

∣∣∣∣ <

∣∣∣∣x−
pn

qn

∣∣∣∣ .

Then q > qn.

Proof. For q ≤ qn we have
∣∣∣∣x−

p

q

∣∣∣∣ =
1
q
|qx− p| >

1
q
|qnx− pn|

qn

q

∣∣∣∣x−
pn

qn

∣∣∣∣ ≥
∣∣∣∣x−

pn

qn

∣∣∣∣ .

Corollary 108 shows that the denominators qn of the convergents are also
among the best rational approximations of type 1 in the sense that

∣∣∣∣x−
p

q

∣∣∣∣ >

∣∣∣∣x−
pn

qn

∣∣∣∣ for 1 ≤ q < qn,

but they do not produce the full list of them: to get the complete set, one
needs to consider also some of the rational fractions of the form

pn−1 + apn

qn−1 + aqn

with 0 ≤ a ≤ an+1 (semi–convergents) – see for instance [7], Chap. II, § 16.

Lemma 109 (Vahlen, 1895). Among two consecutive convergents pn/qn and
pn+1/qn+1, one at least satisfies |x− p/q| < 1/2q2.

Proof. Since x− pn/qn and x− pn−1/qn−1 have opposite signs,
∣∣∣∣x−

pn

qn

∣∣∣∣ +
∣∣∣∣x−

pn−1

qn−1

∣∣∣∣ =
∣∣∣∣
pn

qn
− pn−1

qn−1

∣∣∣∣ =
1

qnqn−1
<

1
2q2

n
+

1
2q2

n−1

·

The last inequality is ab < (a2 + b2)/2 for a '= b with a = 1/qn and b =
1/qn−1. Therefore,

either
∣∣∣∣x−

pn

qn

∣∣∣∣ <
1

2q2
n

or
∣∣∣∣x−

pn−1

qn−1

∣∣∣∣ <
1

2q2
n−1

·
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Lemma 110 (É. Borel, 1903). Among three consecutive convergents pn−1/qn−1,
pn/qn and pn+1/qn+1, one at least satisfies |x− p/q| < 1/

√
5q2.

This completes the proof of the irrationality criterion Proposition 4 in-
cluding (i) ⇒ (vi) in § 2.1.

The fact that the constant
√

5 cannot be replaced by a larger one was
proved in Lemma 41. This is true for any number with a continued fraction
expansion having all but finitely many partial quotients equal to 1 (which
means the Golden number Φ and all rational numbers which are equivalent
to Φ modulo GL2(Z)).

Proof. Recall Lemma 71: for n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Therefore |qnx−pn| < 1/
√

5qn if and only if |xn+1qn +qn−1| >
√

5qn. Define
rn = qn−1/qn. Then this condition is equivalent to |xn+1 + rn| >

√
5.

Recall the inductive definition of the convergents:

xn+1 = an+1 +
1

xn+2
·

Also, using the definitions of rn, rn+1, and the inductive relation qn+1 =
an+1qn + qn−1, we can write

1
rn+1

= an+1 + rn.

Eliminate an+1:
1

xn+2
+

1
rn+1

= xn+1 + rn.

Assume now

|xn+1 + rn| ≤
√

5 and |xn+2 + rn+1| ≤
√

5.

We deduce

1√
5− rn+1

+
1

rn+1
≤ 1

xn+2
+

1
rn+1

= xn+1 + rn ≤
√

5,

which yields
r2
n+1 −

√
5rn+1 + 1 ≤ 0.

104



The roots of the polynomial X2 −
√

5X + 1 are Φ = (1 +
√

5)/2 and Φ−1 =
(
√

5− 1)/2. Hence rn+1 > Φ−1 (the strict inequality is a consequence of the
irrationality of the Golden ratio). .

This estimate follows from the hypotheses |qnx − pn| < 1/
√

5qn and
|qn+1x− pn+1| < 1/

√
5qn+1. If we also had |qn+2x− pn+2| < 1/

√
5qn+2, we

would deduce in the same way rn+2 > Φ−1. This would give

1 = (an+2 + rn+1)rn+2 > (1 + Φ−1)Φ−1 = 1,

which is impossible.

Lemma 111 (Legendre, 1798). If p/q ∈ Q satisfies |x− p/q| ≤ 1/2q2, then
p/q is a convergent of x.

Proof. Let r and s in Z satisfy 1 ≤ s < q. From

1 ≤ |qr−ps| = |s(qx−p)− q(sx− r)| ≤ s|qx−p|+ q|sx− r| ≤ s

2q
+ q|sx− r|

one deduces
q|sx− r| ≥ 1− s

2q
>

1
2
≥ q|qx− p|.

Hence |sx − r| > |qx − p| and therefore Lemma 105 implies that p/q is a
convergent of x.
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