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These are informal notes of my course given in April – June 2010 at IMPA
(Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

This course was devoted to

• Proposition 94 of Mollin and Srinivasan on the negative Pell’s equation
x2 −Dy2 = −1.

• The proof of Legendre’s Theorem 111 according to which an approxi-
mation p/q of an irrational number x satisfying |x − p/q| ≤ 1/q2 is a
convergent of x.

• The proof of Corollary 100 on the continued fraction expansion of the
square root of a rational number.

• An introduction to number fields and the connexion between Pell’s
equation and Dirichlet’s unit Theorem.

Dirichlet’s unit Theorem

A number field is a finite algebraic extension of Q, which means a field
containing Q as a subfield and which is a Q–vector space of finite dimension.

In a finite extension, any element is algebraic.
An example of a number field is Q(α) (the smallest field containing α,

or the field generated by α), when α is an algebraic number. In this case
Q(α) = Q[α], which means that the ring Q[α] generated by α over Q is a
field. According to the Theorem of the primitive element, any number field
can be written Q(α) for some algebraic number α.

Let f ∈ Q[X] be the (monic) irreducible polynomial of α. The degree
d of f is the dimension of the Q–vector space Q(α), it is called the degree
of α over Q and also the degree of the extension k/Q, it is denoted by
[Q(α) : Q].
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When we factorize the polynomial f over R, we get a certain number,
say r1, of degree 1 polynomials, and a certain number, say r2, of degree 2
polynomials with negative discriminant. Hence 0 ≤ r1 ≤ d, 0 ≤ r2 ≤ d/2
and r1 + 2r2 = d. In C, f has d distinct roots, r1 of which are real, say
α1, . . . ,αr1 , and 2r2 of which are not real and pairwise complex conjugates,
say αr1+1, . . . ,αr1+r2 , αr1+1, . . . ,αr1+r2 . There are exactly d fields homo-
morphisms (also called embeddings) σi : k −→ C, where, for 1 ≤ i ≤ d, σi is
uniquely determined by σi(α) = αi. For γ in k, the elements σi(γ) are the
conjugates of γ (that means the complex roots of the irreducible polynomial
of γ), n of them are distinct, where n = [Q(γ) : Q] divides d, say d = nk,
and

d∏

i=1

(X − σi(γ))

is the k–th power of the irreducible polynomial of γ.
The norm Nk/Q is the homomorphism between the multiplicative groups

k× = k \ {0} −→ Q× defined by

Nk/Q(γ) = σ1(γ) · · ·σd(γ).

The canonical embedding of k is σ = (σ1, . . . ,σr1+r2) : k −→ Rr1 ×Cr2 .
An algebraic number α is called an algebraic integer is it satisfies the

following equivalent conditions.
(i) The irreducible (monic) polynomial of α in Q[X] has its coefficients in
Z.
(ii) There exists a monic polynomial with rational integer coefficients having
α as a root.
(iii) The subring Z[α] of C generated by α is a finitely generated Z–module.
(iii) There exists a subring of C containing Z[α] which is a finitely generated
Z–module.

For instance, the algebraic integers in Q are the rational integers.
The set of algebraic integers is a subring of C. Its intersection with a

number field k is the ring of integers of k, which we denote by Zk. For
instance, when k = Q(

√
D),

Zk =

{
Z[
√

D] if D ≡ 2 or 3 (mod 4),
Z[(1 +

√
D)/2] if D ≡ 1 (mod 4).

It is easy to check that the image σ(Zk) of the ring of integers of k under
the canonical embedding is discrete in Rr1 ×Cr2 .
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The group of units Z×k of Zk is also called the group of units of the number
field k (this terminology is standard but should not yield to a confusion:
recall that the units in a field k are the non–zero elements of k!). An integer
in k is a unit if and only if it has norm ±1. The torsion elements of Z×k
are the roots of unity in k, it is easy to check that they form a finite cyclic
group k×tors.

The logarithmic embedding is the map λ : k× −→ Rr1+r2 obtained by
composing the restriction of σ to k× with the map

(zn)1≤n≤r1+r2 (−→ (log |zn|)1≤n≤r1+r2

from (R×)r1 × (C×)r2 to Rr1+r2 :

λ(α) = (log |σn(α)|)1≤n≤r1+r2 .

The image λ(Z×k ) of the group of units of k is a subgroup of the additive
group Rr1+r2 , it is contained in the hyperplane H of equation

x1 + · · · + xr1+r2 = 0,

and λ(Z×k ) is discrete in H. From these properties , one easily deduces that
as a Z–module, Z×k is finitely generated of rank ≤ r, where r = r1 + r2 − 1
is the dimension of H as a R–vector space.

Dirichlet’s units Theorem states:
Theorem. The group of units of an algebraic number field k of degree d
with r1 real embeddings and 2r2 conjugate complex embeddings is a finitely
generated group of rank r := r1 + r2 − 1.

In other terms, there exists a system of fundamental units (u1, . . . , ur)
in Z×k , such that any unit u ∈ Z×k can be written in a unique way as
ζum1

1 . . . umr
r , where ζ ∈ k is a root of unity and m1, . . . ,mr are rational

integers:
Z×k ) k×tors × Zr.

In the special case of a real quadratic field Q(
√

D) with D ≡ 2 or 3 (mod 4),
the fact that the group of units is a finitely generated group of rank 1
means that the set of solution of Pell’s equation X2 − Dy2 = ±1 is the
set of ±(xm, ym), m ∈ Z, where xm and ym are defined by xm + ym

√
D =

(x1 + y1

√
D)m, where (x1, y1) denotes the fundamental solution of Pell’s

equation.
The proof of the existence of a system of r fundamental units rests on

Minkowski’s geometry of numbers.
There are plenty of references on this subject. Lists of online number theory

lecture notes and teaching materials are available on the internet. For instance
http://www.numbertheory.org/ntw/lecture−notes.html
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