Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course $\mathrm{N}^{\circ} 9$, May 17, 2010

These are informal notes of my course given in April - June 2010 at IMPA (Instituto Nacional de Matematica Pura e Aplicada), Rio de Janeiro, Brazil.

This course was devoted to

- Proposition 94 of Mollin and Srinivasan on the negative Pell's equation $x^{2}-D y^{2}=-1$.
- The proof of Legendre's Theorem 111 according to which an approximation p / q of an irrational number x satisfying $|x-p / q| \leq 1 / q^{2}$ is a convergent of x.
- The proof of Corollary 100 on the continued fraction expansion of the square root of a rational number.
- An introduction to number fields and the connexion between Pell's equation and Dirichlet's unit Theorem.

Dirichlet's unit Theorem

A number field is a finite algebraic extension of \mathbf{Q}, which means a field containing \mathbf{Q} as a subfield and which is a \mathbf{Q}-vector space of finite dimension.

In a finite extension, any element is algebraic.
An example of a number field is $\mathbf{Q}(\alpha)$ (the smallest field containing α, or the field generated by α), when α is an algebraic number. In this case $\mathbf{Q}(\alpha)=\mathbf{Q}[\alpha]$, which means that the ring $\mathbf{Q}[\alpha]$ generated by α over \mathbf{Q} is a field. According to the Theorem of the primitive element, any number field can be written $\mathbf{Q}(\alpha)$ for some algebraic number α.

Let $f \in \mathbf{Q}[X]$ be the (monic) irreducible polynomial of α. The degree d of f is the dimension of the \mathbf{Q}-vector space $\mathbf{Q}(\alpha)$, it is called the degree of α over \mathbf{Q} and also the degree of the extension k / \mathbf{Q}, it is denoted by $[\mathbf{Q}(\alpha): \mathbf{Q}]$.

When we factorize the polynomial f over \mathbf{R}, we get a certain number, say r_{1}, of degree 1 polynomials, and a certain number, say r_{2}, of degree 2 polynomials with negative discriminant. Hence $0 \leq r_{1} \leq d, 0 \leq r_{2} \leq d / 2$ and $r_{1}+2 r_{2}=d$. In \mathbf{C}, f has d distinct roots, r_{1} of which are real, say $\alpha_{1}, \ldots, \alpha_{r_{1}}$, and $2 r_{2}$ of which are not real and pairwise complex conjugates, say $\alpha_{r_{1}+1}, \ldots, \alpha_{r_{1}+r_{2}}, \bar{\alpha}_{r_{1}+1}, \ldots, \bar{\alpha}_{r_{1}+r_{2}}$. There are exactly d fields homomorphisms (also called embeddings) $\sigma_{i}: k \longrightarrow \mathbf{C}$, where, for $1 \leq i \leq d, \sigma_{i}$ is uniquely determined by $\sigma_{i}(\alpha)=\alpha_{i}$. For γ in k, the elements $\sigma_{i}(\gamma)$ are the conjugates of γ (that means the complex roots of the irreducible polynomial of γ), n of them are distinct, where $n=[\mathbf{Q}(\gamma): \mathbf{Q}]$ divides d, say $d=n k$, and

$$
\prod_{i=1}^{d}\left(X-\sigma_{i}(\gamma)\right)
$$

is the k-th power of the irreducible polynomial of γ.
The norm $\mathrm{N}_{k / \mathrm{Q}}$ is the homomorphism between the multiplicative groups $k^{\times}=k \backslash\{0\} \longrightarrow \mathbf{Q}^{\times}$defined by

$$
\mathrm{N}_{k / \mathbf{Q}}(\gamma)=\sigma_{1}(\gamma) \cdots \sigma_{d}(\gamma)
$$

The canonical embedding of k is $\underline{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{r_{1}+r_{2}}\right): k \longrightarrow \mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}$.
An algebraic number α is called an algebraic integer is it satisfies the following equivalent conditions.
(i) The irreducible (monic) polynomial of α in $\mathbf{Q}[X]$ has its coefficients in Z.
(ii) There exists a monic polynomial with rational integer coefficients having α as a root.
(iii) The subring $\mathbf{Z}[\alpha]$ of \mathbf{C} generated by α is a finitely generated \mathbf{Z}-module.
(iii) There exists a subring of \mathbf{C} containing $\mathbf{Z}[\alpha]$ which is a finitely generated Z-module.

For instance, the algebraic integers in \mathbf{Q} are the rational integers.
The set of algebraic integers is a subring of \mathbf{C}. Its intersection with a number field k is the ring of integers of k, which we denote by \mathbf{Z}_{k}. For instance, when $k=\mathbf{Q}(\sqrt{D})$,

$$
\mathbf{Z}_{k}= \begin{cases}\mathbf{Z}[\sqrt{D}] & \text { if } D \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \mathbf{Z}[(1+\sqrt{D}) / 2] & \text { if } D \equiv 1 \quad(\bmod 4)\end{cases}
$$

It is easy to check that the image $\underline{\sigma}\left(\mathbf{Z}_{k}\right)$ of the ring of integers of k under the canonical embedding is discrete in $\mathbf{R}^{r_{1}} \times \mathbf{C}^{r_{2}}$.

The group of units \mathbf{Z}_{k}^{\times}of \mathbf{Z}_{k} is also called the group of units of the number field k (this terminology is standard but should not yield to a confusion: recall that the units in a field k are the non-zero elements of k !). An integer in k is a unit if and only if it has norm ± 1. The torsion elements of \mathbf{Z}_{k}^{\times} are the roots of unity in k, it is easy to check that they form a finite cyclic group $k_{\text {tors }}^{\times}$.

The logarithmic embedding is the map $\lambda: k^{\times} \longrightarrow \mathbf{R}^{r_{1}+r_{2}}$ obtained by composing the restriction of $\underline{\sigma}$ to k^{\times}with the map

$$
\left(z_{n}\right)_{1 \leq n \leq r_{1}+r_{2}} \longmapsto\left(\log \left|z_{n}\right|\right)_{1 \leq n \leq r_{1}+r_{2}}
$$

from $\left(\mathbf{R}^{\times}\right)^{r_{1}} \times\left(\mathbf{C}^{\times}\right)^{r_{2}}$ to $\mathbf{R}^{r_{1}+r_{2}}$:

$$
\lambda(\alpha)=\left(\log \left|\sigma_{n}(\alpha)\right|\right)_{1 \leq n \leq r_{1}+r_{2}} .
$$

The image $\lambda\left(\mathbf{Z}_{k}^{\times}\right)$of the group of units of k is a subgroup of the additive group $\mathbf{R}^{r_{1}+r_{2}}$, it is contained in the hyperplane H of equation

$$
x_{1}+\cdots+x_{r_{1}+r_{2}}=0
$$

and $\lambda\left(\mathbf{Z}_{k}^{\times}\right)$is discrete in H. From these properties, one easily deduces that as a \mathbf{Z}-module, \mathbf{Z}_{k}^{\times}is finitely generated of rank $\leq r$, where $r=r_{1}+r_{2}-1$ is the dimension of H as a \mathbf{R}-vector space.

Dirichlet's units Theorem states:
Theorem. The group of units of an algebraic number field k of degree d with r_{1} real embeddings and $2 r_{2}$ conjugate complex embeddings is a finitely generated group of rank $r:=r_{1}+r_{2}-1$.

In other terms, there exists a system of fundamental units $\left(u_{1}, \ldots, u_{r}\right)$ in \mathbf{Z}_{k}^{\times}, such that any unit $u \in \mathbf{Z}_{k}^{\times}$can be written in a unique way as $\zeta u_{1}^{m_{1}} \ldots u_{r}^{m_{r}}$, where $\zeta \in k$ is a root of unity and m_{1}, \ldots, m_{r} are rational integers:

$$
\mathbf{Z}_{k}^{\times} \simeq k_{\mathrm{tors}}^{\times} \times \mathbf{Z}^{r}
$$

In the special case of a real quadratic field $\mathbf{Q}(\sqrt{D})$ with $D \equiv 2 \operatorname{or} 3(\bmod 4)$, the fact that the group of units is a finitely generated group of rank 1 means that the set of solution of Pell's equation $X^{2}-D y^{2}= \pm 1$ is the set of $\pm\left(x_{m}, y_{m}\right), m \in \mathbf{Z}$, where x_{m} and y_{m} are defined by $x_{m}+y_{m} \sqrt{D}=$ $\left(x_{1}+y_{1} \sqrt{D}\right)^{m}$, where $\left(x_{1}, y_{1}\right)$ denotes the fundamental solution of Pell's equation.

The proof of the existence of a system of r fundamental units rests on Minkowski's geometry of numbers.

There are plenty of references on this subject. Lists of online number theory lecture notes and teaching materials are available on the internet. For instance
http://www.numbertheory.org/ntw/lecture_notes.html

