Updated: May 17, 2010

Diophantine approximation, irrationality and transcendence

Michel Waldschmidt

Course N°9, May 17, 2010

These are informal notes of my course given in April – June 2010 at IMPA (*Instituto Nacional de Matematica Pura e Aplicada*), Rio de Janeiro, Brazil.

This course was devoted to

- Proposition 94 of Mollin and Srinivasan on the negative Pell's equation $x^2 Dy^2 = -1$.
- The proof of Legendre's Theorem 111 according to which an approximation p/q of an irrational number x satisfying $|x p/q| \le 1/q^2$ is a convergent of x.
- The proof of Corollary 100 on the continued fraction expansion of the square root of a rational number.
- An introduction to number fields and the connexion between Pell's equation and Dirichlet's unit Theorem.

Dirichlet's unit Theorem

A number field is a finite algebraic extension of \mathbf{Q} , which means a field containing \mathbf{Q} as a subfield and which is a \mathbf{Q} -vector space of finite dimension.

In a finite extension, any element is algebraic.

An example of a number field is $\mathbf{Q}(\alpha)$ (the smallest field containing α , or the field generated by α), when α is an algebraic number. In this case $\mathbf{Q}(\alpha) = \mathbf{Q}[\alpha]$, which means that the ring $\mathbf{Q}[\alpha]$ generated by α over \mathbf{Q} is a field. According to the *Theorem of the primitive element*, any number field can be written $\mathbf{Q}(\alpha)$ for some algebraic number α .

Let $f \in \mathbf{Q}[X]$ be the (monic) irreducible polynomial of α . The degree d of f is the dimension of the \mathbf{Q} -vector space $\mathbf{Q}(\alpha)$, it is called the *degree* of α over \mathbf{Q} and also the *degree of the extension* k/\mathbf{Q} , it is denoted by $[\mathbf{Q}(\alpha): \mathbf{Q}]$.

When we factorize the polynomial f over \mathbf{R} , we get a certain number, say r_1 , of degree 1 polynomials, and a certain number, say r_2 , of degree 2 polynomials with negative discriminant. Hence $0 \leq r_1 \leq d$, $0 \leq r_2 \leq d/2$ and $r_1 + 2r_2 = d$. In \mathbf{C} , f has d distinct roots, r_1 of which are real, say $\alpha_1, \ldots, \alpha_{r_1}$, and $2r_2$ of which are not real and pairwise complex conjugates, say $\alpha_{r_1+1}, \ldots, \alpha_{r_1+r_2}, \overline{\alpha}_{r_1+1}, \ldots, \overline{\alpha}_{r_1+r_2}$. There are exactly d fields homomorphisms (also called *embeddings*) $\sigma_i : k \longrightarrow \mathbf{C}$, where, for $1 \leq i \leq d$, σ_i is uniquely determined by $\sigma_i(\alpha) = \alpha_i$. For γ in k, the elements $\sigma_i(\gamma)$ are the conjugates of γ (that means the complex roots of the irreducible polynomial of γ), n of them are distinct, where $n = [\mathbf{Q}(\gamma) : \mathbf{Q}]$ divides d, say d = nk, and

$$\prod_{i=1}^d (X - \sigma_i(\gamma))$$

is the k-th power of the irreducible polynomial of γ .

The norm $N_{k/\mathbf{Q}}$ is the homomorphism between the multiplicative groups $k^{\times} = k \setminus \{0\} \longrightarrow \mathbf{Q}^{\times}$ defined by

$$N_{k/\mathbf{Q}}(\gamma) = \sigma_1(\gamma) \cdots \sigma_d(\gamma).$$

The canonical embedding of k is $\underline{\sigma} = (\sigma_1, \ldots, \sigma_{r_1+r_2}) : k \longrightarrow \mathbf{R}^{r_1} \times \mathbf{C}^{r_2}$.

An algebraic number α is called an *algebraic integer* is it satisfies the following equivalent conditions.

(i) The irreducible (monic) polynomial of α in $\mathbf{Q}[X]$ has its coefficients in \mathbf{Z} .

(ii) There exists a monic polynomial with rational integer coefficients having α as a root.

(iii) The subring $\mathbf{Z}[\alpha]$ of \mathbf{C} generated by α is a finitely generated \mathbf{Z} -module. (iii) There exists a subring of \mathbf{C} containing $\mathbf{Z}[\alpha]$ which is a finitely generated \mathbf{Z} -module.

For instance, the algebraic integers in \mathbf{Q} are the rational integers.

The set of algebraic integers is a subring of **C**. Its intersection with a number field k is the ring of integers of k, which we denote by \mathbf{Z}_k . For instance, when $k = \mathbf{Q}(\sqrt{D})$,

$$\mathbf{Z}_k = \begin{cases} \mathbf{Z}[\sqrt{D}] & \text{if } D \equiv 2 \text{ or } 3 \pmod{4}, \\ \mathbf{Z}[(1+\sqrt{D})/2] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

It is easy to check that the image $\underline{\sigma}(\mathbf{Z}_k)$ of the ring of integers of k under the canonical embedding is discrete in $\mathbf{R}^{r_1} \times \mathbf{C}^{r_2}$. The group of units \mathbf{Z}_k^{\times} of \mathbf{Z}_k is also called *the group of units* of the number field k (this terminology is standard but should not yield to a confusion: recall that the units in a field k are the non-zero elements of k!). An integer in k is a unit if and only if it has norm ± 1 . The torsion elements of \mathbf{Z}_k^{\times} are the roots of unity in k, it is easy to check that they form a finite cyclic group k_{tors}^{\times} .

The logarithmic embedding is the map $\lambda : k^{\times} \longrightarrow \mathbf{R}^{r_1+r_2}$ obtained by composing the restriction of $\underline{\sigma}$ to k^{\times} with the map

$$(z_n)_{1 \le n \le r_1 + r_2} \longmapsto (\log |z_n|)_{1 \le n \le r_1 + r_2}$$

from $(\mathbf{R}^{\times})^{r_1} \times (\mathbf{C}^{\times})^{r_2}$ to $\mathbf{R}^{r_1+r_2}$:

$$\lambda(\alpha) = (\log |\sigma_n(\alpha)|)_{1 \le n \le r_1 + r_2}$$

The image $\lambda(\mathbf{Z}_k^{\times})$ of the group of units of k is a subgroup of the additive group $\mathbf{R}^{r_1+r_2}$, it is contained in the hyperplane H of equation

$$x_1 + \dots + x_{r_1 + r_2} = 0,$$

and $\lambda(\mathbf{Z}_{k}^{\times})$ is discrete in H. From these properties , one easily deduces that as a \mathbf{Z} -module, \mathbf{Z}_{k}^{\times} is finitely generated of rank $\leq r$, where $r = r_{1} + r_{2} - 1$ is the dimension of H as a \mathbf{R} -vector space.

Dirichlet's units Theorem states:

Theorem. The group of units of an algebraic number field k of degree d with r_1 real embeddings and $2r_2$ conjugate complex embeddings is a finitely generated group of rank $r := r_1 + r_2 - 1$.

In other terms, there exists a system of fundamental units (u_1, \ldots, u_r) in \mathbf{Z}_k^{\times} , such that any unit $u \in \mathbf{Z}_k^{\times}$ can be written in a unique way as $\zeta u_1^{m_1} \ldots u_r^{m_r}$, where $\zeta \in k$ is a root of unity and m_1, \ldots, m_r are rational integers:

$$\mathbf{Z}_k^{\times} \simeq k_{\mathrm{tors}}^{\times} \times \mathbf{Z}^r.$$

In the special case of a real quadratic field $\mathbf{Q}(\sqrt{D})$ with $D \equiv 2 \text{ or } 3 \pmod{4}$, the fact that the group of units is a finitely generated group of rank 1 means that the set of solution of Pell's equation $X^2 - Dy^2 = \pm 1$ is the set of $\pm(x_m, y_m)$, $m \in \mathbf{Z}$, where x_m and y_m are defined by $x_m + y_m\sqrt{D} = (x_1 + y_1\sqrt{D})^m$, where (x_1, y_1) denotes the fundamental solution of Pell's equation.

The proof of the existence of a system of r fundamental units rests on Minkowski's geometry of numbers.

There are plenty of references on this subject. Lists of *online number theory lecture notes and teaching materials* are available on the internet. For instance

http://www.numbertheory.org/ntw/lecture_notes.html