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Introduction : Hilbert’s 7th problem (1900)

Prove that the numbers
e™ = 23.140692632 . ..

and

V2 — 9665144142 . ..

Hilbert
(1862 — 1943)

are transcendental.

A transcendental number is a number which is not algebraic.
The algebraic numbers are the roots of the polynomials with
rational coefficients.

http://www-history.mcs.st-and.ac.uk/Biographies/Hilbert.html

Abstract

An integer-valued entire function is an entire function which is
analytic in the complex plane and takes integer values at the
nonnegative integers; an example is 2°.

A Hurwitz function is an entire function with derivatives of
any order taking integer values at 0; an example is €.

Lower bounds for the growth of such functions and similar
ones when they are not a polynomial have been investigated.

We survey this topic and we present some new results
involving Lidstone polynomials.
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Constance Reid : Hilbert George Pdlya Aleksandr Osipovich Gel'fond

The second problem became known as Hilbert's a” conjecture. As Hilbert GrOWth Of I nteger—va I ued entire fu nctions.

notes, corollaries of this conjecture include the transcendence of 2V and Pélya . N GEI 'fond . Z[l]
ofe™ = (exi)-i = (_1)—1'

An amusing incident concerning this conjecture is related in C. Reid’s
biography of Hilbert [Rei, C]. Carl Ludwig Siegel came to Gottingen as a
student in 1919. He always remembered a lecture by Hilbert who, want-
ing to give his audience examples of problems in the theory of numbers
which seem simple at first glance but which are, in fact, incredibly diffi-
cult, mentioned the Riemann Hypothesis, Fermat's Last Theorem and the
transcendence of 2¥2. Hilbert said that given recent progress he hoped to
see the proof of the Riemann Hypothesis in his lifetime. Fermat’s problem
required totally new methods and possibly the youngest members of the
audience would live to see it solved. As for 2¥2, Hilbert said that no one at
the lecture would live to see its proof. Hilbert was wrong! Siegel proved the

transcendence of 22 about 10 years later (unpublished) and the solution G Pélya AO Gel’fond
of the af conjecture came shortly afterwards. He was right about Fermat's
theorem and the Riemann Hypothesis is still unproved. (1887 — 1985) (1906 - 1968)
e Constance Reid. Hilbert. Springer Ver|ag 1970. http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
e Jay Goldman. The Queen of Mathematics : A Historically http://www-history.mcs.st-and.ac.uk/Biographies/Gelfond.html
Motivated Guide to Number Theory. Taylor & Francis, 1998.
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Integer-valued entire functions on N Integer-valued entire functions on N
Pdlya’s proof starts by expanding the function f into a
G. Pdlya (1915) : Newton interpolation series at the points 0,1,2, ... :
An entire function f which is 55 %
not a polynomial and satisfies \TRd f(z) = a0+ a1z +azz(2 = 1) +azz(z = 1)(z = 2) +- -
f(a) € Z for all nonnegative ;
integers a grows at least like
2%. It satisties Since f(n) is an integer for all
. 1 G. Pdlya ici
lim sup = log ||z > log 2. y n 2 0, the coefficients a,, are
Rooo IR (1887 — 1985) rational and one can bound
the denominators. If f does
) not grow fast, one deduces
Notation : that these coefficients vanish
|[flr = sup [f(2)] for sufficiently large n. I. Newton

lz|<R

(1643 1727)

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
P v grap v https://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html



Newton interpolation series

From

f(z) = flar)+(z—a1) f1(2),

we deduce

J1(2) = fi(a2)+(z—a2) fa(2), . ..

f(z)=ap+a1(z —aq) +as(z —an)(z —ag) + -

with

ap = f(au),

Newton interpolation

Integral formula :

with
1 f(z)dx

Clefl(Oéz),...,

Ap = fn(an—i-l)'

G % c(x—ag)(x—ag)--
and

Ro(2) = (2 — ) (= — )
1

(2= aj) + Ra(2)
G STENY
(2= )

f(z)dz

2 Jo (x — ap)(x —

az) -+ (x — an)(z = 2)
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An identity due to Hermite

1 1

z—a 1

r—z r—a r—orT—Z2

Ch. Hermite

(1822 - 1901)
Repeat :
1 1 zZ— oy 1 Z— Qo 1
r—z T—Q T—Qo \T—Qy T—Qy T—2Z

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hermite.html

Integer-valued entire function on Z[i]

S. Fukasawa (1928), A.O. Gel'fond (1929) :

An entire function f which is not a polynomial and satisfies
fla+1ib) € Z[i] for all a + ib € Z[i] grows at least like ¢ It

satisfies

1
li —1 > .
i Sup o, og|flr =

Proof : Expand f(z) into a Newton interpolation series at the

Gaussian integers.

A.O. Gel'fond : v > 107,

) .

10/67
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Entire functions vanishing on Z[i]

The canonical product associated with the lattice Z[i] is the
Weierstrass sigma function

o(z) ==z H

(1 z) . N 22

—_ — X — —

A w PAw Tow?)
weZi\{0}

which is an entire function vanishing on Z[].

o(z) grows like e™°/2 :

lim sup — log |o|x = =
1m sup — 1o o = —-
R_mp R2 gI0|Rr 5

Hence
107 <y <

ol

13 /67

Irrationality of e

The function e™ takes the value
(e™)*(=1)"
at the point a + ib € Z][i].
If the number
e™ = 23.140692 632 779 269 005 729 086 367 . ..
were rational, these values would all be rational numbers.

Gel'fond'’s proof yields the irrationality of €™ and more
generally the fact that ™ is not root of a polynomial X — ¢
with N > 1 and a € Q.

15 /67

Exact value of the constant v of Gel'fond

F. Gramain (1981) : v = 21
€

This is best possible : D.W. Masser (1980).

D.W. Masser

F. Gramain

Transcendence of €™

A.O. Gel'fond (1929) : €™ is transcendental.

More generally, for o nonzero algebraic number with log o # 0
and for 3 imaginary quadratic number,

o = exp(flog a)

is transcendental.

Example : o = —1, loga = im, B = —i, o = (=1)" = ¢™.
R.0. Kuzmin (1930) : 2V2 is transcendental.

More generally, for o« nonzero algebraic number with log o # 0
and for [ real quadratic number,

o = exp(flog a)

is transcendental.
Example : a =2, loga = log 2, g = V2, af = V2,

14 /67
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Solution of Hilbert's seventh problem Entire functions

An entire function is a function C — C which is analytic
(= holomorphic) in C.
A.O. Gel'fond and Th. Schneider (1934).
Examples are : polynomials, the exponential function
Transcendence of o°
and of (log ay)/(log az)
for algebraic o, 3, s and aw.

n

-y
n!’

n>0

trigonometric functions sin z, cos z, sinh z, cosh z. ..
An entire function which is not a polynomial is transcendental.

The zeroes of an entire function are isolated.

17 /67 18 /67

Entire functions vanishing on Z Order and type of entire functions

The function sin(7z) vanishes on Z. . . . .
For o € Z, o > 0, the function e*" is an entire function of

A finite sum order . . . . .

For 7 € C, 7 # 0, the function €7* is an entire function of

a1(2)sin(7z) + az(2) sin(27z) + - - - + a,(2) sin(nmwz) order 1 and exponential type |7|.

with a1(z),a2(2),...,a,(z) in C[z] vanishes on Z.

For 7 € C, 7 # 0, the function
The same is true for an infinite sum which is uniformly oiTTE _ pmitnz
convergent. sin(rz) = :

21

Question : which is the smallest nonzero entire function has order 1 and exponential type |7|m.

vanishing at each point of Z7?

19/67 20/67



Order and type of entire functions

Maximum modulus principle :

|l = sup [f(2)] = sup [f(2)].

|2|=r |z|<r

The order of an entire function f is

log 1 -
o(f) = limsup 0808 l/Ir /]
r—00 log r

)

while the exponential type of an entire function is

log | f1,
7(f) = limsup log |/l

r—00 r

21/67

Order and type of entire functions

If the exponential type is finite, then f has order < 1.
If f has order < 1, then the exponential type is 0.

Examples :

A polynomial has order 0, hence exponential type 0.

The function e has order 2, hence infinite exponential type.
The function e®” has infinite order, hence infinite exponential

type.

23 /67

Entire functions of finite exponential type

The exponential type of an entire function is also given by

7(f) = lim sup |f(")(zo)|1/” (z0 € C).

n—oo

Notation :

e = () 1o,

The proof rests on Cauchy’s estimate for the coefficients of
the Taylor series and on Stirling's formula for n!.

Example :

ne’rz‘l/n

(em)(”) =T7""%, nh_}rxolo |7 = 7.

22 /67

Entire functions vanishing on Z

Jensens’s Formula :
A nonzero entire function vanishing on Z has exponential type
> 1.

F. Carlson (1914) :
A nonzero entire function vanishing on Z has exponential type
> .

The function sin(7z) has exponential type 7.

24 /67



Entire functions vanishing on N Entire functions vanishing on N of finite
F. Carlson (1914) : the smallest entire functions vanishing at exponential type
each point in N is

An entire function f vanishing on N of finite exponential type
1 - —> " 7(f) can be written

f(2) = ai(2)sin(rz) + as(z) sin(272) + - - - + a,(2) sin(nmz
(Hadamard canonical product for 7). (2) = a(z)sin(mz) + az(z) sin(2mz) (=) sin(nmz)

Another example of a function vanishing at each point in with ay, ... a, in Clz] and n < 7(f)/7.
{0,1,2,...} is Hadamard canonical product for N (Weierstrass
form of the Gamma function) If 7(f) <, then f = 0.
1 = If 7(f) < 2m, then f = ay(2)sin(7z).
74 o z/n
E ze 7 L[l(l z/n)e*’™.

If a, # 0, then 7(f) = nr.
It has order 1 and infinite exponential type.

25 /67 26 /67

Integer-valued entire functions G. Pélya (1915)

G. Pdlya (1915). An integer-valued entire function is an entire
function f (analytic in C) which satisfies f(n) € Z for
n=0,1,2,....

Example : the polynomials

The function 27 is a transcendental (= not a polynomial)
integer-valued entire function.

2p/q \/_p 2hmpn/Qn — hHl 2pn/‘1n7
z2(z—1) 2(z—=1)---(z=n+1)

1,2 o e
T T ! ’ log 2 log 2)? log 2)3
2 " QZ:eXp(zlog2)21+ZOg +<Z 0g2) +(Z 082)
1 2 6
Any polynomial with complex coefficients which is an
integer-valued entire function is a linear combination with G. Pdlya (1915) : 2% is the smallest transcendental
coefficients in Z of these polynomials : integer-valued entire function. It has exponential type
z(z—1 zZz—1)---(z—n+1 =

do bzt an . L Gt n$ )y log2 = 0.693147180. ..

(finite sum) with a; in Z.

27 /67 28 /67



Growth of integer-valued entire functions Carlson vs Pdlya

G. Pdlya (1915) : an integral valued entire of exponential type

< log2 is a polynomial. F. Carlson (1914) : an entire function f of exponential type
< 7 satisfying f(N) = {0} is 0.

The function sin(7z) is a transcendental entire function of
lim v/r27"| f], > 0. exponential type 7 vanishing on Z.

T—>00

More precisely, if f is a transcendental integer-valued entire
function, then

Equivalent formulation : G. Pdlya (1915) : an integer-valued entire function of
exponential type < log2 is a polynomial.

The function 27 is an integer-valued entire function of
exponential type log 2.

If f is an integer-valued entire function such that
lim /27| f|, = 0,
r—00

then f is a polynomial.

29 /67 30/67

G.H. Hardy (1917) A. Selberg (1941)

A refinement of Pdlya's result
was achieved by G.H. Hardy
who proved that if f is an

A. Selberg proved that if an
integer—valued entire function

integer-valued entire function f satisfies
such that (f) < log2 1
T <logl2+ ——, g
lim 27"|f|, = 0, #1500 L
e _ G.H. Hardy then f is of the form : r
then f is a polynomial. (1877 — 1947) PO(Z) + P1<Z)22, where P, A. Selberg
and P; are polynomials. (1917 - 2007)

Compare with Pdlya's assumption :

lim /r27"|f|, = 0.
r—00

There are only ]countably many\ such functions.

https://wwwu-history.mcs.st-andrews.ac.uk/Biographies/Selberg.html

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hardy.html
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Ch. Pisot (1942) Completely integer—valued entire function

Ch. Pisot proved that if an integer—valued entire function f A completely integer-valued entire function is an entire
has exponential type < 0.8, then f is of the form function which takes values in Z at all points in Z.
Py(z) +2°P1(z) + v*Pa(2) + 7 P3(2), Let u > 1 be a quadratic unit, root of a polynomial

5 .
where Py, P, Py, P3 are polynomials and ,7 are the non real X"+ aX +1 for some a € Z. Then the functions
roots of the polynomial 2% — 3z + 3. ut —u?

w*+u* and -

This contains the result of w—u
Selberg, since L are completely integer—valued entire function of exponential
1
| logy| = 0.758 98 - - - > log 2+—— = 0.693. type log u. o
1500 Examples of such quadratic units are the roots u and u~! of

_ _ the polynomial X? —3X +1 :
Pisot obtained more general
result for functions of Ch. Pisot 3++5 . 3—-5
exponential type < 0.9934 . .. (1910 - 1984) R
https://www-history.mcs.st-andrews.ac.uk/Biographies/Pisot.html

33/67 34 /67
Quizz Completely integer—valued entire function

Let ¢ be the Golden ratio and let ¢ = —¢ !, so that The function

X2 - X —1=(X - 9)(X ). i(3+\/5>2_ 1 <3+\/5>2

V5 2 N 2

is a completely integer—valued transcendental entire function.

For any n € Z we have

o+ " €L
In 1921, F. Carlson proved that if the type 7(f) of a
completely integer—valued entire function f satisfies

3 5
7(f) <log< +2\/_> =0.962...,
Why is ¢ + ¢* not a counterexample to Pélya’s result on the

growth of transcendental integer-valued entire functions ? then f is a polynomial.

and 3
log ¢ = —log |¢| < log 2.

35/67 36 /67



A. Selberg (1941) Hurwitz functions

_ ) A Hurwitz function is an
A. Selberg : if the type 7(f) of a completely integer—valued entire function f such that *

entire function f satisfies f™(0) € Z for all n. > 0.
3 5
7(f) < log < +2\/_) +2.1076,

then f is of the form

A. Hurwitz
(1859 — 1919)

The polynomials which are Hurwitz functions are the

3+v5\ 3+v5) :
2\/_) + Py(z) ( 2\/_> polynomials of the form

Po(2) + P1(2) (

22 23 n

_ a0+a1z+a2—+a3—+---+an—'

where Pg, Py, Py are polynomials. 2 6 n!
with q; € Z.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html
37/67 38/67

Hurwitz functions Kakeya (1916)
S. Kakeya (1916) : a Hurwitz function of exponential type < 1
is a polynomial.
More precisely, he proved that a Hurwitz function satisfying

The exponential function
P limsup v/re”"|f], =0

2 3 n r—00
; z z z
ee=14+24+—+—+4+-+—=4--- . .
2 6 n! is a polynomial.
is a transcendental Hurwitz function of exponential type 1. For Question : is 1/ superfluous ? Is e* the smallest Hurwitz
a € Z, the function e** is also a Hurwitz function of function ?

exponential type |a|. . . : :
xponential type |a| Recall Pélya vs Hardy : an integer-valued entire functions of

low growth is a polynomial.

Pélya’s assumption : lim +/r27"|f|, = 0.
r—>00

Hardy's assumption : lim 27"|f], = 0.
r—00

39 /67 40 /67



Pélya (1921)
G. Pdlya refined Kakeya's result in 1921 : a Hurwitz function

satisfying
1
limsup vre "|f], < —
V2

r—00
is a polynomial.
(Kakeya's assumption : lim sup = 0).
This is best possible for ‘uncountably many\ functions, as
shown by the functions

@)= 5

n>0

with e, € {1, —1} which satisfy

limsup vre " f|, = —-
I Sup Ve f or

41 /67

Integer—valued functions vs Hurwitz functions :

Let us display horizontally the rational integers and vertically
the derivatives.

integer—valued functions : Hurwitz functions : vertical

horizontal
f o o o ° f() .
01 2 n
froe
f e
0

43 /67

Sato and Straus (1964)

D. Sato and E.G. Straus
proved that for every € > 0,
there exists a transcendental
Hurwitz function with

\ <4
1 -t -\
limsup v2rre™" ( 1+ e Ifl, <1, NI /
r—00 24r f i A
while every Hurwitz function E.G. Straus
for which (1922 - 1983)
1 — —1
limsupv2rre™ | 1+ € Ifl, <1
r—00 24r

is a polynomial.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Straus.html

42 /67

Several points and / or several derivatives

There are several natural ways to mix integer—valued functions
and Hurwitz functions :

» horizontally, one may include finitely may derivatives in
the study of integer—valued functions.

A k—times integer—valued function is an entire function f
such that fU)(n) € Z for all n > 0 and
i=0,1,.... k—1.

» Vertically, one may consider entire functions with all
derivatives at finitely many points taking integer values.

A k—point Hurwitz function is an entire function having
all its derivatives at 0,1, ...,k — 1 taking integer values.

44 /67



k—times integer-valued functions (horizontal) Two—point Hurwitz functions (vertical)
k=2:fM0)ez, fM(1)eZ(n>0).

k=2 fn) €L fin) € Z{n=0) D. Sato (1971) : every two

f' e o o Do point Hurwitz entire functions
f o o @ . f™ e e for which there exists a
01 2 noee- : Co positive constant C' such that
J}/ : . |f|- < Cexp (?”Q—T—logr)
According to Gel'fond (1929), a k—times integer—valued 0 1 , .
1 is a polynomial.
function of exponential type < klog (1 + e_T) is a

polynomial.

Also, there exist transcendental two point Hurwitz entire
functions with

If]r < exp (7"2+r—logr—|—0(1)).

The function (sin(7z))* has exponential type k7 and vanishes
with multiplicity k£ on Z.

45 /67 46 / 67

k—point Hurwitz functions k—point Hurwitz functions

For k > 3 our knowledge is more limited.
D. Sato (1971) proved that the order of k—point Hurwitz

functions is > k. L. Bieberbach (1953) stated

This is best possible, as shown by the function e(*~1)(z=k+1), that '_f a transcendentgl entire
function f of order p is a
For an entire function f of order < p, define k—point Hurwitz entire
function, then either o > k, or
. log | f], 0 = k and the type 74 (f) of f
T, = lim su . . .
o(f) Hoop re satisfies 74 (f) > 1. L. Bieberbach
, (1886 — 1982)
f grows like e7e(F)=*
Example : for k > 1, the function f(z) = e*~ 1) (z=k+1) has
order k and Tk(f) =1-:it grows like sz. ) https://www-history.mcs.st-andrews.ac.uk/Biographies/Bieberbach.html
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k—point Hurwitz functions

However, as noted by D. Sato, since the polynomial
1
a(z) = §z(z —1)(z—=2)(z—3)

can be written

it satisfies a/(z) € Z[z].

It follows that the function e*(*) is a 4-point Hurwitz
transcendental entire function of order o = 4 and 7,(f) = 1/2.

49 /67

G.A. Fridman (1968), M. Welter (2005)

E.G. Straus (1951) suggested that transcendental utterly
integer—valued entire function may not exist.

G.A. Fridman (1968) showed that there exists transcendental
utterly integer—valued function f with

lim su
r—00

log1 .
p0g07ng|f| <

and proved that a transcendental utterly integer—valued
function f satisfies

lim sup

7—00

loglog |}, > log(1+ 1/e).
,

The bound log(1 + 1/e) was improved by M. Welter (2005) to
log2 : hence f grows like €2~ (double exponential).

51

67

Utterly integer—valued entire functions

Another way of mixing the horizontal and the vertical
generalizations is to introduce utterly integer—valued entire
function, namely entire functions f which satisfy f(™)(m) € Z
forall n >0 and m € Z.

PR
;-
f e

0 1

Sato's examples

An utterly integer—valued transcendental entire functions has
infinite order : it grows like a double exponential e

D. Sato (1985) constructed a nondenumerable set of utterly
integer—valued transcendental entire functions.

He selected inductively the coefficients a,, with

and defined
f(z) = Z a, sin"(27z).

n>0

50/67
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Abel series

There is also a diagonal way of mixing the questions of
integer—valued functions and Hurwitz functions by considering
entire functions f such that f(n) € Z. The source of this
question goes back to N. Abel.

f(n) °
f! ° :
[e Niels Abel
0 1 -+ 1 ---

(1802 — 1829)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html
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Abel’s interpolation problem

The lack of unicity arises from nonzero entire functions f, like
sin(rz/2), satisfying £ (n) = 0 for n > 0.

Let us start with polynomials. Given a polynomial f, we are
looking for a finite expansion

F(2) =Y [ (n)Pu(2).
n>0
We need a sequence of polynomials (P,,),>¢ satisfying

PW(k) =6, for k>0 and n>0.

55 /67

Abel series

G.H. Halphén V. Pareto

(1844 — 1889) (1848 — 1923)
Abel’s interpolation problem is to find an entire function f for
which the values £ (n) are prescribed. It was studied by
G. Halphén (1882), V. Pareto (1892), W. Gontcharoff (1930),
R.C. Buck (1946).

https://www-history.mcs.st-andrews.ac.uk/Biographies/Halphen.html

https://fr.wikipedia.org/wiki/Vilfredo_Pareto

54 /67

Abel polynomials

The conditions
P®(k) =6, for k>0 and n>0
amount to Py =1,

Pl(z) =P, 1(2—1), P,(0)=0 (n>1).

The solution

Po(z) = %z(z )l (> 1)

was obtained by Abel.
It follows that any polynomial f has a finite expansion

f(z) = [ (n)Pu(2).

n>0

56 /67



G. Halphén (1882)

Such an expansion (with a series in the right hand side which
is absolutely and uniformly convergent on any compact of C)
holds also for any entire function f of finite exponential type
< w, where w = 0.278464 542 . . . is the positive real number
defined by wev ™ = 1.

Example (Legendre, Abel). For |7| < w, we have

1 1
e =14+7e"2+ 5(7_67)22(2 —-2)+ 6<T€T>3Z(2 — 3)2 4.

If an entire function f of exponential type < w satisfies
™ (n) = 0 for all sufficiently large n, then f is a polynomial.

57 /67

Variations on this theme

» ¢ analogues and multiplicative versions (geometric
progressions) :
Gel'fond (1933, 1952), J.A. Kazmin (1973), J.P. Bézivin
(1984, 1992) F. Gramain (1990), M. Welter (2000,
2005), J-P. Bézivin (2014).

» analogs in finite characteristic :
D. Adam (2011), D. Adam and M. Welter (2015).

» congruences :
A. Perelli and U. Zannier (1981), J. Pila (2003, 2005).

» several variables :
S. Lang (1965), F. Gross (1965), A. Baker (1967),
V. Avanissian and R. Gay (1975), F. Gramain (1977,
1986), P. Bundschuh (1980). ...
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F. Bertrandias (1958), R. Wallisser (1969)

Let 70 = 0.567143290... be the positive real number defined
by 9™ = 1.

The function f(z) = €™ satisfies f/(z)
f(0) =1, hence f™(n) =1 for all n >

= f(z—1) and
0.

F. Bertrandias (1958) : an entire function f of exponential
type < 7y such that f(")(n) € Z for all sufficiently large
integers n > 0 is a polynomial.

Let 7, be the complex number defined by me™ = (1 +1iv/3)/2.
Then an entire function f of exponential type

< |m| =0.616 ... such that f"(n) € Z for all sufficiently
large integers n > 0 is of the form P(z) + Q(z)e™*, where P
and () are polynomials.

Connection with transcendental number theory

In 1950, E. G. Straus introduced a connection between
integer—valued functions and transcendence results, including
the Hermite—Lindemann Theorem on the transcendence of ¢
for a # 0 algebraic.

However, as he pointed out in a footnote, at the same time,
Th. Schneider obtained more far reaching results, which
ultimately gave rise to the Schneider—Lang Criterion (1962).
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The Masser—Gramain—Weber constant
D.W. Masser (1980) and F. Gramain—-M. Weber (1985)

studied an analog of Euler's constant for Z][i], which arises in a

2—dimensional analogue of Stirling's formula :

6:

where 7, is the radius of the smallest disc in R? that contains
at least k integer lattice points inside it or on its boundary.

: 2\—1 _
7}1—{1010 (Z(m’k ) logn

k=2

)

In 2013, G. Melquiond, W. G. Nowak and P. Zimmermann
computed the first four digits :

1.819776 < 6 < 1.819833,

disproving a conjecture of F. Gramain.

Arithmetic result for Lidstone interpolation

Let sy and s; be two complex numbers and f an entire
function satisfying f®™(sy) € Z and f?")(s,) € Z for all
sufficiently large n.

If
f(2n+1) o T(f) < min {1’ T
fe e |so — s1
; : then f is a polynomial.
]}/,/ ° This is best possible.
O
f
S0 81

e values in Z

o no condition

b
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Lidstone and Whittaker interpolation

B

George James Lidstone
(1870 — 1952)

(2ﬁ+1) <')

f(2n)
P
e
f
So  S1

John Macnaghten Whittaker
(1905 — 1984)

(2ﬁ+1) .

f(2n)
P
e
f o
S0 S1

Arithmetic result for Lidstone interpolation

™

Ifr(f) < min{l

]
|so — s1]

}, P (so) € Z and fPM(s)) e Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =

sinh(z — s7)
sinh(so — 81)

has exponential type 1 and satisfies f(>")(s,) = 1 and

f@(s1) =0 for all n. > 0.

The function

f(2) = sin <7r

has exponential type

[s1—s0]

Z— 80
S1 — 50

and satisfies

F@ (s0) = £ (s1) = 0 for all n > 0.

62 /67

64 /67



Arithmetic result for Whittaker interpolation

Let sy and s; be two complex numbers and f an entire
function satisfying f"*Y(sq) € Z and f?")(s,) € Z for each
sufficiently large n.

Assume
f(2n+1) e O T(f) <min{1,L}‘
f(Q”) o e 2|s0 — s1
; : Then f is a polynomial.
];l,/ © This is best possible.
[}
f o
So S1
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Arithmetic result for Whittaker interpolation

™

IfFr(f) <min{1, ——
) { 2|so — s1
for each sufficiently large n, then f is a polynomial.

The function
cosh(z — s7)

f(z) =

~ cosh(sy — 1)

has exponential type 1 and satisfies f(2"*!)(sy) = 1 and
f@(s1) =0 for all n. > 0.

The function
_cos (T 250
f(z) = cos (2 p— So)

has exponential type s——— and satisfies
2[s1—s0]
fE Y (50) = f@(sy) =0 for all n > 0.

} SO (s) €2 and V() € Z
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