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Abstract

An integer-valued entire function is an entire function which is
analytic in the complex plane and takes integer values at the
nonnegative integers ; an example is 2z.

A Hurwitz function is an entire function with derivatives of
any order taking integer values at 0 ; an example is ez.

Lower bounds for the growth of such functions and similar
ones when they are not a polynomial have been investigated.

We survey this topic and we present some new results
involving Lidstone polynomials.

2 / 67

Introduction : Hilbert’s 7th problem (1900)

Hilbert
(1862 – 1943)

Prove that the numbers

e⇡ = 23.140 692 632 . . .

and

2
p
2 = 2.665 144 142 . . .

are transcendental.

A transcendental number is a number which is not algebraic.
The algebraic numbers are the roots of the polynomials with
rational coe�cients.

http://www-history.mcs.st-and.ac.uk/Biographies/Hilbert.html
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Values of the exponential function ez = exp(z)

e⇡ = 1 +
⇡

1
+

⇡
2

2
+

⇡
3

6
+ · · ·+ ⇡

n

n!
+ · · ·

The number

e = e1 = 1 +
1

1
+

1

2
+

1

6
+ · · ·+ 1

n!
+ · · ·

is transcendental (Hermite, 1873), while

elog 2 = 1 +
log 2

1
+

(log 2)2

2
+ · · ·+ (log 2)n

n!
+ · · · = 2

ei⇡ = 1 +
i⇡

1
+

(i⇡)2

2
+ · · ·+ (i⇡)n

n!
+ · · · = �1

are rational numbers.
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Constance Reid : Hilbert

• Constance Reid. Hilbert. Springer Verlag 1970.

• Jay Goldman. The Queen of Mathematics : A Historically

Motivated Guide to Number Theory. Taylor & Francis, 1998.
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George Pólya Aleksandr Osipovich Gel’fond

Growth of integer-valued entire functions.
Pólya : N Gel’fond : Z[i]

G. Pólya
(1887 – 1985)

A.O. Gel’fond
(1906 – 1968)

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html

http://www-history.mcs.st-and.ac.uk/Biographies/Gelfond.html
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Integer-valued entire functions on N

G. Pólya (1915) :
An entire function f which is

not a polynomial and satisfies

f(a) 2 Z for all nonnegative

integers a grows at least like

2z. It satisfies

lim sup
R!1

1

R
log |f |R � log 2.

G. Pólya
(1887 – 1985)

Notation :
|f |R := sup

|z|R
|f(z)|.

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
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Integer-valued entire functions on N
Pólya’s proof starts by expanding the function f into a
Newton interpolation series at the points 0, 1, 2, . . . :

f(z) = a0 + a1z + a2z(z � 1) + a3z(z � 1)(z � 2) + · · ·

Since f(n) is an integer for all
n � 0, the coe�cients an are
rational and one can bound
the denominators. If f does
not grow fast, one deduces
that these coe�cients vanish
for su�ciently large n. I. Newton

(1643– 1727)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html
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Newton interpolation series

From

f(z) = f(↵1)+(z�↵1)f 1(z), f 1(z) = f 1(↵2)+(z�↵2)f 2(z), . . .

we deduce

f(z) = a0 + a1(z � ↵1) + a2(z � ↵1)(z � ↵2) + · · ·

with

a0 = f(↵1), a1 = f 1(↵2), . . . , an = fn(↵n+1).
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An identity due to Hermite

1

x� z
=

1

x� ↵
+
z � ↵

x� ↵
· 1

x� z
·

Ch. Hermite
(1822 – 1901)

Repeat :

1

x� z
=

1

x� ↵1
+

z � ↵1

x� ↵1
·
✓

1

x� ↵2
+

z � ↵2

x� ↵2
· 1

x� z

◆
·

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hermite.html
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Newton interpolation
Integral formula :

f(z) =
n�1X

j=0

aj(z � ↵1) · · · (z � ↵j) +Rn(z)

with

aj =
1

2i⇡

Z

C

f(x)dx

(x� ↵1)(x� ↵2) · · · (x� ↵j+1)
(0  j  n�1)

and

Rn(z) = (z � ↵1)(z � ↵2) · · · (z � ↵n)·
1

2i⇡

Z

C

f(x)dx

(x� ↵1)(x� ↵2) · · · (x� ↵n)(x� z)
·
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Integer-valued entire function on Z[i]

S. Fukasawa (1928), A.O. Gel’fond (1929) :
An entire function f which is not a polynomial and satisfies

f(a+ ib) 2 Z[i] for all a+ ib 2 Z[i] grows at least like e
cz2

. It

satisfies

lim sup
R!1

1

R2
log |f |R � �.

Proof : Expand f(z) into a Newton interpolation series at the
Gaussian integers.

A.O. Gel’fond : � � 10�45.
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Entire functions vanishing on Z[i]
The canonical product associated with the lattice Z[i] is the
Weierstrass sigma function

�(z) = z

Y

!2Z[i]\{0}

⇣
1� z

!

⌘
exp

✓
z

!
+

z
2

2!2

◆
,

which is an entire function vanishing on Z[i].
�(z) grows like e

⇡z2/2 :

lim sup
R!1

1

R2
log |�|R =

⇡

2
·

Hence
10�45  �  ⇡

2
·

13 / 67

Exact value of the constant � of Gel’fond

F. Gramain (1981) : � =
⇡

2e
·

This is best possible : D.W. Masser (1980).

F. Gramain D.W. Masser
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Irrationality of e⇡

The function e⇡z takes the value

(e⇡)a(�1)b

at the point a+ ib 2 Z[i].

If the number

e⇡ = 23.140 692 632 779 269 005 729 086 367 . . .

were rational, these values would all be rational numbers.

Gel’fond’s proof yields the irrationality of e⇡ and more
generally the fact that e⇡ is not root of a polynomial XN � a

with N � 1 and a 2 Q.
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Transcendence of e⇡

A.O. Gel’fond (1929) : e⇡ is transcendental.

More generally, for ↵ nonzero algebraic number with log↵ 6= 0
and for � imaginary quadratic number,

↵
� = exp(� log↵)

is transcendental.
Example : ↵ = �1, log↵ = i⇡, � = �i, ↵� = (�1)�i = e

⇡.

R.O. Kuzmin (1930) : 2
p
2 is transcendental.

More generally, for ↵ nonzero algebraic number with log↵ 6= 0
and for � real quadratic number,

↵
� = exp(� log↵)

is transcendental.
Example : ↵ = 2, log↵ = log 2, � =

p
2, ↵� = 2

p
2.
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Solution of Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).

Transcendence of ↵
�

and of (log↵1)/(log↵2)
for algebraic ↵, �, ↵2 and ↵2.
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Entire functions

An entire function is a function C ! C which is analytic
(= holomorphic) in C.

Examples are : polynomials, the exponential function

ez =
X

n�0

z
n

n!
,

trigonometric functions sin z, cos z, sinh z, cosh z. . .

An entire function which is not a polynomial is transcendental.

The zeroes of an entire function are isolated.
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Entire functions vanishing on Z

The function sin(⇡z) vanishes on Z.

A finite sum

a1(z) sin(⇡z) + a2(z) sin(2⇡z) + · · ·+ an(z) sin(n⇡z)

with a1(z), a2(z), . . . , an(z) in C[z] vanishes on Z.

The same is true for an infinite sum which is uniformly
convergent.

Question : which is the smallest nonzero entire function
vanishing at each point of Z ?
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Order and type of entire functions

For % 2 Z, % � 0, the function e
z% is an entire function of

order %.
For ⌧ 2 C, ⌧ 6= 0, the function e

⌧z is an entire function of
order 1 and exponential type |⌧ |.

For ⌧ 2 C, ⌧ 6= 0, the function

sin(⌧z) =
e
i⌧⇡z � e

�i⌧⇡z

2i

has order 1 and exponential type |⌧ |⇡.
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Order and type of entire functions

Maximum modulus principle :

|f |r := sup
|z|=r

|f(z)| = sup
|z|r

|f(z)|.

The order of an entire function f is

%(f) = lim sup
r!1

log log |f |r
log r

,

while the exponential type of an entire function is

⌧(f) = lim sup
r!1

log |f |r
r

·
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Entire functions of finite exponential type
The exponential type of an entire function is also given by

⌧(f) = lim sup
n!1

|f (n)(z0)|1/n (z0 2 C).

Notation :

f
(n)(z) =

✓
d

dz

◆n

f(z).

The proof rests on Cauchy’s estimate for the coe�cients of
the Taylor series and on Stirling’s formula for n!.

Example :

(e⌧z)(n) = ⌧
ne⌧z, lim

n!1
|⌧ne⌧z|1/n = |⌧ |.
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Order and type of entire functions

If the exponential type is finite, then f has order  1.
If f has order < 1, then the exponential type is 0.

Examples :
A polynomial has order 0, hence exponential type 0.
The function ez

2
has order 2, hence infinite exponential type.

The function ee
z
has infinite order, hence infinite exponential

type.
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Entire functions vanishing on Z

Jensens’s Formula :
A nonzero entire function vanishing on Z has exponential type
� 1.

F. Carlson (1914) :
A nonzero entire function vanishing on Z has exponential type
� ⇡.

The function sin(⇡z) has exponential type ⇡.
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Entire functions vanishing on N
F. Carlson (1914) : the smallest entire functions vanishing at
each point in N is

sin(⇡z) = ⇡z

Y

n2Z\{0}

⇣
1� z

n

⌘
ez/n

(Hadamard canonical product for Z).
Another example of a function vanishing at each point in
{0, 1, 2, . . .} is Hadamard canonical product for N (Weierstrass
form of the Gamma function)

1

�(�z)
= �ze��z

1Y

n=1

(1� z/n)ez/n.

It has order 1 and infinite exponential type.
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Entire functions vanishing on N of finite
exponential type

An entire function f vanishing on N of finite exponential type
⌧(f) can be written

f(z) = a1(z) sin(⇡z) + a2(z) sin(2⇡z) + · · ·+ an(z) sin(n⇡z)

with a1, . . . , an in C[z] and n  ⌧(f)/⇡.

If ⌧(f) < ⇡, then f = 0.

If ⌧(f) < 2⇡, then f = a1(z) sin(⇡z).

If an 6= 0, then ⌧(f) = n⇡.
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Integer-valued entire functions
G. Pólya (1915). An integer-valued entire function is an entire
function f (analytic in C) which satisfies f(n) 2 Z for
n = 0, 1, 2, . . . .

Example : the polynomials

1, z,
z(z � 1)

2
, . . . ,

z(z � 1) · · · (z � n+ 1)

n!
, . . .

Any polynomial with complex coe�cients which is an
integer-valued entire function is a linear combination with
coe�cients in Z of these polynomials :

a0+a1z+a2
z(z � 1)

2
+ · · ·+an

z(z � 1) · · · (z � n+ 1)

n!
+ · · ·

(finite sum) with ai in Z.
27 / 67

G. Pólya (1915)
The function 2z is a transcendental (= not a polynomial)
integer-valued entire function.

2p/q = q
p
2
p

2lim pn/qn = lim 2pn/qn ,

2z = exp(z log 2) = 1 +
z log 2

1
+

(z log 2)2

2
+

(z log 2)3

6
+ · · ·

G. Pólya (1915) : 2z is the smallest transcendental
integer-valued entire function. It has exponential type

log 2 = 0.693 147 180 . . .
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Growth of integer-valued entire functions

G. Pólya (1915) : an integral valued entire of exponential type
< log 2 is a polynomial.

More precisely, if f is a transcendental integer-valued entire
function, then

lim
r!1

p
r2�r|f |r > 0.

Equivalent formulation :

If f is an integer-valued entire function such that

lim
r!1

p
r2�r|f |r = 0,

then f is a polynomial.
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Carlson vs Pólya

F. Carlson (1914) : an entire function f of exponential type
< ⇡ satisfying f(N) = {0} is 0.
The function sin(⇡z) is a transcendental entire function of
exponential type ⇡ vanishing on Z.

G. Pólya (1915) : an integer-valued entire function of
exponential type < log 2 is a polynomial.
The function 2z is an integer-valued entire function of
exponential type log 2.
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G.H. Hardy (1917)

A refinement of Pólya’s result
was achieved by G.H. Hardy
who proved that if f is an
integer-valued entire function
such that

lim
r!1

2�r|f |r = 0,

then f is a polynomial.
G.H. Hardy
(1877 – 1947)

Compare with Pólya’s assumption :

lim
r!1

p
r2�r|f |r = 0.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hardy.html
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A. Selberg (1941)

A. Selberg proved that if an
integer–valued entire function
f satisfies

⌧(f)  log 2 +
1

1500
,

then f is of the form
P 0(z) + P 1(z)2z, where P 0

and P 1 are polynomials.

A. Selberg
(1917 – 2007)

There are only countably many such functions.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Selberg.html
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Ch. Pisot (1942)
Ch. Pisot proved that if an integer–valued entire function f

has exponential type  0.8, then f is of the form

P 0(z) + 2zP 1(z) + �
z
P 2(z) + �

z
P 3(z),

where P 0, P 1, P 2, P 3 are polynomials and �, � are the non real
roots of the polynomial z3 � 3z + 3.

This contains the result of
Selberg, since

| log �| = 0.758 98 · · · > log 2+
1

1500
= 0.693 81 . . .

Pisot obtained more general
result for functions of
exponential type < 0.9934 . . .

Ch. Pisot
(1910 – 1984)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Pisot.html
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Completely integer–valued entire function
A completely integer–valued entire function is an entire
function which takes values in Z at all points in Z.
Let u > 1 be a quadratic unit, root of a polynomial
X

2 + aX + 1 for some a 2 Z. Then the functions

u
z + u

�z and
u
z � u

�z

u� u�1

are completely integer–valued entire function of exponential
type log u.

Examples of such quadratic units are the roots u and u
�1 of

the polynomial X2 � 3X + 1 :

u =
3 +

p
5

2
, u

�1 =
3�

p
5

2
·
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Quizz

Let � be the Golden ratio and let �̃ = ��
�1, so that

X
2 �X � 1 = (X � �)(X � �̃).

For any n 2 Z we have

�
n + �̃

n 2 Z

and
log � = � log |�̃| < log 2.

Why is �z + �̃
z not a counterexample to Pólya’s result on the

growth of transcendental integer-valued entire functions ?
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Completely integer–valued entire function

The function

1p
5

 
3 +

p
5

2

!z

� 1p
5

 
3 +

p
5

2

!�z

.

is a completely integer–valued transcendental entire function.

In 1921, F. Carlson proved that if the type ⌧(f) of a
completely integer–valued entire function f satisfies

⌧(f) < log

 
3 +

p
5

2

!
= 0.962 . . . ,

then f is a polynomial.
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A. Selberg (1941)

A. Selberg : if the type ⌧(f) of a completely integer–valued
entire function f satisfies

⌧(f)  log

 
3 +

p
5

2

!
+ 2 · 10�6

,

then f is of the form

P 0(z) + P 1(z)

 
3 +

p
5

2

!z

+ P 2(z)

 
3 +

p
5

2

!�z

where P 0, P 1, P 2 are polynomials.
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Hurwitz functions

A Hurwitz function is an
entire function f such that
f
(n)(0) 2 Z for all n � 0.

A. Hurwitz
(1859 – 1919)

The polynomials which are Hurwitz functions are the
polynomials of the form

a0 + a1z + a2
z
2

2
+ a3

z
3

6
+ · · ·+ an

z
n

n!

with ai 2 Z.
https://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html
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Hurwitz functions

The exponential function

ez = 1 + z +
z
2

2
+

z
3

6
+ · · ·+ z

n

n!
+ · · ·

is a transcendental Hurwitz function of exponential type 1. For
a 2 Z, the function eaz is also a Hurwitz function of
exponential type |a|.
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Kakeya (1916)
S. Kakeya (1916) : a Hurwitz function of exponential type < 1
is a polynomial.
More precisely, he proved that a Hurwitz function satisfying

lim sup
r!1

p
re�r|f |r = 0

is a polynomial.

Question : is
p
r superfluous ? Is ez the smallest Hurwitz

function ?

Recall Pólya vs Hardy : an integer-valued entire functions of
low growth is a polynomial.

Pólya’s assumption : lim
r!1

p
r2�r|f |r = 0.

Hardy’s assumption : lim
r!1

2�r|f |r = 0.
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Pólya (1921)
G. Pólya refined Kakeya’s result in 1921 : a Hurwitz function
satisfying

lim sup
r!1

p
re�r|f |r <

1p
2⇡

is a polynomial.
(Kakeya’s assumption : lim sup = 0).
This is best possible for uncountably many functions, as
shown by the functions

f(z) =
X

n�0

en

2n!
z
2n

with en 2 {1,�1} which satisfy

lim sup
r!1

p
re�r|f |r =

1p
2⇡

·
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Sato and Straus (1964)

D. Sato and E.G. Straus
proved that for every ✏ > 0,
there exists a transcendental
Hurwitz function with

lim sup
r!1

p
2⇡r e�r

✓
1 +

1 + ✏

24r

◆�1

|f |r < 1,

while every Hurwitz function
for which

lim sup
r!1

p
2⇡r e�r

✓
1 +

1� ✏

24r

◆�1

|f |r  1

is a polynomial.

E.G. Straus
(1922 – 1983)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Straus.html
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Integer–valued functions vs Hurwitz functions :

Let us display horizontally the rational integers and vertically
the derivatives.

integer–valued functions :
horizontal

f • • • · · · • · · ·
0 1 2 · · · n · · ·

Hurwitz functions : vertical

...
f
(n) •

...
f
0 •
f •

0
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Several points and / or several derivatives

There are several natural ways to mix integer–valued functions
and Hurwitz functions :

I horizontally, one may include finitely may derivatives in
the study of integer–valued functions.

A k–times integer–valued function is an entire function f

such that f (j)(n) 2 Z for all n � 0 and
j = 0, 1, . . . , k � 1.

I Vertically, one may consider entire functions with all
derivatives at finitely many points taking integer values.

A k–point Hurwitz function is an entire function having
all its derivatives at 0, 1, . . . , k � 1 taking integer values.
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k–times integer–valued functions (horizontal)

k = 2 : f(n) 2 Z, f 0(n) 2 Z (n � 0).

f
0 • • • · · · • · · ·
f • • • · · · • · · ·

0 1 2 · · · n · · ·

According to Gel’fond (1929), a k–times integer–valued

function of exponential type < k log

✓
1 + e�

k�1
k

◆
is a

polynomial.

The function (sin(⇡z))k has exponential type k⇡ and vanishes
with multiplicity k on Z.
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Two–point Hurwitz functions (vertical)
k = 2 : f (n)(0) 2 Z, f (n)(1) 2 Z (n � 0).

...
...

...
f
(n) • •
...

...
...

f
0 • •
f • •

0 1

D. Sato (1971) : every two
point Hurwitz entire functions
for which there exists a
positive constant C such that

|f |r  C exp
�
r
2 � r � log r

�

is a polynomial.

Also, there exist transcendental two point Hurwitz entire
functions with

|f |r  exp
�
r
2 + r � log r +O(1)

�
.
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k–point Hurwitz functions

For k � 3 our knowledge is more limited.
D. Sato (1971) proved that the order of k–point Hurwitz
functions is � k.
This is best possible, as shown by the function ez(z�1)···(z�k+1).

For an entire function f of order  %, define

⌧%(f) = lim sup
r!1

log |f |r
r%

·

f grows like e
⌧%(f)z% .

Example : for k � 1, the function f(z) = ez(z�1)···(z�k+1) has
order k and ⌧k(f) = 1 : it grows like e

zk . .
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k–point Hurwitz functions

L. Bieberbach (1953) stated
that if a transcendental entire
function f of order % is a
k–point Hurwitz entire
function, then either % > k, or
% = k and the type ⌧k(f) of f
satisfies ⌧k(f) � 1. L. Bieberbach

(1886 – 1982)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Bieberbach.html
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k–point Hurwitz functions

However, as noted by D. Sato, since the polynomial

a(z) =
1

2
z(z � 1)(z � 2)(z � 3)

can be written

a(z) =
1

2
z
4 � 3z3 � 11

2
z
2 � 3z,

it satisfies a0(z) 2 Z[z].

It follows that the function e
a(z) is a 4-point Hurwitz

transcendental entire function of order % = 4 and ⌧4(f) = 1/2.
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Utterly integer–valued entire functions

Another way of mixing the horizontal and the vertical
generalizations is to introduce utterly integer–valued entire

function, namely entire functions f which satisfy f
(n)(m) 2 Z

for all n � 0 and m 2 Z.

...
...

...
...

f
(n) • • · · · • · · ·
...

...
...

. . .
...

f
0 • • · · · • · · ·
f • • · · · • · · ·

0 1 · · · m · · ·
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G.A. Fridman (1968), M. Welter (2005)
E.G. Straus (1951) suggested that transcendental utterly
integer–valued entire function may not exist.
G.A. Fridman (1968) showed that there exists transcendental
utterly integer–valued function f with

lim sup
r!1

log log |f |r
r

 ⇡

and proved that a transcendental utterly integer–valued
function f satisfies

lim sup
r!1

log log |f |r
r

� log(1 + 1/e).

The bound log(1 + 1/e) was improved by M. Welter (2005) to
log 2 : hence f grows like e

2z (double exponential).
51 / 67

Sato’s examples

An utterly integer–valued transcendental entire functions has
infinite order : it grows like a double exponential ee

↵z
.

D. Sato (1985) constructed a nondenumerable set of utterly
integer–valued transcendental entire functions.

He selected inductively the coe�cients an with

1

n!(2⇡)n
 |an| 

3

n!(2⇡)n

and defined
f(z) =

X

n�0

an sin
n(2⇡z).
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Abel series
There is also a diagonal way of mixing the questions of
integer–valued functions and Hurwitz functions by considering
entire functions f such that f (n)(n) 2 Z. The source of this
question goes back to N. Abel.

... . ..

f
(n) •
... . ..

f
0 •
f •

0 1 · · · n · · ·
Niels Abel
(1802 – 1829)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html
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Abel series

G.H. Halphén
(1844 – 1889)

V. Pareto
(1848 – 1923)

Abel’s interpolation problem is to find an entire function f for
which the values f (n)(n) are prescribed. It was studied by
G. Halphén (1882), V. Pareto (1892), W. Gontcharo↵ (1930),
R.C. Buck (1946).

https://www-history.mcs.st-andrews.ac.uk/Biographies/Halphen.html

https://fr.wikipedia.org/wiki/Vilfredo_Pareto
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Abel’s interpolation problem

The lack of unicity arises from nonzero entire functions f , like
sin(⇡z/2), satisfying f

(n)(n) = 0 for n � 0.

Let us start with polynomials. Given a polynomial f , we are
looking for a finite expansion

f(z) =
X

n�0

f
(n)(n)P n(z).

We need a sequence of polynomials (P n)n�0 satisfying

P
(k)
n (k) = �kn for k � 0 and n � 0.
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Abel polynomials
The conditions

P
(k)
n (k) = �kn for k � 0 and n � 0

amount to P 0 = 1,

P
0
n(z) = P n�1(z � 1), P n(0) = 0 (n � 1).

The solution

P n(z) =
1

n!
z(z � n)n�1 (n � 1)

was obtained by Abel.
It follows that any polynomial f has a finite expansion

f(z) =
X

n�0

f
(n)(n)P n(z).
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G. Halphén (1882)

Such an expansion (with a series in the right hand side which
is absolutely and uniformly convergent on any compact of C)
holds also for any entire function f of finite exponential type
< !, where ! = 0.278 464 542 . . . is the positive real number
defined by !e!+1 = 1.

Example (Legendre, Abel). For |⌧ | < !, we have

e
⌧z = 1 + ⌧e

⌧
z +

1

2
(⌧e⌧ )2z(z � 2) +

1

6
(⌧e⌧ )3z(z � 3)2 + · · ·

If an entire function f of exponential type < ! satisfies
f
(n)(n) = 0 for all su�ciently large n, then f is a polynomial.
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F. Bertrandias (1958), R. Wallisser (1969)

Let ⌧0 = 0.567 143 290 . . . be the positive real number defined
by ⌧0e⌧0 = 1.
The function f(z) = e⌧0z satisfies f 0(z) = f(z � 1) and
f(0) = 1, hence f

(n)(n) = 1 for all n � 0.

F. Bertrandias (1958) : an entire function f of exponential
type < ⌧0 such that f (n)(n) 2 Z for all su�ciently large
integers n � 0 is a polynomial.

Let ⌧1 be the complex number defined by ⌧1e⌧1 = (1+ i
p
3)/2.

Then an entire function f of exponential type
< |⌧1| = 0.616 . . . such that f (n)(n) 2 Z for all su�ciently
large integers n � 0 is of the form P (z) +Q(z)e⌧0z, where P

and Q are polynomials.
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Variations on this theme

I q analogues and multiplicative versions (geometric
progressions) :
Gel’fond (1933, 1952), J.A. Kazmin (1973), J.P. Bézivin
(1984, 1992) F. Gramain (1990), M. Welter (2000,
2005), J-P. Bézivin (2014).

I analogs in finite characteristic :
D. Adam (2011), D. Adam and M. Welter (2015).

I congruences :
A. Perelli and U. Zannier (1981), J. Pila (2003, 2005).

I several variables :
S. Lang (1965), F. Gross (1965), A. Baker (1967),
V. Avanissian and R. Gay (1975), F. Gramain (1977,
1986), P. Bundschuh (1980). . . .
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Connection with transcendental number theory

In 1950, E. G. Straus introduced a connection between
integer–valued functions and transcendence results, including
the Hermite–Lindemann Theorem on the transcendence of e↵

for ↵ 6= 0 algebraic.

However, as he pointed out in a footnote, at the same time,
Th. Schneider obtained more far reaching results, which
ultimately gave rise to the Schneider–Lang Criterion (1962).
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The Masser–Gramain–Weber constant
D.W. Masser (1980) and F. Gramain–M. Weber (1985)
studied an analog of Euler’s constant for Z[i], which arises in a
2–dimensional analogue of Stirling’s formula :

� = lim
n!1

 
nX

k=2

(⇡rk
2)�1 � log n

!
,

where rk is the radius of the smallest disc in R2 that contains
at least k integer lattice points inside it or on its boundary.

In 2013, G. Melquiond, W. G. Nowak and P. Zimmermann
computed the first four digits :

1.819776 < � < 1.819833,

disproving a conjecture of F. Gramain.
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Lidstone and Whittaker interpolation

George James Lidstone

(1870 – 1952)

John Macnaghten Whittaker

(1905 – 1984)

...
...

...
f
(2n+1) � �
f
(2n) • •
...

...
...

f
00 • •
f
0 � �
f • •

s0 s1

...
...

...
f
(2n+1) • �
f
(2n) � •
...

...
...

f
00 � •
f
0 • �
f � •

s0 s1

• values in Z � no condition
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Arithmetic result for Lidstone interpolation
Let s0 and s1 be two complex numbers and f an entire
function satisfying f

(2n)(s0) 2 Z and f
(2n)(s1) 2 Z for all

su�ciently large n.

...
...

...
f
(2n+1) � �
f
(2n) • •
...

...
...

f
00 • •
f
0 � �
f • •

s0 s1

If

⌧(f) < min

⇢
1,

⇡

|s0 � s1|

�
,

then f is a polynomial.

This is best possible.

• values in Z � no condition
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Arithmetic result for Lidstone interpolation

If ⌧(f) < min

⇢
1,

⇡

|s0 � s1|

�
, f (2n)(s0) 2 Z and f (2n)(s1) 2 Z

for all su�ciently large n, then f is a polynomial.

The function

f(z) =
sinh(z � s1)

sinh(s0 � s1)

has exponential type 1 and satisfies f (2n)(s0) = 1 and
f
(2n)(s1) = 0 for all n � 0.

The function

f(z) = sin

✓
⇡
z � s0

s1 � s0

◆

has exponential type ⇡
|s1�s0| and satisfies

f
(2n)(s0) = f

(2n)(s1) = 0 for all n � 0.
64 / 67



Arithmetic result for Whittaker interpolation

Let s0 and s1 be two complex numbers and f an entire
function satisfying f

(2n+1)(s0) 2 Z and f
(2n)(s1) 2 Z for each

su�ciently large n.

...
...

...
f
(2n+1) • �
f
(2n) � •
...

...
...

f
00 � •
f
0 • �
f � •

s0 s1

Assume

⌧(f) < min

⇢
1,

⇡

2|s0 � s1|

�
.

Then f is a polynomial.

This is best possible.
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Arithmetic result for Whittaker interpolation

If ⌧(f) < min

⇢
1,

⇡

2|s0 � s1|

�
, f (2n+1)(s0) 2 Z and f (2n)(s1) 2 Z

for each su�ciently large n, then f is a polynomial.

The function

f(z) =
cosh(z � s1)

cosh(s0 � s1)

has exponential type 1 and satisfies f (2n+1)(s0) = 1 and
f
(2n)(s1) = 0 for all n � 0.

The function

f(z) = cos

✓
⇡

2
· z � s0

s1 � s0

◆

has exponential type ⇡
2|s1�s0| and satisfies

f
(2n+1)(s0) = f

(2n)(s1) = 0 for all n � 0.
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