

Biography (continued)

1903 (December): exam at Madras University 1904 (January): enters Government Arts College, Kumbakonam

Sri K. Ranganatha Rao Prize Subrahmanyam scholarship

Biography of

Srinivasa Ramanujan

(December 22, 1887 - April 26, 1920)
1887: born in Erode (near Tanjore)
1894-1903: school in Kumbakonam
In 1900 he began to work on his own on mathematics summing geometric and arithmetic series.
\qquad
\qquad

MacTutor History of Mathematics

http://www-history.mcs.st-andrews.ac.uk/ Mathematicians/Ramanujan.html

By 1904 Ramanujan had begun to undertake deep research. He investigated the series $\sum 1 / n$ and calculated Euler's constant to 15 decimal places. He began to study the Bernoulli numbers, although this was entirely his own independent discovery.

1903: G.S.Carr - A synopsis of elementary results a book on pure mathematics (1886
5000 formulae
Town High School, Kumbakonam

$$
\begin{aligned}
\sqrt{x}+y=7, & x+\sqrt{y}=11 \\
x=9, & y=4
\end{aligned}
$$

	December 12, 20053

$$
S_{N}=\sum_{n=1}^{N} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{N}
$$

$$
\int_{1}^{N} \frac{d x}{x+1}<S_{N}<1+\int_{1}^{N} \frac{d x}{x}
$$

$$
C=\lim _{N \rightarrow \infty}\left(S_{N}-\log N\right)
$$ (Euler constant)

$(n+3)^{2}=n+5+(n+1)(n+4)$
$n(n+3)=n \sqrt{n+5+(n+1)(n+4)}$

$$
g(n)=n(n+3)
$$

$$
g(n)=n \sqrt{n+5+g(n+1)}
$$

$g(n)=n \sqrt{n+5+(n+1) \sqrt{n+6+g(n+2)}}$
$=n \sqrt{n+5+(n+1) \sqrt{n+6+(n+2) \sqrt{n+}}}$

$$
g(1)=4
$$

First letter of Ramanujan to Hardy

 (January 16, 1913)I have had no university education but I have undergone the ordinary school course. After leaving school I have been employing the spare time at my disposal to work at mathematics. I have not trodden through the conventional regular course which is followed in a university course, but I am striking out a new path for myself. I have made a special investigation of divergent series in general and the results I get are termed by the local mathematicians as "startling".

$$
\begin{gathered}
1-2+3-4+\cdots=-\frac{1}{4} \\
1-1!+2!-3!+\cdots=.596 . .
\end{gathered}
$$

$$
\begin{gathered}
1+2+3+\cdots+\infty=-\frac{1}{12} \\
1^{2}+2^{2}+3^{2}+\cdots+\infty^{2}=0 \\
1^{3}+2^{3}+3^{3}+\cdots+\infty^{3}=\frac{1}{240}
\end{gathered}
$$

\qquad

Answer from Hardy (February 8, 1913)

I was exceedingly interested by your letter and by the theorems which you state. You will however understand that, before I can judge properly of the value of what you have done, it is essential that I should see proofs of some of your assertions. Your results seem to me to fall into roughly three classes:
(1) there are a number of results that are already known, or easily deducible from known theorems;
(2) there are results which, so far as I know, are new and interesting, but interesting rather from their curiosity and apparent difficulty than their importance:
(3) there are results which appear to be new and important. .

Answer from M.J.M. Hill in 1912

$$
\begin{gathered}
1+2+3+\cdots+n=\frac{1}{2} n(n+1) \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{3} n(n+1 / 2)(n+1) \\
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(n(n+1) / 2)^{2}
\end{gathered}
$$

Renormalisation of divergent series (Euler,...)

Letters to H.F.Baker and E.W.Hobson in 1912: no answers. .
w.math.jussieu.tri/ miwn

December 12,2005 is

1913, February 27
New letter from Ramanujan to Hardy

1913: Visit of Neville to India

1914, March 17 to April 14: travel to Cambridge.

1918: (May) Fellow of the Royal Society

 (November) Fellow of Trinity College, Cambridge1919, February 27 to March 13: travel back to India.

$$
1729=1^{3}+12^{3}=9^{3}+10^{3}
$$

Euler:

$59^{4}+158^{4}=133^{4}+134^{4}=635318657$

Ramanujan - Nagell Equation

$$
x^{2}+7=2^{n}
$$

$1^{2}+7=2^{3}=8$
$3^{2}+7=2^{4}=16$
$5^{2}+7=2^{5}=32$
$11^{2}+7=2^{7}=128$
$181^{2}+7=2^{15}=32768$

$$
1729=1^{3}+12^{3}=9^{3}+10^{3}
$$

$$
4104=2^{3}+16^{3}=9^{3}+15^{3}
$$

$$
13832=2^{3}+24^{3}=18^{3}+20^{3}
$$

$$
40033=9^{3}+34^{3}=16^{3}+33^{3}
$$

\qquad

Nagell (1948): no further solution

Apéry (1960): for $D>0, D \neq 7$, the equation $x^{2}+D=2^{n}$ has at most 2 solutions

Examples with 2 solutions
$D=23: \quad 3^{2}+23=32, \quad 45^{2}+23=2^{11}=2$

$$
D=2^{\ell+1}-1, \ell \geq 3: \quad\left(2^{\ell}-1\right)^{2}+2^{\ell+1}-1=2^{2 \ell}
$$

Beukers (1980): at most one solution otherwise.
M. Bennett (1995): considers the case $D<0$.
\qquad

Diophantine equations

$$
x^{3}+y^{3}+z^{3}=w^{3}
$$

$(x, y, z, w)=(3,4,5,6):$
$3^{3}+4^{3}+5^{3}=27+64+125=216=6^{3}$
Parametric solution:

$$
x=3 a^{2}+5 a b-5 b^{2}
$$

$$
y=4 a^{2}-4 a b+6 b^{2}
$$

$$
z=5 a^{2}-5 a b-3 b^{2}
$$

$$
w=6 a^{2}-4 a b+4 b^{2}
$$

MacMahon: table of the first 200 values

Ramanujan's Congruences:
$\tau(p n)$
$p \quad p=2,3,5,7,23$.
also: congruences modulo 691 (numerator of Bernoulli number B_{12})

Ramanujan's Conjecture, proved by Deligne in 1974

$$
|\tau(p)|<2 p^{11 / 2}
$$

$1+p(1) x+p(2) x^{2}+\cdots+p(n) x^{n}+\cdots$
$=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\left(1-x^{n}\right) \cdots}$

$$
1+\sum_{n=1}^{\infty} p(n) x^{n}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-1}
$$

\qquad cember $2,2005{ }^{26}$

Hardy-Ramanujan:

for almost all integers n, the number of prime factors of n is $\log \log n$

$$
\boldsymbol{A}_{\epsilon}(\boldsymbol{x})=\#\{\boldsymbol{n} \leq \boldsymbol{x}
$$

$$
(1-\epsilon) \log \log \bar{n}<\omega(n)<(1+\epsilon) \log \log
$$

$$
\frac{1}{x} A_{\epsilon}(x) \rightarrow 1 \quad x \rightarrow \infty
$$

Riemann zeta function:

$$
\begin{gathered}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1} \\
x(1-x)^{-1}=\sum_{n=1}^{\infty} x^{n}
\end{gathered}
$$

Ramanujan tau function:

$$
\begin{gathered}
x \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) x^{n} . \\
\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}=\prod_{p}\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)^{-1}
\end{gathered}
$$

nttp//mww..matr.jussie.titi~miw/
$12,2005 \quad 27$

Highly composite numbers

 (Proc. London Math. Soc. 1915$$
\begin{gathered}
n= \\
2
\end{gathered} 4 \quad 4 \quad 6 \quad 12 \quad 24 \quad 36 \quad 48 \quad 60 \quad 120 \ldots
$$

Last work of Ramanujan: Mock theta functions

References

[1] S. ZWEGERS - "Mock v-functions and real analytic modula forms.", in Berndt, Bruce C. (ed.) et al., q-series with applications to combinatorics, number theory, and physics. Proceedings of a conference, University of Illinois, Urbana Champaign, IL, USA, October 26-28, 2000. Providence RI: American Mathematical Society (AMS). Contemp. Math. 291, 269-277, 2001.
\qquad

Another formula due to Ramanujan for π

$$
\pi=\frac{9801}{\sqrt{8}}\left(\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4} 396^{4 n}}\right)^{-1}
$$

$n=0: 6$ exact digits for $3,141592 \ldots$

$n \rightarrow n+1: 8$ more digits
used in 1985: $1.7 \cdot 10^{7}$ digits for π (1.7 crores)
Remark. In 1999: $2 \cdot 10^{10}$ digits (2 000 crores)
Ramanujan's formula for $1 / \pi$

$$
\frac{1}{\pi}=\sum_{m=0}^{\infty}\binom{2 m}{m} \frac{42 m+5}{2^{12 m+4}}
$$

titp:/Mww.mantifissieu.tiri~miw/ December 12, 2005 32

3eferences (continued)

Don Zagier (March 16, 2005, BNF/SMF)
"Ramanujan to Hardy, from the first to the last letter..." http://smf.emath.fr/VieSociete/Rencontres/BNF/2005/

MacTutor History of Mathematics
http://www-groups.dcs.st-and.ac.uk/ history/
Mathematicians/Ramanujan.html
J Eric Weisstein worlds of mathematics, Wolfram Research http://scienceworld.wolfram.com/biography/Ramanujan.htm

Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Ramanujan

Ramanujan Notebooks

Written from 1903 to 1914

First: 16 chapters, 134 pages Second: 21 chapters, 252 pages
Third. 33 pages
B.M. Wilson, G.N.Watson

Edited in 1957 in Bombay
The lost notebook: George Andrews, 1976 Bruce Berndt, 1985-87 (5 volumes)

