Michel Waldschmidt
Institut de Mathématiques de Jussieu + CIMPA
http://www.math.jussieu.fr/ ~miw/
March 8, 2006
Complexity of words
Words and transcendence
Words and Diophantine approximation

(I-KEIO); Tamura, Jun-ichi
Proc. Jopanan Acced Ser.A Math. Sci. 88 (1992), no
MR1279982 (95c:58059)
MR1279988 (95c.:8059)
Arnoux, Pierre (f-PASIIT-M); Mauduit, Christian (E-LYON-MD;

Rauy's'sonjecture on billiards sin the cube
${ }^{\text {Tokbod. Math. } 17}$
MR1259106 (94m:11028)
Arnoux. Pierre (e-PROVS-DM); Mauduit, Christian (f-LYoN-LD)
Shiokawa,
Shiokawa, lekata (l-KELOE); Tamura, Jun--cichi
Bull. Soc. Mant. Frameree 122 (1994),no. LI 1-12.
11 BS5 ((0SB45 558F3)

The billiard problem in a square is well known. Consider the orbit of a billiard ball which one can
 cospl. 2x. An orbit is thus represented by an inf winite sequence of '1's and 2 's. Let $p(n)$ be he. Elassical result states that e either $p(n)$ is uniformly bounded if the initial direction (α, β) is rationa (i.e. $\alpha / \beta \in$
Surmian).
.
the

The authors discuss the similar 3 -dimensional problem, i.e. the billiard problem in the cube. A_{n} orbit is now coded by an infinite sequence on three symbols. Let $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be the initial direction. Suppose $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are Q-independent. The authors prove the beautiful result $p(n)=$ combinatorics.
The authors conclude the paper with questions pertaining to higher dimensions. Let $P(n, s)$ be Ihe complexity of the orbit-sequence in the s-dimensional cube. It is not known whether $P(n, s)$ depends or no on the initial direction $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right)$ even if these numbers are \mathbb{Q}-independent
The authors show that if $\min \{n, s\} \leq 2$ then $P(n, s)$ exists and $P(n, s)=P(s, n)$. We are lefi hit an intriguing problem: Do these results hold for all n, s ?
Reviewed by M. Mendès France

Compant ef wis

Complexity of the g-ary expansion of an irrational algebraic real number

Let $g \geq 2$ be an integer.

- É. Borel (1909 and 1950) : the g-ary expansion of an algebraic irrational number should satisfy some of the laws shared by almost all numbers (for Lebesgue's measure).
- In particular each digit should occur, hence each given sequence of digits should occur infinitely often.
- There is no explicitly known example of a triple (g, a, x), where $g \geq 3$ is an integer, a a digit in $\{0, \ldots, g-1\}$ and x an algebraic irrational number, for which one can claim that the digit a occurs infinitely often in the g-ary expansion of x.

We consider an alphabet A with g letters. The free monoid A^{*} on A is the set of finite words $a_{1} \ldots a_{n}$ where $n \geq 0$ and $a_{i} \in A$ for $1 \leq i \leq n$. The law on A^{*} is called concatenation.

- The number of letters of a finite word is its length : the length of $a_{1} \ldots a_{n}$ is n.
- The number of words of length n is q^{n} for $n \geq 0$. The single word of length 0 is the empty word e with no letter. It is the neutral element for the concatenation.
- We shall consider infinite words $w=a_{1} \ldots a_{n}$ A factor of length m of such a w is a word of the form $a_{k} a_{k+1} \ldots a_{k+m-1}$ for some $k \geq 1$.
- The complexity of an infinite word w is the function $p(m)$ which counts, for each $m \geq 1$, the number of distinct factors of w of length m.
- Hence for an alphabet A with g elements we have $1 \leq p(m) \leq g^{m}$ and the function $m \mapsto p(m)$ is non-decreasing.
- According to Borel's suggestion, the complexity of the sequence of digits in basis g of an irrational algebraic number should be $p(m)=g^{m}$.

Michel Waldschmidt \quad http $: / /$ www.math.jussieu.fir/ \sim miw/
Let $g \geq 2$ be an integer. An infinite sequence $\left(a_{n}\right)_{n \geq 0}$ is said to be g-automatic if a_{n} is a finite-state function of the base g representation of n : this means that there exists a finite automaton starting with the g-ary expansion of n as input and producing the term a_{n} as output.

- A. Cobham, 1972 : Automatic sequences have a complexity $p(m)=O(m)$.

Compart seme

Recurrent morphisms, binary morphisms,
morphic sequences

- If, moreover, every letter occurring in w occurs at least twice, then we say that w is generated by a recurrent morphism.
- If the alphabet A has two letters, then we say that w is generated by a binary morphism.
- More generally, an infinite sequence w in $A^{\mathbf{N}}$ is said to be morphic if there exist a sequence u generated by a morphism ϕ defined over an alphabet B and a morphism from B to A such that $w=\phi(u)$. dopology on each copy of A) to an infinite learly a fixed point for ϕ and we say that w is generated by the morphism ϕ.

Take $A=\{a, b\}$

- Start with $f_{1}=b, f_{2}=a$ and define (concatenation):
$f_{n}=f_{n-1} f_{n-2}$.
- Hence $f_{3}=a b \quad f_{4}=a b a \quad f_{5}=a b a a b$
$f_{6}=$ abaababa $\quad f_{7}=$ abaababaabaab
$f_{8}=$ abaababaabaababaababa
- The Fibonacci word
$w=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b .$.
is generated by a binary recurrent morphism : it is the fixed point of the morphism $a \mapsto a b, b \mapsto a$ under this morphism, the image of f_{n} is f_{n+1}.

Michel Waldschmidt \quad http $: / / w^{w w w . m a t h . j u s s i e u . f i r / \sim m i w / ~}$

The Thue-Morse-Mahler number

- The Thue-Morse-Mahler number in basis $g \geq 2$ is the number

$$
\xi_{g}=\sum_{n \geq 0} \frac{a_{n}}{g^{n}}
$$

where $\left(a_{n}\right)_{n \geq 0}$ is the Thue-Morse sequence. The g-ary expansion of ξ_{g} starts with

$$
0.1101001100101101 \text {.. }
$$

- These numbers were considered by K. Mahler who proved in 1929 that they are transcendental.
- The Rudin-Shapiro word aaabaabaaaabbbab.... For $n \geq 0$ define $r_{n} \in\{a, b\}$ as being equal to a (respectively b) if the number of occurrences of the pattern 11 in the binary representation of n is even (respectively odd).
- Let σ be the morphism defined from the monoid B^{*} on the alphabet $B=\{1,2,3,4\}$ into B^{*} by : $\sigma(1)=12, \sigma(2)=13$, $\sigma(3)=42$ and $\sigma(4)=43$. Let

$$
\mathbf{u}=121312421213 .
$$

be the fixed point of σ begining with 1 and let φ be the morphism defined from B^{*} to $\{a, b\}^{*}$ by : $\varphi(1)=a a$, $\varphi(2)=a b$ and $\varphi(3)=b a, \varphi(4)=b b$. Then the Rudin-Shapiro word is $\varphi(\mathbf{u})$, hence it is morphic

Example 4 : the Baum-Sweet sequence

- The Baum-Sweet sequence. For $n \geq 0$ define $a_{n}=1$ if the binary expansion of n contains no block of consecutive 0 's of odd length, $a_{n}=0$ otherwise : the sequence $\left(a_{n}\right)_{n \geq 0}$ starts with

$$
110110010100100110010 \ldots
$$

- The Baum-Sweet word on the alphabet $\{a, b\}$
bbabbaababaabaabbaaba...
is morphic.

The complexity of $p(m)$ of \mathbf{v} is bounded by $2 m$:

$$
\begin{gathered}
m=\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
p(m)= & 2 & 4 & 6 & 7 & 9 & 11
\end{array} \cdots
\end{gathered}
$$

Assume $g=2$, say $A=\{a, b\}$.

- A word is periodic if and only if its complexity is bounded.
- If the complexity $p(m)$ a word w satisfies
$p(m)=p(m+1)$ for one value of m, then
$p(m+k)=p(m)$ for all $k \geq 0$, hence the word is
periodic. It follows that a non-periodic w has a
complexity $p(m) \geq m+1$.
- An infinite word of minimal complexity $p(m)=m+1$ is called Sturmian (Morse and Hedlund, 1938).
- Examples of Sturmian words are given by 2-dimensional billiards.

The Fibonacci word
$w=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b \ldots$ is Sturmian.

- For $n \geq 2$ the word f_{n} is deduced from w by taking only the first F_{n} letters
- There are exactly three words of two letters which occur in the sequence, namely $a a, a b$ and $b a$. In other terms $b b$ does not occur.
- There are exactly 4 factors of length 3 (while the number of words of length 3 on the alphabet with two letters is 8), namely $a a b, a b a, b a a, b a b$.
- There are 5 words of 4 letters (among 16 possibilities).

The Fibonacci word is Sturmian.

On the alphabet $\{a, b\}$, a Sturmian word w is
characterized by the property that for each $m \geq 1$, there is exactly one factor v of w of length m such that both va and $v b$ are factors of w of length $m+1$.

- Claim : For each m the number $p(m)$ of factors of w of length m in w is $m+1$.
- First step : the Fibonacci word is not periodic.
- Proof. The word f_{n} has length F_{n}, it consists of F_{n-1} letters a and F_{n-2} letters b. Hence the proportion of a in the Fibonacci word w is $1 / \Phi$, where Φ is the Golden number

$$
\Phi=\frac{1+\sqrt{5}}{2}
$$

which is an irrational number.

- Remark. The proportion of b in w is $1 / \Phi^{2}$ with $(1 / \Phi)+\left(1 / \Phi^{2}\right)=1$, as expected!

Michel Waldschmidt \quad http $: / / w w w$, math .jussieu.fr $/ \sim$ mix

The Fibonacci word is Sturmian (continued)
Step 3:

$$
f_{n-1} f_{n}= \begin{cases}u_{n+1} b a & \text { for even } n \\ u_{n+1} a b & \text { for odd } n\end{cases}
$$

which means that in the two words $f_{n-1} f_{n}$ and f_{n+1}, only the last two letters are not the same.

- Proof : write $f_{n-1} f_{n}$ as $f_{n-1} f_{n-1} f_{n-2}$; for even n we have $u_{n+1}=f_{n-1} u_{n-2} b a u_{n-1}$ and
$f_{n-1} f_{n}=f_{n-1} u_{n-1} a b u_{n-2} b a=f_{n-1} u_{n-2} b a u_{n-1} b a=u_{n+1} b a$,
while for odd n we have $u_{n+1}=f_{n-1} u_{n-2} a b u_{n-1}$ and
$f_{n-1} f_{n}=f_{n-1} u_{n-1} b a u_{n-2} a b=f_{n-1} u_{n-2} a b u_{n-1} a b=u_{n+1} a b$.
The next step is the proof that the Fibonacci word is
Sturmian is to check that the number of factors of length $F_{n}-1$ in w is at most F_{n}.
The proof involves the factorisation of w on $\left\{f_{n-1}, f_{n-2}\right\}$.
It follows that $p(m)=m+1$ for infinitely many m, hence for all $m \geq 1$.

Words and trantity io worra

Liouville numbers

- Liouville's Theorem : for any real algebraic number there exists a constant $c>0$ such that the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-c}$ is finite.
- Liouville's Theorem yields the transcendence of the value of a series like $\sum_{n>0} 2^{-u_{n}}$, provided that the sequence (u_{n}) is increasing and satisfies

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=+\infty
$$

- For instance $u_{n}=n$! satisfies this condition : hence the number $\sum_{n>0} 2^{-n!}$ is transcendental.
- Roth's Theorem : for any real algebraic number α, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-2-\epsilon}$ is finite.
- Roth's Theorem yields the transcendence of $\sum_{n \geq 0} 2^{-u_{n}}$ under the weaker hypothesis

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}>2 .
$$

- The sequence $u_{n}=\left[2^{\theta n}\right]$ satisfies this condition as soon as $\theta>1$. For example the number

$$
\sum_{n \geq 0} 2^{-3^{n}}
$$

is transcendental.

- A stronger result follows from Ridout's Theorem, using the fact that the denominators $2^{u_{n}}$ are powers of 2 the condition

$$
\limsup _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}>1
$$

suffices to imply the transcendence of the sum of the series $\sum_{n \geq 0} 2^{-u_{n}}$ (cf. Florian Luca lecture on tuesday).

- Since $u_{n}=2^{n}$ satisfies this condition, the transcendence of $\sum_{n>0} 2^{-2^{n}}$ follows (Kempner 1916).
- Ridout's Theorem : for any real algebraic number α for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $q=2^{k}$ and $|\alpha-p / q|<q^{-1-\epsilon}$ is finite.

$\underset{\substack{\text { Complexity of words } \\ \text { Words and transcemondencec }}}{ }$

Mahler's method for the transcendence of $\sum_{n>0} 2^{-2^{n}}$

- Mahler $(1930,1969)$: the function $f(z)=\sum_{n \geq 0} z^{-2^{n}}$ satisfies $f\left(z^{2}\right)+z=f(z)$ for $|z|<1$
- J.H. Loxton and A.J. van der Poorten (1982-1988).
- P.G. Becker (1994) : for any given non-eventually periodic automatic sequence $\mathbf{u}=\left(u_{1}, u_{2}, \ldots\right)$, the real number

$$
\sum_{k \geq 1} u_{k} g^{-k}
$$

is transcendental, provided that the integer g is sufficiently large (in terms of \mathbf{u}).

Michel Waldschmidt \quad http $: / / w w w, m a t h \cdot j u s s i e u . f i / \sim m i w /$

More on Mahler's method

- K. Nishioka (1991) : algebraic independence measures for the values of Mahler's functions.
- For any integer $d \geq 2$

$$
\sum_{n \geq 0} 2^{-d^{n}}
$$

is a S-number in the classification of transcendenta numbers due to... Mahler

- Reference : K. Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631, Springer Verlag, 1996.
- Conjecture - P.G. Becker, J. Shallitt : more generally any automatic irrational real number is a S-number.
Michel Waldschmidt \quad http $: / /$ www.math.jussieu.fr/ $/$ miw $/$

Words ample traxity of wermerdence

Further transcendence results on g-ary expansions of real numbers

- J-P. Allouche and L.Q. Zamboni(1998)
- R.N. Risley and L.Q. Zamboni(2000).
- B. Adamczewski and J. Cassaigne (2003)

Complexity of the g-ary expansion of an algebraic number

- Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004). The binary complexity p of a real irrational algebraic number x satisfies

$$
\liminf _{m \rightarrow \infty} \frac{p(m)}{m}=+\infty .
$$

- Corollary (conjecture of A. Cobham (1968)) : If the sequence of digits of an irrational real number x i automatic, then x is transcendental.

$\xrightarrow[\substack{\text { Complexitity } \\ \text { Bof word } \\ \text { Words and } \\ \text { and transcendenct }}]{\text { and }}$

Christol, Kamae, Mendes-France, Rauzy
The result of B. Adamczewski, Y. Bugeaud and F. Luca implies the following statement related to the work of G. Christol
T. Kamae, M. Mendès-France and G. Rauzy (1980) :

Corollary. Let $g \geq 2$ be an integer, p be a prime number and
$\left(u_{k}\right)_{k \geq 1}$ a sequence of integers in the range $\{0, \ldots, p-1\}$. The formal power series

$$
\begin{aligned}
& \sum_{k \geq 1} u_{k} X^{k} \\
& \sum_{k \geq 1} u_{k} g^{-k}
\end{aligned}
$$

and the real number
are both algebraic (over $\mathbf{F}_{p}(X)$ and over \mathbf{Q}, respectively) if and only if they are rational.

For $\mathbf{x}=\left(x_{0}, \ldots, x_{m}\right) \in \mathbf{Z}^{m}$, define $|\mathbf{x}|=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{m-1}\right|\right\}$.

- W.M. Schmidt (1970) : For $m \geq 2$ let L_{0}, \ldots, L_{m-1} be m independent linear forms in m variables with complex algebraic coefficients. Let $\epsilon>0$. Then the set
$\left\{\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m} ;\left|L_{0}(\mathbf{x}) \cdots L_{m-1}(\mathbf{x})\right| \leq|\mathbf{x}|^{-\epsilon}\right\}$
is contained in the union of finitely many proper subspaces of \mathbf{Q}^{m}.
- Example: $m=2, L_{0}\left(x_{0}, x_{1}\right)=x_{0}, L_{1}\left(x_{0}, x_{1}\right)=\alpha x_{0}-x_{1}$ Roth's Theorem : for any real algebraic number α, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $|\alpha-p / q|<q^{-2-\epsilon}$ is finite.

Schmidt's subspace Theorem (several places)
W.M. Schmidt (1970) : Let $m \geq 2$ be a positive integer, S a finite set of places of \mathbf{Q} containing the infinite place. For each $v \in S$ let $L_{0, v}, \ldots, L_{m-1, v}$ be m independent linear forms in m variables with algebraic coefficients in the
completion of \mathbf{Q} at v. Let $\epsilon>0$. Then the set of
$\mathbf{x}=\left(x_{0}, \ldots, x_{m-1}\right) \in \mathbf{Z}^{m}$ such that

$$
\prod_{v \in S}\left|L_{0, v}(\mathbf{x}) \cdots L_{m-1, v}(\mathbf{x})\right|_{v} \leq|\mathbf{x}|^{-\epsilon}
$$

is contained in the union of finitely many proper subspaces of \mathbf{Q}^{m}.

Ridout's Theorem

- Ridout's Theorem : for any real algebraic number α, for any $\epsilon>0$, the set of $p / q \in \mathbf{Q}$ with $q=2^{k}$ and $|\alpha-p / q|<q^{-1-\epsilon}$ is finite.
- In Schmidt's Theorem take $m=2, S=\{\infty, 2\}$,
$L_{0, \infty}\left(x_{0}, x_{1}\right)=L_{0,2}\left(x_{0}, x_{1}\right)=x_{0}$,
$L_{1, \infty}\left(x_{0}, x_{1}\right)=\alpha x_{0}-x_{1}, \quad L_{1,2}\left(x_{0}, x_{1}\right)=x_{1}$.
For $\left(x_{0}, x_{1}\right)=(q, p)$ with $q=2^{k}$, we have
$\left|L_{0, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=q, \quad\left|L_{1, \infty}\left(x_{0}, x_{1}\right)\right|_{\infty}=|q \alpha-p|$,
$\left|L_{0,2}\left(x_{0}, x_{1}\right)\right|_{2}=q^{-1}, \quad\left|L_{1,2}\left(x_{0}, x_{1}\right)\right|_{2}=|p|_{2} \leq 1$.

Michel Waldschmidt \quad http $: / /$ www.math.jussiou.fir $/ \sim$ miw

Further transcendence results
Consequences of Nesterenko 1996 result on the transcendence of values of theta series at rational points.

- The number $\sum_{n>0} 2^{-n^{2}}$ is transcendental (D. Bertrand 1977;
D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa

1998) (cf. Florian Luca lecture on tuesday).

- For the word
$u=01212212221222212222212222221222 .$.
generated by the non-recurrent morphism $0 \mapsto 012$, $1 \mapsto 12,2 \mapsto 2$, the number $\eta=\sum u_{k} 3^{-k}$ is
transcendental

Complexity of the continued fraction expansion of
an algebraic number

- Similar questions arise by considering the continued fraction expansion of a real number instead of its g-ary expansion.
- Open question - A.Ya. Khintchine (1949) : are the partial quotients of the continued fraction expansion of a non-quadratic irrational algebraic real number bounded?
- J. Liouville, 1844
- É. Maillet, 1906, O. Perron, 1929
- H. Davenport and K.F. Roth, 1955
- A. Baker, 1962
- J.L. Davison, 1989
- J.H. Evertse, 1996
- M. Queffélec, 1998 : transcendence of the Thue-Morse continued fraction.
- P. Liardet and P. Stambul, 2000.
- J-P. Allouche, J.L. Davison, M Queffélec and L.Q. Zamboni, 2001 : transcendence of Sturmian or morphic continued fractions.
- C. Baxa, 2004.
- B. Adamczewski, Y. Bugeaud, J.L. Davison, 2005 : transcendence of the Rudin-Shapiro and of the Baum-Sweet continued fractions.

Open question : Do there exist algebraic numbers of degree at least three whose continued fraction expansion is generated by a morphism?

- B. Adamczewski, Y. Bugeaud (2004) : The continued fraction expansion of an algebraic number of degree at least three cannot be generated by a binary morphism.

We. Compandened

Uniform simultaneous approximation to a number and its square

Let $\xi \in \mathbf{R}$.

- For $\lambda>1 / 2$, denote by E_{λ} the set of ξ which are not quadratic over Q and for which
(*) $0<x_{0} \leq X, \quad\left|x_{0} \xi-x_{1}\right| \leq \varphi(X), \quad\left|x_{0} \xi^{2}-x_{2}\right| \leq \varphi(X)$
has a solution for any sufficiently large value of X with $\varphi(X)=X^{-\lambda}$
- Metrical result : the set E_{λ} has Lebesgue measure zero.
- Consequence of Schmidt's subspace Theorem : for $\lambda>1 / 2$, the set E_{λ} contains no algebraic number.

Congratulations to Professor Iekata Shiokawa!

