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Billiards in the cube
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Complexity of the g–ary expansion of an
irrational algebraic real number

Let g ≥ 2 be an integer.
! É. Borel (1909 and 1950) : the g–ary expansion of an

algebraic irrational number should satisfy some of the laws
shared by almost all numbers (for Lebesgue’s measure).

! In particular each digit should occur, hence each given
sequence of digits should occur infinitely often.

! There is no explicitly known example of a triple (g, a, x),
where g ≥ 3 is an integer, a a digit in {0, . . . , g − 1} and x
an algebraic irrational number, for which one can claim
that the digit a occurs infinitely often in the g–ary
expansion of x.

Michel Waldschmidt http ://www.math.jussieu.fr/∼miw/

Billiards
Complexity of words

Words and transcendence
Words and Diophantine approximation

Words

! We consider an alphabet A with g letters. The free
monoid A∗ on A is the set of finite words a1 . . . an

where n ≥ 0 and ai ∈ A for 1 ≤ i ≤ n. The law on A∗

is called concatenation.

! The number of letters of a finite word is its length : the
length of a1 . . . an is n.

! The number of words of length n is gn for n ≥ 0. The
single word of length 0 is the empty word e with no
letter. It is the neutral element for the concatenation.
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Infinite words

! We shall consider infinite words w = a1 . . . an . . .
A factor of length m of such a w is a word of the form
akak+1 . . . ak+m−1 for some k ≥ 1.

! The complexity of an infinite word w is the function
p(m) which counts, for each m ≥ 1, the number of
distinct factors of w of length m.

! Hence for an alphabet A with g elements we have
1 ≤ p(m) ≤ gm and the function m %→ p(m) is
non–decreasing.

! According to Borel’s suggestion, the complexity of the
sequence of digits in basis g of an irrational algebraic
number should be p(m) = gm.
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Automatic sequences

! Let g ≥ 2 be an integer. An infinite sequence (an)n≥0 is
said to be g–automatic if an is a finite-state function of
the base g representation of n : this means that there
exists a finite automaton starting with the g–ary
expansion of n as input and producing the term an as
output.

! A. Cobham, 1972 : Automatic sequences have a
complexity p(m) = O(m).
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Morphisms

! Let A and B be two finite sets. A map from A to B∗ can
be uniquely extended to a homomorphism between the free
monoids A∗ and B∗. We call morphism from A to B such a
homomorphism.

! Consider a morphism φ from A into itself for which there
exists a letter a such that φ(a) = au, where u is a
non–empty word such that φk(u) '= e for every k ≥ 0. In
that case, the sequence of finite words (φk(a))k≥1

converges in AN (endowed with the product topology of
the discrete topology on each copy of A) to an infinite
word w = auφ(u)φ2(u)φ3(u) . . .. This infinite word is
clearly a fixed point for φ and we say that w is generated
by the morphism φ.
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Recurrent morphisms, binary morphisms,
morphic sequences

! If, moreover, every letter occurring in w occurs at least
twice, then we say that w is generated by a recurrent
morphism.

! If the alphabet A has two letters, then we say that w is
generated by a binary morphism.

! More generally, an infinite sequence w in AN is said to
be morphic if there exist a sequence u generated by a
morphism φ defined over an alphabet B and a
morphism from B to A such that w = φ(u).

Michel Waldschmidt http ://www.math.jussieu.fr/∼miw/



Billiards
Complexity of words

Words and transcendence
Words and Diophantine approximation

Example 1 : the Fibonacci word

Take A = {a, b}.
! Start with f1 = b, f2 = a and define (concatenation) :

fn = fn−1fn−2.

! Hence f3 = ab f4 = aba f5 = abaab
f6 = abaababa f7 = abaababaabaab
f8 = abaababaabaababaababa

! The Fibonacci word

w = abaababaabaababaababaabaababaabaab . . .

is generated by a binary recurrent morphism : it is the
fixed point of the morphism a %→ ab, b %→ a under this
morphism, the image of fn is fn+1.
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Example 2 : the Thue-Morse sequence
01101001100101101 . . .

! For n ≥ 0 define an = 0 if the sum of the binary digits
in the expansion of n is even, an = 1 if this sum is
odd : the Thue-Morse sequence (an)n≥0 starts with

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 . . .

! Replace 0 by a and 1 by b.
The Thue-Morse word

w = abbabaabbaababbab . . .

is generated by a binary recurrent morphism : it is the
fixed point of the morphism a %→ ab, b %→ ba.
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The Thue-Morse-Mahler number

! The Thue-Morse-Mahler number in basis g ≥ 2 is the
number

ξg =
∑
n≥0

an

gn

where (an)n≥0 is the Thue-Morse sequence. The g–ary
expansion of ξg starts with

0.1101001100101101 . . .

! These numbers were considered by K. Mahler who
proved in 1929 that they are transcendental.
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Example 3 : the Rudin–Shapiro sequence

! The Rudin–Shapiro word aaabaabaaaabbbab . . .. For n ≥ 0
define rn ∈ {a, b} as being equal to a (respectively b) if the
number of occurrences of the pattern 11 in the binary
representation of n is even (respectively odd).

! Let σ be the morphism defined from the monoid B∗ on the
alphabet B = {1, 2, 3, 4} into B∗ by : σ(1) = 12, σ(2) = 13,
σ(3) = 42 and σ(4) = 43. Let

u = 121312421213 . . .

be the fixed point of σ begining with 1 and let ϕ be the
morphism defined from B∗ to {a, b}∗ by : ϕ(1) = aa,
ϕ(2) = ab and ϕ(3) = ba, ϕ(4) = bb. Then the
Rudin-Shapiro word is ϕ(u), hence it is morphic.
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Example 4 : the Baum-Sweet sequence

! The Baum-Sweet sequence. For n ≥ 0 define an = 1 if
the binary expansion of n contains no block of
consecutive 0’s of odd length, an = 0 otherwise : the
sequence (an)n≥0 starts with

1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 . . .

! The Baum-Sweet word on the alphabet {a, b}
bbabbaababaabaabbaaba . . .

is morphic.
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Example 5 : powers of 2

The binary automatic number∑
n≥0

2−2n
= 0.1101000100000001000 · · ·

yields the word

v = v1v2 · · · vn · · · = bbabaaabaaaaaaabaaa · · ·
where

vn =

{
b if n is a power of 2,

a otherwise.

The complexity of p(m) of v is bounded by 2m :

m = 1 2 3 4 5 6 · · ·
p(m) = 2 4 6 7 9 11 · · ·
Michel Waldschmidt http ://www.math.jussieu.fr/∼miw/
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Sturmian words

Assume g = 2, say A = {a, b}.
! A word is periodic if and only if its complexity is

bounded.

! If the complexity p(m) a word w satisfies
p(m) = p(m + 1) for one value of m, then
p(m + k) = p(m) for all k ≥ 0 , hence the word is
periodic. It follows that a non–periodic w has a
complexity p(m) ≥ m + 1.

! An infinite word of minimal complexity p(m) = m + 1
is called Sturmian (Morse and Hedlund, 1938).

! Examples of Sturmian words are given by
2–dimensional billiards.
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The Fibonacci word is Sturmian

The Fibonacci word
w = abaababaabaababaababaabaababaabaab . . . is Sturmian.

! For n ≥ 2 the word fn is deduced from w by taking
only the first Fn letters.

! There are exactly three words of two letters which
occur in the sequence, namely aa, ab and ba. In other
terms bb does not occur.

! There are exactly 4 factors of length 3 (while the
number of words of length 3 on the alphabet with two
letters is 8), namely aab, aba, baa, bab.

! There are 5 words of 4 letters (among 16 possibilities).
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The Fibonacci word is Sturmian

The Fibonacci word is Sturmian.

aabaa
↗

a → aa → aab → aaba → aabab
↘

ab → aba → abaa → abaab
↘

abab → ababa
b → ba → baa → baab → baaba

↘
bab → baba → babaa
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Sturmian words

On the alphabet {a, b}, a Sturmian word w is
characterized by the property that for each m ≥ 1, there is
exactly one factor v of w of length m such that both va and
vb are factors of w of length m + 1.
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The Fibonacci word is Sturmian

! Claim : For each m the number p(m) of factors of w of
length m in w is m + 1.

! First step : the Fibonacci word is not periodic.

! Proof. The word fn has length Fn, it consists of Fn−1

letters a and Fn−2 letters b. Hence the proportion of a
in the Fibonacci word w is 1/Φ, where Φ is the Golden
number

Φ =
1 +

√
5

2
which is an irrational number.

! Remark. The proportion of b in w is 1/Φ2 with
(1/Φ) + (1/Φ2) = 1, as expected !
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The Fibonacci word is Sturmian

Second step : for n ≥ 3 the word fn can be written

fn =

{
unba for even n,

unab for odd n,

with un of length Fn − 2. By induction one checks that the
word un is palindromic.

! Proof : for even n we have

un+1 = fnun−1 = un−1abun−2baun−1

while for odd n the formula is

un+1 = fnun−1 = un−1baun−2abun−1.
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The Fibonacci word is Sturmian (continued)

Step 3 :

fn−1fn =

{
un+1ba for even n,

un+1ab for odd n,

which means that in the two words fn−1fn and fn+1, only
the last two letters are not the same.

! Proof : write fn−1fn as fn−1fn−1fn−2 ; for even n we
have un+1 = fn−1un−2baun−1 and

fn−1fn = fn−1un−1abun−2ba = fn−1un−2baun−1ba = un+1ba,

while for odd n we have un+1 = fn−1un−2abun−1 and

fn−1fn = fn−1un−1baun−2ab = fn−1un−2abun−1ab = un+1ab.
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The Fibonacci word is Sturmian (end)

The next step is the proof that the Fibonacci word is
Sturmian is to check that the number of factors of length
Fn − 1 in w is at most Fn.

The proof involves the factorisation of w on {fn−1, fn−2}.
It follows that p(m) = m + 1 for infinitely many m, hence
for all m ≥ 1.
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Transcendence and Sturmian words

! S. Ferenczi, C. Mauduit, 1997 : A number whose sequence
of digits is Sturmian is transcendental.
Combinatorial criterion : the complexity of the g–ary
expansion of every irrational algebraic number satisfies

lim inf
m→∞ (p(m)−m) = +∞.

! Tool : a p–adic version of the Thue–Siegel–Roth Theorem
due to Ridout (1957).
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Liouville numbers

! Liouville’s Theorem : for any real algebraic number α
there exists a constant c > 0 such that the set of p/q ∈ Q
with |α− p/q| < q−c is finite.

! Liouville’s Theorem yields the transcendence of the value
of a series like

∑
n≥0 2−un , provided that the sequence

(un)n≥0 is increasing and satisfies

lim sup
n→∞

un+1

un
= +∞.

! For instance un = n! satisfies this condition : hence the
number

∑
n≥0 2−n! is transcendental.
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Roth’s Theorem

! Roth’s Theorem : for any real algebraic number α, for
any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

! Roth’s Theorem yields the transcendence of
∑

n≥0 2−un

under the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

! The sequence un = [2θn] satisfies this condition as soon
as θ > 1. For example the number∑

n≥0

2−3n

is transcendental.
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Transcendence of
∑

n≥0 2−2n

! A stronger result follows from Ridout’s Theorem, using
the fact that the denominators 2un are powers of 2 :
the condition

lim sup
n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the
series

∑
n≥0 2−un (cf. Florian Luca lecture on tuesday).

! Since un = 2n satisfies this condition, the
transcendence of

∑
n≥0 2−2n

follows (Kempner 1916).

! Ridout’s Theorem : for any real algebraic number α,
for any ε > 0, the set of p/q ∈ Q with q = 2k and
|α− p/q| < q−1−ε is finite.
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Mahler’s method for the transcendence of∑
n≥0 2−2n

! Mahler (1930, 1969) : the function f(z) =
∑
n≥0

z−2n
satisfies

f(z2) + z = f(z) for |z| < 1.

! J.H. Loxton and A.J. van der Poorten (1982–1988).

! P.G. Becker (1994) : for any given non–eventually periodic
automatic sequence u = (u1, u2, . . . ), the real number∑

k≥1

ukg
−k

is transcendental, provided that the integer g is sufficiently
large (in terms of u).
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More on Mahler’s method

! K. Nishioka (1991) : algebraic independence measures
for the values of Mahler’s functions.

! For any integer d ≥ 2, ∑
n≥0

2−dn

is a S–number in the classification of transcendental
numbers due to. . . Mahler.

! Reference : K. Nishioka, Mahler functions and
transcendence, Lecture Notes in Math. 1631, Springer
Verlag, 1996.

! Conjecture – P.G. Becker, J. Shallitt : more generally
any automatic irrational real number is a S–number.
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Further transcendence results on g-ary expansions
of real numbers

! J-P. Allouche and L.Q. Zamboni(1998).

! R.N. Risley and L.Q. Zamboni(2000).

! B. Adamczewski and J. Cassaigne (2003).
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Complexity of the g-ary expansion of an algebraic
number

! Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004).
The binary complexity p of a real irrational algebraic
number x satisfies

lim inf
m→∞

p(m)
m

= +∞.

! Corollary (conjecture of A. Cobham (1968)) : If the
sequence of digits of an irrational real number x is
automatic, then x is transcendental.
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Irrationality measures for automatic numbers

! Further progress by B. Adamczewski and J. Cassaigne
(2006) – solution to a Conjecture of J. Shallit (1999) :
A Liouville number cannot be generated by a finite
automaton.

! The irrationality measure of the automatic number
associated with σ(0) = 0n1 and σ(1) = 1n0 is at least
n.

! For the Thue-Morse-Mahler numbers for instance the
exponent of irrationality is ≤ 5.
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Christol, Kamae, Mendes-France, Rauzy

The result of B. Adamczewski, Y. Bugeaud and F. Luca implies
the following statement related to the work of G. Christol,
T. Kamae, M. Mendès-France and G. Rauzy (1980) :
Corollary. Let g ≥ 2 be an integer, p be a prime number and
(uk)k≥1 a sequence of integers in the range {0, . . . , p− 1}. The
formal power series ∑

k≥1

ukX
k

and the real number ∑
k≥1

ukg
−k

are both algebraic (over Fp(X) and over Q, respectively) if and
only if they are rational.
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Schmidt’s subspace Theorem (single place)

For x = (x0, . . . , xm−1) ∈ Zm, define
|x| = max{|x0|, . . . , |xm−1|}.

! W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in m variables with
complex algebraic coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · ·Lm−1(x)| ≤ |x|−ε}
is contained in the union of finitely many proper
subspaces of Qm.

! Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.
Roth’s Theorem : for any real algebraic number α, for any
ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.
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Schmidt’s subspace Theorem (several places)

W.M. Schmidt (1970) : Let m ≥ 2 be a positive integer, S
a finite set of places of Q containing the infinite place. For
each v ∈ S let L0,v, . . . , Lm−1,v be m independent linear
forms in m variables with algebraic coefficients in the
completion of Q at v. Let ε > 0. Then the set of
x = (x0, . . . , xm−1) ∈ Zm such that∏

v∈S

|L0,v(x) · · ·Lm−1,v(x)|v ≤ |x|−ε

is contained in the union of finitely many proper subspaces
of Qm.
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Ridout’s Theorem

! Ridout’s Theorem : for any real algebraic number α,
for any ε > 0, the set of p/q ∈ Q with q = 2k and
|α− p/q| < q−1−ε is finite.

! In Schmidt’s Theorem take m = 2, S = {∞, 2},
L0,∞(x0, x1) = L0,2(x0, x1) = x0,
L1,∞(x0, x1) = αx0 − x1, L1,2(x0, x1) = x1.

For (x0, x1) = (q, p) with q = 2k, we have

|L0,∞(x0, x1)|∞ = q, |L1,∞(x0, x1)|∞ = |qα− p|,
|L0,2(x0, x1)|2 = q−1, |L1,2(x0, x1)|2 = |p|2 ≤ 1.
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Further transcendence results

Consequences of Nesterenko 1996 result on the transcendence of
values of theta series at rational points.

! The number
∑
n≥0

2−n2
is transcendental (D. Bertrand 1977 ;

D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa
1998) (cf. Florian Luca lecture on tuesday).

! For the word

u = 01212212221222212222212222221222 . . .

generated by the non–recurrent morphism 0 %→ 012,
1 %→ 12, 2 %→ 2, the number η =

∑
k≥1

uk3−k is

transcendental.
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Complexity of the continued fraction expansion of
an algebraic number

! Similar questions arise by considering the continued
fraction expansion of a real number instead of its g–ary
expansion.

! Open question – A.Ya. Khintchine (1949) : are the
partial quotients of the continued fraction expansion of
a non–quadratic irrational algebraic real number
bounded ?
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Transcendence of continued fractions

! J. Liouville, 1844

! É. Maillet, 1906, O. Perron, 1929

! H. Davenport and K.F. Roth, 1955

! A. Baker, 1962

! J.L. Davison, 1989
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Transcendence of continued fractions (continued)

! J.H. Evertse, 1996.

! M. Queffélec, 1998 : transcendence of the Thue–Morse
continued fraction.

! P. Liardet and P. Stambul, 2000.

! J-P. Allouche, J.L. Davison, M Queffélec and
L.Q. Zamboni, 2001 : transcendence of Sturmian or
morphic continued fractions.

! C. Baxa, 2004.

! B. Adamczewski, Y. Bugeaud, J.L. Davison, 2005 :
transcendence of the Rudin-Shapiro and of the
Baum–Sweet continued fractions.
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Transcendence of continued fractions

! Open question : Do there exist algebraic numbers of
degree at least three whose continued fraction expansion
is generated by a morphism ?

! B. Adamczewski, Y. Bugeaud (2004) : The continued
fraction expansion of an algebraic number of degree at
least three cannot be generated by a binary morphism.
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Uniform rational approximation to a real number

Let ξ ∈ R \ Q.

! Dirichlet’s box principle : for any real number X ≥ 1,
there exists (x0, x1) ∈ Z2 satisfying

0 < x0 ≤ X and |x0ξ − x1| ≤ X−1.

! Khintchine 1926 : there is no ξ ∈ R for which the
exponent −1 can be lowered.
Gel’fond’s transcendence criterion in 1948.
Refinements by H. Davenport and W.M. Schmidt in
1969.
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Asymptotic rational approximation to a real
number

Let λ ≥ 1. Denote by Sλ the set of ξ ∈ R such that there are
arbitrarily large values of X for which the system

0 < x0 ≤ X, 0 < |x0ξ − x1| ≤ X−λ

has a solution (x0, x1) ∈ R2.
By Dirichlet S1 = R \ Q.

! Liouville : the intersection for λ > 1 of all Sλ is not empty.

! A.Ya. Khintchine, K.F. Roth : for each λ > 1 the set Sλ

has Lebesgue measure 0 and contains no algebraic number.

! (Cf. Igor Shparlinsky lecture on tuesday).
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Uniform simultaneous approximation to ξ1 and ξ2

Let ξ1 and ξ2 be real numbers.

! Dirichlet’s box principle : for any real number X ≥ 1,
there exists (x0, x1, x2) ∈ Z3 satisfying

0 < x0 ≤ X, |x0ξ1 − x1| ≤ ϕ(X), |x0ξ2 − x2| ≤ ϕ(X)

where ϕ(X) = 1/[
√

X].

! If 1, ξ1, ξ2 are linearly dependent over Q, then the
same is true with ϕ(X) = c/X and c = c(ξ1, ξ2) > 0.
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Asymptotic simultaneous approximation to ξ1

and ξ2

Let λ ≥ 1/2. Denote by S(2)
λ the set of (ξ1, ξ2) ∈ R2 with

1, ξ1, ξ2 Q–linearly independent for which there are
arbitrarily large values of X such that the system

0 < x0 ≤ X, |x0ξ1 − x1| ≤ X−λ, |x0ξ2 − x2| ≤ X−λ

has a solution(x0, x1, x2) ∈ Z3.

! A.Ya. Khintchine (1926), J.W.S. Cassels (1957) : the

intersection for λ > 1/2 of all S(2)
λ is not empty.

! W.M. Schmidt : for each λ > 1/2 the set S(2)
λ contains

no element of Q
2
.
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Schmidt’s subspace Theorem (again)

! W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in m variables with
algebraic coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · ·Lm−1(x)| ≤ |x|−ε}
is contained in the union of finitely many proper
subspaces of Qm.

! Example : m = 3,

L0(x) = x0, L1(x) = x0ξ1 − x1, L2(x) = x0ξ2 − x2.

For λ > 1/2, the set S(2)
λ ∩Q

2
is empty.
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Uniform simultaneous approximation to ξ and ξ2

Let ξ ∈ R. Take ξ1 = ξ and ξ2 = ξ2.

! Dirichlet’s box principle : for any real number X ≥ 1,
there exists (x0, x1, x2) ∈ Z3 satisfying

(∗) 0 < x0 ≤ X, |x0ξ − x1| ≤ ϕ(X), |x0ξ
2 − x2| ≤ ϕ(X)

where ϕ(X) = 1/[
√

X].

! If ξ is algebraic of degree ≤ 2, the same is true with
ϕ(X) = c/X and c = c(ξ) > 0.
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Uniform simultaneous approximation to a number
and its square

Let ξ ∈ R.

! For λ > 1/2, denote by Eλ the set of ξ which are not
quadratic over Q and for which

(∗) 0 < x0 ≤ X, |x0ξ − x1| ≤ ϕ(X), |x0ξ
2 − x2| ≤ ϕ(X)

has a solution for any sufficiently large value of X
with ϕ(X) = X−λ

! Metrical result : the set Eλ has Lebesgue measure zero.

! Consequence of Schmidt’s subspace Theorem : for
λ > 1/2, the set Eλ contains no algebraic number.
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Uniform approximation to ξ and ξ2

! H. Davenport and W.M. Schmidt (1969) The set Eλ is
empty for λ > Φ−1 = (−1 +

√
5)/2 = 0.618 . . ..

! Method of Davenport and Schmidt : for three
consecutive integers X, consider the solutions
(x0, x1, x2), (x′0, x

′
1, x

′
2), (x′′0, x

′′
1, x

′′
2) to (∗) and show

that the determinant ∣∣∣∣∣∣
x0 x1 x2

x′0 x′1 x′2
x′′0 x′′1 x′′2

∣∣∣∣∣∣
vanishes.
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Result of D. Roy (2003)

The result of Davenport and Schmidt is optimal :
D. Roy (2003) produces examples of transcendental
numbers ξ and constants c > 0 for which the inequalities

0 < x0 ≤ X, |x0ξ − x1| ≤ cX−Φ−1
, |x0ξ

2 − x2| ≤ cX−Φ−1

have a solution (x0, x1, x2) ∈ Z3 for any sufficiently large
value of X.
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Diophantine approximation to the Fibonacci
continued fraction

Let A and B be two distinct positive integers. Let ξ ∈ (0, 1)
be the real number whose continued fraction expansion is
obtained from the Fibonacci word w by replacing the letters
a and b by A and B :

[0; A, B, A,A, B, A, B, A,A, B, A, A,B,A,B, A, A, . . . ]

Then there exists c > 0 such that the inequalities

0 < x0 ≤ X, |x0ξ − x1| ≤ cX−Φ−1
, |x0ξ

2 − x2| ≤ cX−Φ−1
,

have a solution for any sufficiently large value of X
(as above Φ−1 = (−1 +

√
5)/2 = 0.618 . . .).
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More recent developments (2003–2006)

D. Roy : approximation to real numbers by cubic algebraic
integers.
Y. Bugeaud and M. Laurent : on exponents of Diophantine
approximation and Sturmian continued fractions ;
homogeneous and inhomogeneous Diophantine approximation.
S. Fischler : spectrum for the approximation of a real number
and its square ;
palindromic prefixes and Diophantine approximation ;
palindromic prefixes and Episturmian words.
M. Laurent : exponents of Diophantine approximation in
dimension two.
Reference on Diophantine approximation : Y. Bugeaud,
Approximation by algebraic numbers, Cambridge Tracts in
Math. 160, Cambridge Univ. Press 2004.
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Multiple zeta values

Words occur also in the study of multiple zeta values.

This is another story. . .
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Conference on Diophantine Analysis
and Related Fields 2006

in honor of Professor Iekata Shiokawa
Keio University Yokohama March 8, 2006

Congratulations to
Professor Iekata Shiokawa !
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