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DIOPHANTINE ANALYSIS AND WORDS

MICHEL WALDSCHMIDT

Abstract. There is no explicitly known example of a triple (g, a, x), where g ≥ 3 is an integer, a a digit

in {0, . . . , g − 1} and x a real algebraic irrational number, for which one can claim that the digit a occurs
infinitely often in the g–ary expansion of x.

In 1909 and later in 1950, É. Borel considered such questions and suggested that the g–ary expansion of
any algebraic irrational number in any base g ≥ 2 satisfies some of the laws that are satisfied by almost all

numbers. For instance, the frequency where a given finite sequence of digits occurs should depend only on

the base and on the length of the sequence.
Hence there is a huge gap between the established theory and the expected state of the art. However,

some progress have been made recently, mainly thanks to clever use of the Schmidt’s subspace Theorem.

We review some of these results.
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1. Introduction: three dimensional billiards

As a matter of introduction, we reproduce here three reviews in Mathematical Reviews from papers of
which Iekata Shiokawa is a co-author: they deal with billiards and the complexity of words which we are
interested in.

Date: September 4, 2006. Many thanks to Boris Adamczewski, Jean-Paul Allouche, Stéphane Fischler and Tanguy Rivoal
for their useful comments on a preliminary version. I am also grateful to Takao Komatsu for his invitation to participate, for
the organization of the conference as well as for editing the proceedings.
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Review MR1279582 of [16]
Arnoux, Pierre(F-PARIS 7-M); Mauduit, Christian(F-LYON-MI); Shiokawa, Iekata(J-KEIOE); Tamura,
Jun-ichi

Rauzy’s conjecture on billiards in the cube.
Tokyo J. Math. 17 (1994), no. 1, 211–218.
58F03 (11B99)

The authors consider the game of billiards in the cube [0, 1]3. The two faces xi = 0 and xi = 1 are labelled i
(i = 1, 2, 3). Consider a particle which reflects on the six sides of the cube. Its orbit can be coded as an infinite
sequence on the alphabet {1, 2, 3} which records the consecutive sides that the particle hits. Suppose that
the initial direction (α1, α2, α3) is such that α1, α2, α3 are Q-linearly independent, and suppose furthermore
that the forward orbit avoids the edges of the cube. The authors establish a conjecture of Rauzy according
to which the number of distinct factors of length n in the coded orbit is p(n) = n2 + n + 1. The authors
prove this result in an elementary way with no reference to ergodic techniques.

Reviewed by M. Mendès France

Review MR1259106 of [15]
Arnoux, Pierre(F-PROVS-DM); Mauduit, Christian(F-LYON-LD); Shiokawa, Iekata(J-KEIOE); Tamura,
Jun-ichi

Complexity of sequences defined by billiard in the cube.
Bull. Soc. Math. France 122 (1994), no. 1, 1–12.
11B85 (05B45 58F03)

The billiard problem in a square is well known. Consider the orbit of a billiard ball which one can code
in the following way: each time the ball meets a ”vertical” side [resp. ”horizontal”] mark 1 [resp. 2]. An
orbit is thus represented by an infinite sequence of 1’s and 2’s. Let p(n) be the complexity of the sequence,
i.e., the number of words of length n that occur in the sequence. A classical result states that either p(n) is
uniformly bounded if the initial direction (α, β) is rational (i.e., α/β ∈ Q ∪ {∞}) and the orbit is periodic,
or p(n) = n + 1 if α/β ∈ R \Q (the sequence is Sturmian).

The authors discuss the similar 3-dimensional problem, i.e. the billiard problem in the cube. An orbit
is now coded by an infinite sequence on three symbols. Let (α1, α2, α3) be the initial direction. Suppose
α1, α2, α3 are Q-independent. The authors prove the beautiful result p(n) = n2 + n + 1. The proof is by no
means easy: it combines skillful geometry on the torus with combinatorics.

The authors conclude the paper with questions pertaining to higher dimensions. Let P (n, s) be the
complexity of the orbit-sequence in the s-dimensional cube. It is not known whether P (n, s) depends or not
on the initial direction (α1, α2, . . . , αs) even if these numbers are Q-independent. The authors show that if
min{n, s} ≤ 2 then P (n, s) exists and P (n, s) = P (s, n). We are left with an intriguing problem: Do these
results hold for all n, s?

Reviewed by M. Mendès France

Review MR1193183 of [38]
Shiokawa, Iekata(J-KEIO); Tamura, Jun-ichi

Description of sequences defined by billiards in the cube.
Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 7, 207–211.
11K55

In this paper ”billiard” sequences in the unit cube [0, 1]3 are considered. Starting at a point P and moving
with constant velocity (1, α, β), a particle is reflected at the faces of the cube. A sequence w = (wn)
with entries xi (i = 1, 2, 3) is defined such that wn = xi if the nth reflection is caused by a face which is
orthogonal to the xi-axis. The subword complexity of such sequences (and related ones) was extensively
studied by Rauzy, Arnoux, Mauduit and others. The present authors present a precise description of such
sequences in terms of the partial quotients of the simple continued fractions of α, β, α/β and the digits
appearing in some related expansions provided that α, β, α/β are irrational (1 > α > β > 0) and the initial
point P is ”lattice-free” with respect to v (i.e., the path of the particle never touches the edges of the cube).

Reviewed by Robert F. Tichy



DIOPHANTINE ANALYSIS AND WORDS 3

2. Complexity of words

2.1. Borel and normal numbers. In two papers, the first one published in 1909 [24] and the second one
in 1950 [25], É. Borel considered the g–ary expansion of an algebraic irrational real number, where g ≥ 2
is a positive integer. He suggested that this expansion should satisfy some of the laws shared by almost all
numbers (for Lebesgue’s measure).

Let g ≥ 2 be an integer. Any real number x has a unique expansion

x = a−kgk + · · ·+ a−1g + a0 + a1g
−1 + a2g

−2 + · · ·
where k ≥ 0 is an integer and the ai for i ≥ −k, namely the digits of x in the expansion in base g of x, belong
to the set {0, 1, . . . , g − 1}. Unicity is subject to the condition that the sequence (ai)i≥−k is not ultimately
constant equal to g − 1. We write this expansion

x = a−k · · · a−1a0.a1a2 · · ·
Example. In base 10 (decimal expansion):

√
2 = 1.41421356237309504880168872420 . . .

and in base 2 (binary expansion):
√

2 = 1.0110101000001001111001100110011111110011101111001100100100001000101 . . .

The first question in this direction is whether each digit always occurs at least once.

Conjecture 2.1. Let x be an irrational algebraic real number, g ≥ 3 a positive integer and a an integer in
the range 0 ≤ a ≤ g − 1. Then the digit a occurs at least once in the g–ary expansion of x.

There is no explicitly known example of a triple (g, a, x), where g ≥ 3 is an integer, a a digit in {0, . . . , g − 1}
and x a real algebraic irrational number, for which one can claim that the digit a occurs infinitely often
in the g–ary expansion of x. Another open problem is to produce an explicit pair (x, g) where g ≥ 3 is an
integer and x a real algebraic irrational number, for which we can claim that the number of digits which
occur infinitely many times in the g–ary expansion of x is at least 3. Even though few results are known,
our knowledge is not completely vacuous, even if explicit examples are lacking: according to K. Mahler (see
Theorem M in [4]), for any g ≥ 2 and any n ≥ 1 there exist algebraic irrational numbers such that any block
of n digits occurs infinitely often in the g–ary expansion of ξ.

If a real number x satisfies Conjecture 2.1 for all g and a, then it follows that for any g each given sequence
of digits occurs infinitely often in the g–ary expansion of x. This is easy to see by considering powers of g.
For instance, Conjecture 2.1 with g = 4 implies that each of the four sequences (0, 0), (0, 1), (1, 0), (1, 1)
should occur infinitely often in the binary expansion of any irrational algebraic real number x.

Borel asked more precise questions on the frequency of occurrences of sequences of binary digits of real
irrational algebraic numbers. We need to introduce some definitions.

Firstly, a real number x is called simply normal in base g if each digit occurs with frequency 1/g in its
g–ary expansion.

Secondly, a real number x is called normal in base g or g–normal if it is simply normal in base gm for any
m ≥ 1. Hence a real number x is normal in base g if and only if, for any m ≥ 1, each sequence of m digits
occurs with frequency 1/gm in its g–ary expansion.

Finally, a number is called normal if it is normal in any base g ≥ 2.
Borel suggested that each real irrational algebraic number should be normal.

Conjecture 2.2 (É. Borel, 1950). Let x be an irrational algebraic real number and g ≥ 2 a positive integer.
Then x is normal in base g.

Almost all numbers (for Lebesgue’s measure) are normal, examples of computable normal numbers have
been constructed (W. Sierpinski, H. Lebesgue, V. Becher and S. Figueira – see [22]), but the known algorithms
to compute such examples are fairly complicated (“ridiculously exponential”, according to [22]).

An example of a 2–normal number (Champernowne 1933, Bailey and Crandall 2001 [21]) is the binary
Champernowne number, obtained by concatenation of the sequence of integers

0. 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 . . .
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A closed formula for this number is∑
k≥1

k2−ck with ck = k +
k∑

j=1

[log2 j].

Here is another example (Korobov, Stoneham . . . – see [20]): if a and g are coprime integers > 1, then∑
n≥0

a−ng−an

is normal in base g.
A further example, due to A.H. Copeland and P. Erdős (1946), of a normal number in base 10 is

0.23571113171923 . . .

which is obtained by concatenation of the sequence of prime numbers.

2.2. Words. We recall some basic facts from language theory – see for instance [14, 34].
We consider an alphabet A with g letters. The free monoid A∗ on A is the set of finite words a1 . . . an

where n ≥ 0 and ai ∈ A for 1 ≤ i ≤ n. The law on A∗ is called concatenation.
The number of letters of a finite word is its length: the length of a1 . . . an is n.
The number of words of length n is gn for n ≥ 0. The single word of length 0 is the empty word e with

no letter. It is the neutral element for the concatenation.
We shall consider infinite words w = a1 . . . an . . . A factor of length m of such a w is a word of the form

akak+1 . . . ak+m−1 for some k ≥ 1.
The complexity of an infinite word w is the function p(m) which counts, for each m ≥ 1, the number of

distinct factors of w of length m. Hence for an alphabet A with g elements we have 1 ≤ p(m) ≤ gm and the
function m 7→ p(m) is non-decreasing. Conjecture 2.1 is equivalent to the assertion that the complexity of
the sequence of digits in base g of an irrational algebraic number should be p(m) = gm.

An infinite word is periodic if and only if its complexity is bounded. If the complexity p(m) of a word
satisfies p(m+1) = p(m) for one value of m, then p(m+k) = p(m) for any k ≥ 0, hence the word is periodic.
It follows that the complexity of a non-periodic word satisfies p(m) ≥ m + 1. Following Morse and Hedlund
(1938), a word of minimal complexity p(m) = m + 1 is called a Sturmian word. Sturmian words are those
which encode with two letters the orbits of square billiard starting with an irrational angle. It is easy to
check that on the alphabet {a, b}, a Sturmian word w is characterized by the property that for each m ≥ 1,
there is exactly one factor v of w of length m such that both va and vb are factors of w of length m + 1.

Let A and B be two finite sets. A map from A to B∗ can be uniquely extended to a homomorphism
between the free monoids A∗ and B∗. We call morphism from A to B such a homomorphism. The morphism
is uniform if all words in the image of A have the same length.

Let φ be a morphism from A into itself. Assume that there exists a letter a such that φ(a) = au, where
u is a non-empty word satisfying φk(u) 6= e for every k ≥ 0. Then the sequence of finite words (φk(a))k≥1

converges in AN (endowed with the product topology of the discrete topology on each copy of A) to an
infinite word w = auφ(u)φ2(u)φ3(u) . . .. This infinite word is clearly a fixed point for φ and we say that w
is generated by the morphism φ.

If, moreover, every letter occurring in w occurs at least twice, then we say that w is generated by a
recurrent morphism.

If the alphabet A has two letters, then we say that w is generated by a binary morphism.
More generally, an infinite sequence w in AN is said to be morphic if there exist a sequence u generated

by a morphism defined over an alphabet B and a morphism φ from B to A such that w = φ(u).

2.3. Finite automata and automatic sequences. A formal definition of a finite automaton is given, for
instance, in [14] § 4.1, [34] § 1.3.2, [10] § 3.3 and [2] § 3. It involves finite sets, namely the set of states i, a,
b. . . , the set of transitions: here we shall use only 0 or 1, and two sets of initial and terminal states.

We do not give the exact definition but we propose a number of examples below (§2.4).
Let g ≥ 2 be an integer. An infinite sequence (an)n≥0 is said to be g–automatic if an is a finite-state

function of the representation of n in base g: this means that there exists a finite automaton starting with
the g–ary expansion of n as input and producing the term an as output.
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According to a theorem due to A. Cobham [31], automatic sequences have a complexity p(m) = O(m) (cf.
§ 10.3 in [14]). Also he proved in [31] that automatic sequences are the same as uniform morphic sequences.
See for instance § 6.3 in [14] and Theorem 4.1 in [8].

Automatic sequences are between periodicity and chaos. They occur in connection with harmonic analysis,
ergodic theory, fractals, Feigenbaum tree, quasi-cristals, transition phases in statistical mechanics,. . . see
[13, 28, 10] and Chap. 17 in [14].

2.4. Examples.

2.4.1. The Fibonacci word. Consider the alphabet A = {a, b}. Start with f1 = b, f2 = a and define (concate-
nation): fn = fn−1fn−2. Hence

f3 = ab, f4 = aba, f5 = abaab, f6 = abaababa f7 = abaababaabaab, . . .

There is a unique word
w = abaababaabaababaababaabaababaabaab . . .

of which fn is the prefix of length Fn (the Fibonacci number of index n) for any n ≥ 2. This is the Fibonacci
word; it is generated by a binary recurrent morphism [14] § 7.1: namely, it is the fixed point of the morphism
a 7→ ab, b 7→ a: under this morphism, the image of fn is fn+1.

Proposition 2.3. The Fibonacci word is Sturmian.

The factors of w are given as follows:

aabaa . . .
↗

a → aa → aab → aaba → aabab . . .
↘

ab → aba → abaa → abaab . . .
↘

abab → ababa . . .
b → ba → baa → baab → baaba . . .

↘
bab → baba → babaa . . .

Sketch of the proof of Proposition 2.3.
We outline a proof of the fact that for each m ≥ 1, the number p(m) of factors of w of length m in w is

m + 1.
The first step is to check that the Fibonacci word is not periodic. Indeed, the word fn has length Fn, it

consists of Fn−1 letters a and Fn−2 letters b. Hence the proportion of a in the Fibonacci word w is 1/Φ,
where Φ is the Golden number

Φ =
1 +
√

5
2

which is an irrational number.

Remark. The proportion of b in w is 1/Φ2 with (1/Φ) + (1/Φ2) = 1, as expected!
Here is the second step of the proof of Proposition 2.3: for n ≥ 3 the word fn can be written

fn =

{
unba for even n,
unab for odd n,

with un of length Fn − 2. Let us check by induction that the word un is palindromic.
Indeed, for even n we have

un+1 = fnun−1 = un−1abun−2baun−1

while for odd n the formula is
un+1 = fnun−1 = un−1baun−2abun−1.
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Now the third step: we claim that

fn−1fn =

{
un+1ba for even n,
un+1ab for odd n,

which means that in the two words fn−1fn and fn+1, only the last two letters are not the same.
We prove this claim as follows: write fn−1fn as fn−1fn−1fn−2; for even n we have un+1 = fn−1un−2baun−1

and

fn−1fn = fn−1un−1abun−2ba = fn−1un−2baun−1ba = un+1ba,

while for odd n we have un+1 = fn−1un−2abun−1 and

fn−1fn = fn−1un−1baun−2ab = fn−1un−2abun−1ab = un+1ab.

The next and last step in the proof of Proposition 2.3 is to check that the number of factors of length
Fn − 1 in w is at most Fn. The proof involves the factorization of w on {fn−1, fn−2}. We leave the details
to the reader.

It follows that p(m) = m + 1 for infinitely many m, hence for all m ≥ 1. �

A result of L.V. Danilov (1972) concerning the sequence

(vn)n≥0 = (0, 1, 0, 0, 1, 0, 1, 0, 0, . . . )

derived from the Fibonacci word on the alphabet {0, 1}, is that, for any g ≥ 2 the number∑
n≥0

vng−n

is transcendental.

Proposition 2.4. The Fibonacci word is not automatic.

Proposition 2.4 follows from a result of A. Cobham [31] according to which the frequency of a letter in an
automatic word, if it exists, is a rational number.

The origin of the Fibonacci sequence is a model of growth of a population of rabbits. Denote a pair of
young rabbits by 0 and a pair of adults by 1. From one year to the next one, the young pair becomes adult,
which we write as 0→ 1, while the adult pair stays alive and produces a young pair: 1→ 10. This yields to
the dynamical system

0→ 1→ 10→ 101→ 10110→ 10110101→ . . .

and the sequence (R1, R2, R3, . . . ) of Fibonacci’s rabbits

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .

Any integer n ≥ 2 has a unique representation as sums of two Fibonacci numbers Fm, m ≥ 2, with the
property that no Fibonacci numbers with consecutive indices occur in the sum. This representation yields
the following algorithm to decide whether Rn is 1 or 0. If the smallest index in the decomposition of n is
even, then Rn = 1, if it is odd, then Rn = 0. For instance 51 = F9 + F7 + F4 + F2, the smallest index,
namely 2, is even, hence R51 = 1.

Denote by Φ = (1 +
√

5)/2 the Golden Number. The sequence of indices n such that Rn = 1 is

[Φ] = 1, [2Φ] = 3, [3Φ] = 4, [4Φ] = 6, . . .

while the sequence of n for which Rn = 0 is

[Φ2] = 2, [2Φ2] = 5, [3Φ2] = 7, [4Φ2] = 8, . . .

For instance 32Φ = 51, 77 . . . hence [32Φ] = 51 and R51 = 1.
This is an example of a Beatty sequence.
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2.4.2. The Prouhet–Thue–Morse word abbabaabbaababbab . . . . The finite automaton

y0 1−−−−−→ y0

i a

←−−−−−
1

with f(i) = 0, f(a) = 1

produces the sequence a0a1a2 . . . where, for instance, a9 is f(i) = 0, since

1001[i] = 100[a] = 10[a] = 1[a] = i.

This is the Prouhet–Thue–Morse sequence

01101001100101101 . . . ,

where the n + 1-th term an is 1 if the number of 1’s (which is the same as the sum of the binary digits) in
the binary expansion of n is odd, 0 if it is even (see [14], § 1.6).

If, in the Prouhet–Thue–Morse sequence 01101001100101101 . . . we replace 0 by a and 1 by b, we obtain
the Prouhet–Thue–Morse word on the alphabet {a, b}, which starts with

w = abbabaabbaababbab . . .

This word is generated by a binary recurrent morphism (see [14] § 6.2): it is the fixed point of the morphism
a 7→ ab, b 7→ ba.

An interesting property of this sequence (due to A. Thue, 1906) is that, if w is a finite word and a a letter
such that wwa is a factor of the Prouhet–Thue–Morse word, then a is not the first letter of w. Therefore, in
the Prouhet–Thue–Morse word, no three consecutive identical blocks like 000 or 111 or 010101 or 101010 or
001001001 . . . occurs.

The Prouhet–Thue–Morse–Mahler number in base g ≥ 2 is the number

ξg =
∑
n≥0

an

gn

where (an)n≥0 is the Prouhet–Thue–Morse sequence. The g–ary expansion of ξg starts with

0.1101001100101101 . . .

These numbers were considered by K. Mahler, who proved in 1929 that they are transcendental [35].
The idea of proof is as follows (see [35] Example 1.3.1, where the complete proof is given). Consider the

function
f(z) =

∏
n≥0

(1− z2n

) which satisfies f(z) =
∑
n≥0

(−1)anzn.

For a ∈ {0, 1}, we can write (−1)a = 1− 2a. Hence

f(z) =
∑
n≥0

(1− 2an)zn =
1

1− z
− 2

∑
n≥0

anzn.

Using the functional equation f(z) = (1− z)f(z2), Mahler proves that f(α) is transcendental for any alge-
braic number α satisfying 0 < |α| < 1. �

2.4.3. The Baum–Sweet sequence. For n ≥ 0 define an = 1 if the binary expansion of n contains no block of
consecutive 0’s of odd length, an = 0 otherwise: the Baum–Sweet sequence (an)n≥0 starts with

1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 . . .

This sequence is automatic, associated with the automaton

y1 0−−−−−→ y0

i a
1−−−−−→ b

←−−−−−
0

�1

with f(i) = 1, f(a) = 0, f(b) = 0. See [14], Example 5.1.7.
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2.4.4. Powers of 2. The binary number

ξ :=
∑
n≥0

2−2n

= 0.1101000100000001000 · · · = 0.a1a2a3 . . .

with

an =

{
1 if n is a power of 2,
0 otherwise

is 2–automatic, given by the automaton

y0 y0 y0

i
1−−−−−→ a

1−−−−−→ b

�1

with f(i) = 0, f(a) = 1, f(b) = 0.
The associated infinite word

v = v1v2 · · · vn · · · = bbabaaabaaaaaaabaaa · · · ,

where

vn =

{
b if n is a power of 2,
a otherwise,

has complexity p(m) bounded by 2m; the initial values are

m = 1 2 3 4 5 6 · · ·
p(m) = 2 4 6 7 9 11 · · ·

2.4.5. The Rudin–Shapiro word. For n ≥ 0, define rn ∈ {a, b} as being equal to a (respectively b) if the
number of occurrences of the pattern 11 in the binary representation of n is even (respectively odd). This
produces the Rudin–Shapiro word aaabaabaaaabbbab . . . .

Let σ be the morphism defined from the monoid B∗ on the alphabet B = {1, 2, 3, 4} into B∗ by: σ(1) = 12,
σ(2) = 13, σ(3) = 42 and σ(4) = 43. Let

u = 121312421213 . . .

be the fixed point of σ begining with 1 and let ϕ be the morphism defined from B∗ to {a, b}∗ by: ϕ(1) = aa,
ϕ(2) = ab and ϕ(3) = ba, ϕ(4) = bb. Then the Rudin–Shapiro word is ϕ(u), hence it is morphic.

2.4.6. Paper folding. Folding a strip of paper always in the same direction, and then opening it up, yields a
sequence of folds which can be encoded with 0 and 1. The resulting sequence (un)n≥0:

1101100111001001 . . .

satisfies
u4n = 1, u4n+2 = 0, u2n+1 = un

and is produced by the automaton

y0

y1 0−−−−−→ b �1

i
0−−−−−→ a y0

−−−−−→
1

c �1

with f(i) = f(a) = f(b) = 1, f(c) = 0.
An equivalent definition for this sequence is given as follows (see [14] Example 5.1.6): the sequence

an = un+1, n ≥ 1, is defined recursively by an = 1 if n is a power of 2, say n = 2k, and

a2k+a = 1− a2k−a for 1 ≤ a < 2k.

For a connection between the paper folding sequence and the Prouhet–Thue–Morse sequence, see [17].
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2.5. BBP numbers. An interesting approach towards Conjecture 2.2 is provided by Hypothesis A of Bailey
and Crandall [21], who relate the question whether numbers like π, log 2 and other constants are normal, to
the following hypothesis involving the behaviour of the orbits of a discrete dynamical system.
Hypothesis A. Let

θ :=
∑
n≥1

p(n)
q(n)
· g−n,

where g ≥ 2 is a positive integer, R = p/q ∈ Q(X) a rational function with q(n) 6= 0 for n ≥ 1 and deg p < deg q.
Set y0 = 0 and

yn+1 = gyn +
p(n)
q(n)

(mod 1)

Then the sequence (yn)n≥1 either has finitely many limit points or is uniformly distributed modulo 1.
A connection with special values of G functions has been pointed out by J.C. Lagarias [32]. In this paper,

Lagarias defines BBP numbers, referring to the paper [18] by D. Bailey, Jon Borwein and S. Plouffe, as
numbers of the form ∑

n≥1

p(n)
q(n)
· g−n

where g ≥ 2 is an integer, p and q relatively prime polynomials in Z[X] with q(n) 6= 0 for n ≥ 1.
For instance log 2 is a BBP number in base 2 since∑

n≥1

1
n
·xn = − log(1− x) and

∑
n≥1

1
n
· 2−n = log 2.

Further, log 2 is a BBP number in base 32 = 9 since∑
n≥1

1
2n− 1

·x2n−1 =
1
2

log
1 + x

1− x
, hence

∑
n≥1

6
2n− 1

· 3−2n = log 2.

Furthermore, π2 is a BBP number in base 2 and in base 34 = 81 (D.J. Broadhurst 1999; see [19]).

3. Words and transcendence

3.1. Number of 1’s in the binary expansion of a real number. Denote by B(x, n) the number of 1’s
among the first n binary digits of an irrational real number x.

If x, y and x + y are irrational, then

B(x + y, n) ≤ B(x, n) + B(y, n) + 1.

If x, y and xy are irrational, then

B(xy, n) ≤ B(x, n)B(y, n) + log2[x + y + 1].

If x is irrational, then for each integer A > 0 the bound

B(x, n)B(A/x, n) ≥ n− 1− log2[x + A/x + 1]

holds (see [20, 36]).
A consequence is that if a and b are two integers, both ≥ 2, then none of the powers of the transcendental

number
ξ =

∑
n≥1

a−bn

is simply normal in base 2. Also the lower bound

B(
√

2, n) ≥ n1/2 + O(1)

can be deduced [36]. In [20], Theorem 7.1, D. Bailey, J. Borwein, R. Crandall and C. Pomerance obtain a
similar lower bound valid for all algebraic irrational real numbers:

Theorem 3.1 (D. Bailey, J. Borwein, R. Crandall, C. Pomerance, 2004). Let x be a real algebraic number
of degree d ≥ 2. Then there is positive number C which depends only on x such that the number of 1’s among
the first N digits in the binary expansion of x is at least CN1/d.
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Further results related to Theorem 3.1 are given by T. Rivoal in [36] and by Y. Bugeaud in [27].
As pointed out by D. Bailey, J. Borwein, R. Crandall and C. Pomerance, it follows from Theorem 3.1 that

for each d ≥ 2, the number ∑
n≥0

2−dn

is transcendental. The transcendence of the number∑
n≥0

2−2n

(1)

goes back to A. J. Kempner in 1916 ([14], § 13.10). A more general result, due to Mahler (1930, 1969; see
[35], Theorem 1.1.2), is the transcendence of the values at algebraic points of the function f(z) =

∑
n≥0

z−dn

,

for d ≥ 2, which satisfies the functional equation f(zd) + z = f(z) for |z| < 1. As we shall see (§ 3) another
proof rests on the approximation Theorem of Thue–Siegel–Roth–Ridout [1].

Another consequence of Theorem 3.1 is the transcendence of the number∑
n≥0

2−Fn ,

whose binary digits are 1 at the Fibonacci indices 1, 2, 3, 5, 8, . . . The transcendence of this number also
follows from Mahler’s method [20] as well as from the Theorem of Thue–Siegel–Roth–Ridout [1].

In 1968, A. Cobham conjectured that automatic irrational numbers are transcendental. J.H. Loxton and
A.J. van der Poorten (1982, 1988 – see [14], § 13.10) tried to prove it, using Mahler’s method. P.G. Becker
in 1994 [23] (see also [2]) pointed out that Mahler’s method yields only a weaker result so far: for any given
non-eventually periodic automatic sequence u = (u1, u2, . . . ), the real number∑

k≥1

ukg−k

is transcendental, provided that the integer g is sufficiently large (in terms of u).
It is a challenge to extend Mahler’s method in order to prove Cobham’s conjecture.

3.2. Complexity of the g-ary expansion of an algebraic number. The transcendence of a number
whose sequence of digits is Sturmian has been proved by S. Ferenczi, C. Mauduit in 1997. It follows from
their work (see [9]) that the complexity of the g–ary expansion of every irrational algebraic number satisfies

lim inf
m→∞

(p(m)−m) = +∞.

The main tool for the proof is a p–adic version of the Thue–Siegel–Roth Theorem due to Ridout (1957) –
Theorem 3.7 below (see [4]).

Several papers have been devoted to the study of the complexity of the g-ary expansions of real algebraic
numbers, in particular by J.-P. Allouche and L.Q. Zamboni (1998), R.N. Risley and L.Q. Zamboni (2000),
B. Adamczewski and J. Cassaigne (2003). For a survey, see [4]. The main recent result is the following [2]:

Theorem 3.2 (B. Adamczewski, Y. Bugeaud, 2006). The complexity p of a real irrational algebraic number
satisfies

lim inf
m→∞

p(m)
m

= +∞.

Corollary 3.3 (A. Cobham, 1968). If the sequence of digits of an irrational real number x is automatic,
then x is transcendental.

The main tool for the proof of Theorem 3.2 is a new, combinatorial transcendence criterion [6] obtained
by B. Adamczewski, Y. Bugeaud and F. Luca as an application of Schmidt’s subspace Theorem 3.8.

Theorem 3.2 implies the following statement related to the work of G. Christol (1979) [29], G. Christol,
T. Kamae, M. Mendès France and G. Rauzy (1980) [30]:
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Corollary 3.4. Let p be a prime number, g ≥ p an integer and (uk)k≥1 a sequence of integers in the range
{0, . . . , p− 1}. The formal power series ∑

k≥1

ukXk

and the real number ∑
k≥1

ukg−k

are both algebraic (over Fp(X) and over Q, respectively) if and only if they are rational.

As an example (taken from § 6 in [11] and § 2.4 in [10]), consider the Prouhet–Thue–Morse sequence
(an)n≥0. The series

F (X) =
∑
n≥0

anXn

is algebraic over F2(X), as it is a root of

(1 + X)3F 2 + (1 + X)2F + X = 0.

Hence Corollary 3.4 gives another proof of Mahler’s transcendence result on the number∑
n≥0

ang−n.

3.3. Diophantine Approximation. Diophantine approximation theory enables one to prove that a number
of the form ∑

n≥0

2−un (2)

is transcendental, provided that the sequence (un)n≥0 is increasing and grows sufficiently fast. The first
statement in this direction goes back to J. Liouville in 1844.

Theorem 3.5 (J. Liouville, 1844). For any real algebraic number α there exists a constant c > 0 such that
the set of p/q ∈ Q with |α− p/q| < q−c is finite.

Liouville’s Theorem yields the transcendence of the value of a series like (2), provided that the increasing
sequence (un)n≥0 satisfies

lim sup
n→∞

un+1

un
= +∞.

For instance un = n! satisfies this condition: hence the number
∑

n≥0 2−n! is transcendental.

Theorem 3.6 (A. Thue, C.L. Siegel, K.F. Roth, 1950). For any real algebraic number α, for any ε > 0, the
set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.

Theorem 3.6 yields the transcendence of the series (2) under the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

The sequence un = [2θn] satisfies this condition as soon as θ > 1. For example the transcendence of the
number ∑

n≥0

2−3n

follows from Theorem 3.6.
A stronger result follows from Ridout’s Theorem 3.7 below, using the fact that the denominators 2un are

powers of 2: the condition
lim sup

n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the series (2) – see [1].
An example is the transcendence of

∑
n≥0 2−2n

(see (1) above).
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Theorem 3.7 (D. Ridout, 1957). For any real algebraic number α, for any ε > 0, the set of p/q ∈ Q with
q = 2k and |α− p/q| < q−1−ε is finite.

The theorems of Thue–Siegel–Roth and Ridout are very special cases of Schmidt’s subspace Theorem
(1972) together with its p-adic extension by H.P. Schlickewei (1976). We state only a simplified version.

For x = (x0, . . . , xm−1) ∈ Zm, define |x| = max{|x0|, . . . , |xm−1|}.

Theorem 3.8 (Schmidt’s Subspace Theorem). Let m ≥ 2 be a positive integer, S a finite set of places of
Q containing the infinite place. For each v ∈ S let L0,v, . . . , Lm−1,v be m independent linear forms in m vari-
ables with algebraic coefficients in the completion of Q at v. Let ε > 0. Then the set of x = (x0, . . . , xm−1) ∈ Zm

such that ∏
v∈S

|L0,v(x) · · ·Lm−1,v(x)|v ≤ |x|
−ε

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 3.6 follows from Theorem 3.8 by taking

S = {∞}, m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Also Ridout’s Theorem 3.7 is a consequence of Schmidt’s subspace Theorem: in Theorem 3.8 take

m = 2, S = {∞, 2}, L0,∞(x0, x1) = L0,2(x0, x1) = x0, L1,∞(x0, x1) = αx0 − x1, L1,2(x0, x1) = x1.

For (x0, x1) = (q, p) with q = 2k, we have

|L0,∞(x0, x1)|∞ = q, |L1,∞(x0, x1)|∞ = |qα− p|, |L0,2(x0, x1)|2 = q−1, |L1,2(x0, x1)|2 = |p|2 ≤ 1.

�

3.4. Further transcendence results. The previous results can be made effective in order to reach irra-
tionality measures or transcendence measures for automatic numbers.

In 2006, B. Adamczewski and J. Cassaigne [8] solved a Conjecture of J. Shallit (1999) by proving that a
Liouville number cannot be generated by a finite automaton.

They obtained irrationality measures for automatic numbers. Recall that the irrationality exponent of an
irrational real number x ∈ R \Q is the least upper bound of the set of numbers κ for which the inequality∣∣∣∣x− p

q

∣∣∣∣ <
1
qκ

has infinitely many solutions p/q.
For instance a Liouville number is a number whose irrationality exponent is infinite, while an irrational

algebraic real number has irrationality exponent 2 (by Theorem 3.6), as do almost all real numbers.
Theorem 2.2 of [8] gives an explicit upper bound for the irrationality exponent for automatic irrational

numbers. For the Prouhet–Thue–Morse–Mahler numbers for instance, the exponent of irrationality is ≤ 5.
However there is no uniform upper bound for such exponents, as was pointed out to me by B. Adamczewski:
the irrationality exponent for the automatic number associated with σ(0) = 0n1 and σ(1) = 1n0 is at least
n.

Recently, B. Adamczewski and Y. Bugeaud obtained transcendence measures for automatic numbers:
they proved that automatic irrational numbers are either S or T–numbers in Mahler’s classification of tran-
scendental numbers – cf [26]. This is a partial answer to a conjecture of P.G. Becker [8], according to which
all automatic irrational numbers are S–numbers.

In another direction (see [2]), one deduces further transcendence results from Nesterenko 1996 work on
the transcendence of values of theta series at rational points involving modular functions. For instance the
transcendence of the number

∑
n≥0

2−n2
has been proved by D. Bertrand (1997), D. Duverney, K. Nishioka,

K. Nishioka and I. Shiokawa (1998).
Another example from [2] is related to the word

u = 01212212221222212222212222221222 . . .
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generated by the non-recurrent morphism 0 7→ 012, 1 7→ 12, 2 7→ 2: the number η =
∑
k≥1

uk3−k is transcen-

dental.

4. Continued Fractions

We discussed above some Diophantine problems which are related with the g–ary expansion of a real
number. Similar questions arrise with the continued fraction expansion of real numbers.

4.1. Complexity of the continued fraction expansion of an algebraic number. In 1949, A.Ya. Khint-
chine asked the following question: are the partial quotients of the continued fraction expansion of a non-
quadratic irrational algebraic real number bounded? So far no example is known: it is not yet ruled out
neither that all these partial quotients would be bounded for any such x, nor that they are unbounded for
any such x. The common expectation seems to be that they are never bounded. The situation in finite
characteristic is quite different: in 1976, L.E. Baum and M.M. Sweet constructed a formal series which is
cubic over the field F2(X), the continued fraction of which has partial quotients of bounded degree.

The very first transcendence results for numbers given by their continued fraction expansions are due to
J. Liouville in 1844. This topic has been extensively developed by E. Maillet (1906) and later O. Perron
(1929). In 1955, the Thue–Siegel–Roth Theorem enabled H. Davenport and K.F. Roth to prove deeper
results. Further investigations are due to A. Baker (1962, 1964). The approximation results on real numbers
by quadratic numbers due to W.M. Schmidt (1967) were a main tool for the next steps by J.L. Davison (1989)
and by M. Queffélec in 1998 who established the transcendence of the Prouhet–Thue–Morse continued
fraction. We mention also some work by P. Liardet and P. Stambul in 2000 and by J.-P. Allouche, J.L.
Davison, M Queffélec and L.Q. Zamboni in 2001 where they prove the transcendence of Sturmian or morphic
continued fractions. There are further papers by C. Baxa in 2004 and by B. Adamczewski, Y. Bugeaud and
J.L. Davison (2005) who proved the transcendence of the Rudin–Shapiro and of the Baum–Sweet continued
fractions.

Finally, in 2005 [3], B. Adamczewski and Y. Bugeaud proved that the continued fraction expansion of an
algebraic number of degree at least three cannot be generated by a binary morphism.

4.2. The Fibonacci continued fraction. The Fibonacci word (recall §2.4.1) enabled D. Roy in [37] to
construct transcendental real numbers ξ such that ξ and ξ2 are surprisingly well simultaneously and uniformly
approximated by rational numbers.

Recall that Φ denotes the Golden number, so that Φ−1 = Φ− 1 = (−1 +
√

5)/2 = 0.618 . . .

Theorem 4.1 (D. Roy, 2003). Let A and B be two distinct positive integers. Let ξ ∈ (0, 1) be the real
number whose continued fraction expansion is obtained from the Fibonacci word w by replacing the letters a
and b by A and B:

[0;A,B,A, A,B,A, B, A,A, B, A,A, B, A,B,A,A, B,A,B,A, A,B,A, A,B,A, B, A,A,B, A,A,B . . . ]

Then there exists c > 0 such that the inequalities

0 < x0 ≤ X, |x0ξ − x1| ≤ cX−Φ−1
, |x0ξ

2 − x2| ≤ cX−Φ−1
,

have a solution in Z3 for any sufficiently large value of X.

The arguments of D. Roy provides simplified proofs of Queffélec’s results on the transcendence of the
Thue–Morse and Fibonacci numbers.

Using Theorem 4.1 together with ideas of Davenport and Schmidt involving a transference theorem
(Mahler’s convex bodies), D. Roy also produced transcendental numbers which are surprisingly badly ap-
proximated by cubic algebraic integers.

Further results on Diophantine approximation of Sturmian continued fractions and on the simultaneous
approximation of a number and its square have been worked out by Y. Bugeaud and M. Laurent, S. Fischler
and more recently by D. Roy again.

For further references on Diophantine approximation, we refer to Bugeaud’s recent book [26].
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5. Open problems

Many problems related to the present topic are open, to trace their source would require more thorough
bibliographical investigation. We give references to recent papers where they are quoted, the origin of these
questions is most often much older.

Among the questions raised in [3] is the following one:
Does there exist an algebraic number of degree at least three whose continued fraction expansion is generated

by a morphism ?
In the same vein the next question is open: Do there exist an integer g ≥ 3 and an algebraic number of

degree at least three whose expansion in base g is generated by a morphism ?

Other problems suggested by T. Rivoal [36] are:
• Let g ≥ 2 be an integer. Give an explicit example of a real number x > 0 which is simply normal in

base g and such that 1/x is not simply normal in base g.
• Same question with normal in base g in place of simply normal in base g.
• Same question with normal in place of simply normal in base g.

Remark. In [33], there is a construction of an automatic number, the inverse of which is not automatic.
This answers by anticipation Problem 2 of § 13.9 in [14].

From the open problems in § 13.9 quoted in [14] we select the two following ones.
• Show that the number

log 2 =
∑
n≥1

1
n

2−n

is not 2-automatic.
• Show that the number

π =
∑
n≥0

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
2−4n

is not 2-automatic.

One last open problem attributed to Mahler (see for instance [5]). Let (en)n≥1 be an infinite sequence over
{0, 1} that is not ultimately periodic. Prove or disprove: at least one of the two numbers∑

n≥1

en2−n,
∑
n≥1

en3−n

is transcendental.
From Conjecture 2.1 with g = 3 and a = 2, it follows that the second number should be always transcen-

dental.
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Chevaleret, Paris, F–75013 France

E-mail address: miw@math.jussieu.fr


