
29 août 2016

LINEAR INDEPENDENCE OF

LOGARITHMS OF ALGEBRAIC NUMBERS

by

Michel WALDSCHMIDT

Chapter 1.– Introduction . . . . . . . . . . . . . . . . . . . . . 14 p.

First part : Linear independence over the field of algebraic numbers

Chapter 2.– Sketch of the proof . . . . . . . . . . . . . . . . . . . 7 p.

Chapter 3.– Heights — Liouville inequality . . . . . . . . . . . . . . . 24 p.

Chapter 4.– Interpolation determinants . . . . . . . . . . . . . . . . 6 p.

Chapter 5.– Zero estimate . . . . . . . . . . . . . . . . . . . . 13 p.

Chapter 6.– A proof of Baker’s Theorem . . . . . . . . . . . . . . . . 2 p.

Second part : Measures of linear independence

Chapter 7.– A first measure with a simple proof . . . . . . . . . . . . . . 16 p.

Chapter 8.– Zero estimate (continued), by Damien ROY . . . . . . . . . . . 15 p.

Chapter 9.– Interpolation determinants (continued) . . . . . . . . . . . . . 6 p.

Chapter 10.– A refined measure . . . . . . . . . . . . . . . . . . . 12 p.

Third part : Further transcendence results

Chapter 11.– Non-homogeneous linear relations . . . . . . . . . . . . . . 13 p.

Chapter 12.– Further estimates (without proof) . . . . . . . . . . . . . . 8 p.

Chapter 13.– Generalizations of the six exponentials theorem . . . . . . . . . . 6 p.

Chapter 14.– Conjectures . . . . . . . . . . . . . . . . . . . . . 3 p.

Appendix by Michel Laurent . . . . . . . . . . . . . . . . . . . . 19 p.

Notations — Index . . . . . . . . . . . . . . . . . . . . . . . 4 p.

The Institute of Mathematical Sciences, Madras, IMSc Report 116 (1992).



ii Linear independence of logarithms of algebraic numbers

Let a1, . . . , am be positive rational integers and b1, . . . , bm be rational integers; assume that the rational
number ab11 · · · abmm is not equal to 1; how close to 1 can it be ? Our goal is to give an estimate from below
for this distance. The trivial estimate is ∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ A−nB
where A = max{2, a1, . . . , an} and B = max{2, |b1|, . . . , |bn|}; this is a kind of Liouville estimate: the absolute
value of a non-zero rational number is at least the inverse of a denominator. This estimate is sharp in terms
of A and n, but not in terms of B; there are many cases where a better dependence in B is required. We
give a short historical survey of this question in Chapter 1, and we quote the best known results to date in
Chapter 12. In between, we give complete proofs of non-trivial estimates.

During a workshop which took place at Leiden in October 1990, E. Thomas and N. Tzanakis noticed
that there is no introductory text for the non-expert on this domain; the non-trivial measures of linear inde-
pendence for logarithms are used as a black box by several people, especially in connection with Diophantine
equations. Therefore a simple introduction was needed. However, simple depends on the reader: for those
who know a little bit of commutative algebra, Chapter 5 below will look unnecessary complicated, and they
will prefer to replace it by Chapter 8, which yields a stronger result. On the opposite, those who dislike the
words “algebraic geometry” will have better to skip Chapter 8 and just take for granted the “zero estimate”
given in Proposition 8.1.

These notes grew out of lectures given at the Matscience Institute of Madras in January 1992. The initial
goal was to give a proof of Baker transcendence theorem on linear independence of logarithms of algebraic
numbers, which is supposed to be simpler than previously known proofs: no derivative is involved, and
the auxiliary function is replaced by Laurent’s interpolation determinants. Once this purpose was achieved
(Chapters 2 to 6), we started looking at the effective aspect of the question, which is the most important
one for applications. A first non-trivial estimate was proved, for linear combinations of logarithms

β1 logα1 + · · ·+ βm logαm,

where αi and βi are algebraic numbers, under the assumption that the logarithms logαi are linearly inde-
pendent over Q, and also the coefficients βi are linearly independent over Q; the assumption on the logαi
involves no loss of generality, while the condition on the βi is really strong, since the most interesting case
is when the βi are all rational integers. However, the argument which is used to remove the assumption on
linear independence of the logαi enables one to remove also the condition on the βi, but at a rather heavy
cost. Nevertheless this is sufficient to provide a non-trivial estimate, which is given in Chapter 7.

The three next chapters are devoted to a refinement of this first estimate. We do not give the sharpest
known results (which require to introduce one more variable with derivatives, and also to use Fel’dman’s
polynomials), but nevertheless our estimate is not very far from the best known. A refined zero-estimate is
required; this is a consequence of a general result due to P.Philippon; the corresponding chapter has been
written by D. Roy and was the subject of three lectures at the University of Pondicherry.

Baker dealt also with non-homogeneous linear combinations of logarithms:

β0 + β1 logα1 + · · ·+ βm logαm.

The non-vanishing of such linear combinations (Chapter 11) has been the subject of lectures at Hyderabad
(Central University) in February 1992. Finally, the sections devoted to the six exponential theorem (in
Chapter 1) and its generalizations (Chapter 13) were developed at Bombay University and at the Tata
Institute of Fundamental Research.

I have the pleasure to thank R. Balasubramanian who invited me to deliver these lectures at Matscience,
and suggested that they would be published in the Matscience Publication Series; Venkataraman and Ad-
hikari, who attended the Matscience lectures and made the first remarks. Later C. Jadot, M. Laurent,
M. Mignotte, M. Huizing and A. Sert proposed some corrections. Then D. Roy sent me many pages of
comments, corrected several inacurracies and improved some results.
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1.– INTRODUCTION

We denote by Q the algebraic closure of the rational number field Q into C; hence Q is the field of
(complex) algebraic numbers. Further, let L be the set of logarithms of non-zero algebraic numbers, that is

the inverse image of the multiplicative group Q
∗

by the exponential map:

L = {` ∈ C ; e` ∈ Q∗}.

It is convenient to write ` = logα when α = e`, but of course for a given α ∈ Q∗ the set of ` with α = e` is
a whole class of C modulo 2iπZ.

It’s plain that L is a Q-vector subspace of C; however it’s not a Q-vector space: the product of a
logarithm of an algebraic number by an algebraic number is usually not a logarithm of an algebraic number.
This remark, which goes back to Euler, is the root of our subject.

The main (if not the more general) statement of these lectures is the following:

Theorem 1.1 (Baker). — If `1, . . . , `m are Q-linearly independent elements of L, then they are Q-linearly
independent.

This result was proved by Alan Baker in 1966. The first part of these lectures is devoted to a complete
and comparatively easy proof of this statement. However the present tex is by no means an introduction
to Baker’s method: the main new idea in Baker’s transcendence proof is an ingenious, rather involved,
extrapolation argument, which is performed on the derivatives of an auxiliary function. Here you will see no
auxiliary function, no derivatives, no extrapolation. The proof of the first part is quite elementary; the only
analytic argument which is used is Schwarz lemma for a function of a single variable. The most sophisticated
tool is Bézout’s theorem which is used in the following form (see lemma 5.6 in Chapter 5):

if P1, . . . , Ph are polynomials in C[z1, . . . , zn] of total degree ≤ D, and if the set S of common zeroes in
Cn of these polynomials is finite, then CardS ≤ Dn.
Apart from this result, everything is very easy: we use an argument of Michel Laurent to estimate a

determinant; an analytic estimate (Chapter 4) provides an upper bound, an arithmetic estimate, namely
Liouville’s inequality (Chapter 3) implies that this determinant vanishes, and a zero estimate (which relies
on Bézout’s above mentioned theorem) provides the conclusion.

In the second part of these lectures we repeat the proof more carefully in order to prove explicit measures
of linear independence of logarithms of algebraic numbers. The first estimate we produce (Chapter 7) is
rather crude, but the proof follows closely the arguments in Part 1 and is rather transparent. The result we
achieve is certainly far from the best known, but it is good enough to be useful for solving explicitly certain
classes of Diophantine equations (we do not develop this aspect here).

We refine this rough estimate in Chapter 10; the refinement involves a better zero estimate, due to
Philippon (Chapter 8, by Damien Roy), and improved results on interpolation determinants (Chapter 9,
where an argument dual to Baker’s one is developed, and also an idea of M. Laurent is used). The best
known measures of linear independence of logarithms of algebraic numbers are stated in Chapter 12.

There is an extension, also due to Baker, of Theorem 1.1 to non-homogeneous linear combinations of
logarithms: under the hypotheses of Theorem 1.1, the numbers 1, logα1, . . . , logαm are linearly independent
over Q̄ (Chapter 11). This statement does not include all that is known on the transcendence of the values
of the usual complex exponential function. Specifically, it does not include the so-called six exponentials
theorem (see §4 below). Chapter 13 is mainly devoted to a general result, the linear subgroup theorem,
which generalizes at the same time the six exponentials theorem, Baker’s theorem by Schneider’s method
and Baker’s theorem by Gel’fond-Baker method. We do not give complete proofs (nor even do we state the
result in the most general form) ; this will be postponed hopefully for another more advanced monograph.
Chapter 14 deals with conjectures, including Schanuel’s conjecture and the conjecture on the algebraic
independence of logarithms of algebraic numbers, together with some consequences.
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In this first chapter we give some historical background on Baker’s theorem, both in the qualitative and
in the quantitative form, and we describe the six exponentials theorem.

1Historical survey In his “Introductio in analysin infinitorum”, L. Euler defined the exponential and loga-
rithm functions, and said:

From what we have seen, it follows that the logarithm of a number will not be a rational number unless
the given number is a power of the base a. That is, unless the number b is a power of the base a,
the logarithm of b cannot be expressed as a rational number. In case b is a power of the base a, then
the logarithm of b cannot be an irrational number. If, indeed, log b =

√
n, then a

√
n = b, but this

is impossible if both a and b are rational. It is especially desirable to know the logarithms of rational
numbers, since from these it is possible to find the logarithms of fractions and also surds. Since the
logarithms of numbers which are not the powers of the base are neither rational nor irrational, it is
with justice that they are called transcendental quantities. For this reason, logarithms are said to be
transcendental.

(Reference: Euler, Introduction to Analysis of the Infinite, Book 1, Chap. VI, N◦ 105, Springer-Verlag 1988,
p.80.)

Later in 1900, D. Hilbert proposed this question as the seventh of his problems:

The expression αβ for an algebraic base α and an irrational algebraic exponent β, e.g. the number 2
√

2

or eπ = i−2i, always represents a transcendental or at least an irrational number.

This problem was solved in 1934 by A.O. Gel’fond and Th. Schneider, independently and simultaneously:

Theorem 1.2 (Gel’fond-Schneider). — If `1, `2 are Q-linearly independent elements of L, then they are
Q-linearly independent.

This means that the quotient `1/`2 of two non-zero elements of L is either a rational or a transcendental
number; it cannot be an algebraic irrational number, like

√
2. The connection with Hilbert’s problem is most

easily seen by stating Theorem 1.2 as follows:
if ` and β are two complex numbers with ` 6= 0 and β 6∈ Q, then one at least of the three numbers e`, β
and eβ` is transcendental.
Hence, if α is a non zero algebraic number, logα any non-zero logarithm of α, and β an irrational

algebraic number, then αβ = exp(β logα) is a transcendental number. The transcendence of eπ is obtained
also by the choice of α = 1, logα = 2iπ and β = −i/2.

In his book [G], Gel’fond emphasized the importance of getting a generalization of this statement to
more than two logarithms (see below). This problem was solved in 1966 by A. Baker; the qualitative aspect
of his result is Theorem 1.1. From Baker’s theorem, one deduces that if a number of the form

αβ1

1 · · ·αβnn = exp{β1 logα1 + · · ·+ βn logαn}

(with algebraic αi and βi, αi 6= 0) is algebraic, then either the numbers logα1, . . . , logαn all vanish, or else
the numbers 1, β1, . . . , βn are linearly dependent over Q.

1Equivalent statements Baker’s result obviously generalizes the theorem of Gel’fond-Schneider (just take
n = 2). As pointed out by J-P. Serre in his Bourbaki lecture on Baker’s work (∗), it means that the natural
map from Q̄⊗Q L in C, which extends the injection from L to C, is still injective (see exercise 3). We shall
say that L and Q are linearly disjoint over Q.

The only linear dependence relations, with algebraic coefficients, between logarithms of algebraic num-
bers, are the trivial ones, like

log 24 =
√

3 log 9 +
(

1− 2
√

3
)

log 3 +
√

2 log 4 + (3− 2
√

2) log 2.

Roughly speaking, if Baker’s result were not true, then a vanishing non-trivial linear combination of elements
` of L with algebraic coefficients β and minimal length would have the property that the coefficients β’s are
linearly independent over Q, and at the same time the `’s also are linearly independent over Q. More
precisely one can state Theorem 1.1 in several equivalent ways:

(∗) Travaux de Baker, Sém. Bourbaki 1969/70, n◦ 368; Springer Lecture Notes 180 (1971), 73–86.
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Lemma 1.3. — Let k ⊂ K be two fields, E be a K-vector space, and M be a k-vector subspace in E . The
three following statements are equivalent.
(i) Let m ≥ 1; let `1, . . . , `m be elements of M which are linearly independent over k; then these elements

are also linearly independent over K in E .
(ii) Let m ≥ 1 be a positive integer. Let `1, . . . , `m be elements of M, not all vanishing, and let β1, . . . , βm

be k-linearly independent elements of K. Then

β1`1 + . . .+ βm`m 6= 0.

(iii) Let m ≥ 1 be a positive integer. Let `1, . . . , `m be k-linearly independent elements ofM and β1, . . . , βm
be k-linearly independent elements of K. Then

β1`1 + . . .+ βm`m 6= 0.

When these properties are satified, M and K are said to be linearly disjoint over k.

Proof. We first remark that the implication (i)⇒ (iii) is trivial.
a) Proof of (ii)⇒ (i). Assume that for some m ≥ 1 we have a relation β1`1 + . . .+βm`m = 0 with β1, . . . , βm
not all zero. Let β′1, . . . , β

′
s (with 0 < s ≤ m) be a basis of the k-vector space they span; we can write

βi =
s∑
j=1

cijβ
′
j (1 ≤ i ≤ m),

with cij ∈ k, which do not all vanish. Then

s∑
j=1

β′j

(
m∑
i=1

cij`i

)
= 0.

Since β′1, . . . , β
′
s are k-linearly independent, we deduce from (ii)

m∑
i=1

cij`i = 0 for 1 ≤ j ≤ s.

Therefore `1, . . . , `m are k-linearly dependent.

b) Proof of (iii) ⇒ (ii). Assume β1`1 + · · · + βm`m = 0 with β1, . . . , βm linearly independent over k in K
and `1, . . . , `m in M. We shall argue by induction on m and conclude `1 = · · · = `m = 0. Renumbering
`1, . . . , `m if necessary, we may assume that `1, . . . , `r (for some r with 0 ≤ r ≤ m) is a basis of the k-vector
space spanned by `1, . . . , `m:

`i =

r∑
j=1

cij`j , (r + 1 ≤ i ≤ m),

where cij are in k. We deduce

r∑
j=1

γj`j = 0 with γj = βj +

m∑
i=r+1

cijβi, (1 ≤ j ≤ r).

Using (iii) (with m replaced by r), we deduce from the linear independence of `1, . . . , `r over k that the r
elements γ1, . . . , γr are k-linearly dependent in K; however, since β1, . . . , βm are linearly independent over
k, the only possibility is r = 0, which means `1 = · · · = `m = 0.

When k = Q, K = Q, M = L and E = C, assertion (i) is nothing but Baker’s Theorem 1.1 (see §11.1
for another application of this lemma 1.3). Other statements which are equivalent to Baker’s Theorem 1.1
are given in exercise 5 (and will be used in Chapter 13).
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1Lower bounds for the distance between 1 and a product of powers of rational integers Baker’s theorem
shows that numbers of the form

β1 logα1 + · · ·+ βm logαm

(with algebraic βi and αi, 1 ≤ i ≤ m) can vanish only in trivial cases. The most important aspect of the
theory is that the proof provides explicit lower bounds for such non-zero numbers. We explain these results
in the easiest case, namely βi ∈ Z, αi ∈ Z, αi ≥ 2.

Let a1, . . . , am be rational integers which are ≥ 2 and b1, . . . , bm rational integers. We assume

ab11 · · · abmm 6= 1,

and we ask for a lower bound for the distance between these two numbers.
There is a trivial estimate: a non-zero rational number is at least as large as the inverse of a denominator:∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ ∏
bi<0

abii

≥ exp

{
−

m∑
i=1

|bi| log ai

}
≥ exp

{
−mB logA

}
,

where B = max{|b1|, . . . , |bm|} and A = max{a1, . . . , am}. This kind of estimate extends to algebraic α’s;
we shall call it Liouville’s inequality (see Chapter 3 §5).

The dependence in m and A in Liouville’s inequality is sharp, but the main interest for applications is
with the dependence in B. In order to see what can be expected, it is convenient to give a connection with
lower bounds for linear forms in logarithms. If

0 <
∣∣∣ab11 · · · abmm − 1

∣∣∣ ≤ 1

2
,

then
1

2

∣∣b1 log a1 + · · ·+ bm log am
∣∣ ≤ ∣∣∣ab11 · · · abmm − 1

∣∣∣ ≤ 2
∣∣b1 log a1 + · · ·+ bm log am

∣∣
(see exercise 1 at the end of this chapter). Therefore it is equivalent to give a lower bound for the distance
between 1 and the product ab11 · · · abmm , or to give a lower bound for the non vanishing linear form b1 log a1 +
· · ·+ bm log am.

An easy application of the Dirichlet box principle (see exercise 2) now yields:

Lemma 1.4. — Let m, a1, . . . , am be rational integers, all of which are ≥ 2. Define A = max{a1, . . . , am}.
Then for every integer B ≥ 2m logA, there exist rational integers b1, . . . , bm with

0 < max
1≤i≤m

|bi| ≤ B

such that ∣∣∣ab11 · · · abmm − 1
∣∣∣ ≤ 2m logA

Bm−1
.

In particular, if a1, . . . , am are multiplicatively independent, then the left hand side does not vanish.
The upper bound is polynomial in 1/B, while Liouville’s inequality is exponential in −B. We shall see that,
as far as the dependence in B is concerned, lemma 1.4 is closer to the truth than Liouville’s lower bound.

In 1935, one year after he had solved Hilbert’s seventh problem, Gel’fond used his transcendence method
in order to derive a lower bound for a linear combination of two logarithms of algebraic numbers with algebraic
coefficients. Let us give a simple example of such an estimate: for a1, a2 multiplicatively independent positive
rational integers, and for ε > 0, there exists a constant C1 = C1(a1, a2, ε), which can be explicitly computed,
such that, for all (b1, b2) ∈ Z2 with (b1, b2) 6= 0, if we set B = max{|b1|, |b2|, 2}, then∣∣∣ab11 a

b2
2 − 1

∣∣∣ ≥ C1 exp
{
− (logB)5+ε

}
.

In 1939 Gel’fond refined the estimate and replaced the exponent 5 + ε by 3 + ε, and in 1949 he reached 2 + ε.
At the same time he gave an estimate which is valid for any m ≥ 2 (see [G] Th. 3):
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Theorem 1.5 (Gel’fond’s ineffective estimate). — For every m-tuple (a1, . . . , am) of positive mul-
tiplicatively independent rational integers, and for every δ > 0, there exists a positive constant C2 =
C2(a1, . . . , am, δ) such that, if b1, . . . , bm are rational integers, not all of which are zero, and if we set
B = max{|b1|, . . . , |bm|, 2}, then ∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ C2 exp
{
−δB

}
.

For the proof of Theorem 1.5, the main tool is a result of Diophantine approximation, which we shall
take for granted; Gel’fond used a result of his own, which was a refinement of earlier results due to Thue,
Siegel and Dyson; here, for simplicity, we shall use the stronger result due to Roth (see [S], [L] or [B]):

Theorem 1.6 (Thue-Siegel-Roth). — Let α be an algebraic number and let ε be a positive real number.
There exists a number C0 = C0(α, ε) > 0 such that for any rational number p/q with q > 0 and p/q 6= α,∣∣∣∣α− p

q

∣∣∣∣ > C0q
−2−ε.

Proof of Theorem 1.5.
We shall use Theorem 1.6 with ε = 1: ∣∣∣∣α− p

q

∣∣∣∣ > C0(α, 1)/q3.

Let δ > 0. Assume C2 does not exist: for each real number C > 0 there exists b = (b1, . . . , bm) ∈ Zm with

0 <
∣∣∣ab11 · · · abmm − 1

∣∣∣ ≤ C exp
{
−δB

}
(where, as usual, B = max{2, |b1|, . . . , |bm|}). Hence the set E1 of b ∈ Zm for which

0 <
∣∣∣ab11 · · · abmm − 1

∣∣∣ ≤ exp
{
−δB

}
is infinite. Let N be a positive integer satisfying N > (6m/δ) logA, with A = max{ai}. Since the set
(Z/NZ)m is finite, there is an infinite subset E2 of E1 having all elements in the same class modulo N ; this
means that there exists r ∈ Nm with 0 ≤ ri < N , (1 ≤ i ≤ m) such that, for all b ∈ E2,

bi ≡ ri mod N (1 ≤ i ≤ m).

Let E3 be the set of b ∈ E2 with B ≥ N ; once more this is an infinite set. For each b ∈ E3, there is a x ∈ Zm
such that

bi = ri +Nxi (1 ≤ i ≤ m).

We have |xi| ≤ 1 + B/N ≤ 2B/N , (1 ≤ i ≤ m). Let us define two rational numbers s = ar11 · · · armm and
t = ax1

1 · · · axmm . Notice that s does not depend on b ∈ E3, while t depends on b ∈ E3. From the construction
of E3 we deduce

0 <
∣∣stN − 1

∣∣ ≤ e−δB .
We now use the estimate |x− 1| ≤ |xN − 1| which is valid for all x > 0 (the number 1 + x+ · · ·+ xN−1 is at
least 1):

0 <
∣∣∣s1/N t− 1

∣∣∣ ≤ e−δB .
This shows that the rational number t is close to the algebraic number α = s−1/N which is the real N -th
root of 1/s:

0 < |t− α| ≤ αe−δB .

Since the denominator of t is at most A2mB/N , Theorem 1.6 yields:

|t− α| ≥ C0(α, 1)A−6mB/N .
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Combining the upper and lower bound, we deduce the estimate

B

(
δ − 6m logA

N

)
≤ − logC0(α, 1)− 1

N
log s,

which shows that the number B is bounded (the numbers δ, A, N , C0(α, 1) and s do not depend on b ∈ E3),
which is in contradiction with the fact that E3 is an infinite set.

This proof does not enable one to compute the constant C2, because one uses the Thue-Siegel-Roth
theorem which is not effective.

Gel’fond used his Theorem 1.5 in several Diophantine questions, in particular (with Linnik) for Gauss’
problem of determining all imaginary quadratic number fields with class number one; he also applied his
lower bound to the study of several types of Diophantine equations. In his book [G] published in 1952, he
said (p.126 of the English edition):

. . . one can assume the fundamental problem in the analytic theory of transcendental numbers to be that
of strengthening the analytic methods in the theory of transcendental numbers, so that it will be possible
to apply them to the investigation of the behaviour of linear forms in n logarithms of algebraic numbers.

Also, p.177:
Nontrivial lower bounds for linear forms, with integral coefficients, of an arbitrary number of logarithms
of algebraic numbers, obtained effectively by methods of the theory of transcendental numbers, will be
of extraordinarily great significance in the solution of very difficult problems of modern number theory.
Therefore, one may assume, as was already mentioned above, that the most pressing problem in the
theory of transcendental numbers is the investigation of the measures of transcendence of finite sets of
logarithms of algebraic numbers.

As we said earlier, this problem was solved in 1966 by A. Baker. A refinement due to N.I. Fel’dman two
years later gives ∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ exp
{
− C3 logB

}
,

where C3 = C3(a1, . . . , am) is a positive effectively computable number. This number C3 has been explicitly
computed; one of the best known value today (see Chapter 12 where further information is given) is

C3 = 24m+16m3m+5 log a1 · · · log am.

This bound has been computed by means of the method which is described in the present lectures (however
an auxiliary function was introduced, in place of Laurent’s determinant). The second part of Lang’s book
[L] deals with lower bounds for linear combinations in logarithms (either for the usual exponential function,
or else for elliptic functions). The introduction to chapters 10 and 11 (p.212–217) proposes far reaching
conjectures; for instance, for any ε > 0, there should exist a constant C4(ε) > 0 such that∣∣∣ab11 · · · abmm − 1

∣∣∣ ≥ C4(ε)m

Bm−1+εAm+ε
.

We come back to this question in Chapter 14.

1The six exponentials theorem Let us start with an easy question: which are the real numbers t for which 2t

is a rational integer ? Of course all t ∈ N satisfy this requirement; but there are others: for a ∈ N, a 6= 0,
if we set t = log a/ log 2, then 2t = exp(t log 2) = a ∈ N. Hence

{t ∈ R; 2t ∈ N} =

{
log a

log 2
; a ∈ N, a > 0

}
.

If we denote this set by E1, then E1 ∩Q = N.

We consider now the set
E2 = {t ∈ R ; 2t ∈ N and 3t ∈ N}.

This set contains N and is contained in E1. In particular E2 ∩Q = N. The following problem is still open:
is-it true that E2 = N? This means:
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Problem.– Does there exist an irrational number which belongs to E2 ?

This question amounts to ask whether there exist two positive integers a and b such that

log a

log 2
=

log b

log 3

and at the same time this quotient is irrational. Another equivalent formulation it to ask whether a 2 × 2
matrix (

log a log b
log 2 log 3

)
(with positive integers a and b) can be singular without a being a power of 2. We shall soon see this question
in a more general setting (the four exponentials conjecture).

Finally we introduce a third set

E3 = {t ∈ R ; 2t ∈ N, 3t ∈ N and 5t ∈ N}.

Of course we have N ⊂ E3 ⊂ E2 ⊂ E1. We have the following transcendence result: E3 = N.
It’s possible to replace the integers 2, 3 and 5 by any set of three multiplicatively independent (complex)

algebraic numbers ; in this case there is no need to restrict the problem to real values of t.

The following result is due to Siegel (unpublished), Lang and Ramachandra (1967):

Theorem 1.7 (six exponentials theorem). — Let x1, . . . , xd be complex numbers which are linearly
independent over Q and let y1, . . . , y` be also complex numbers which are linearly independent over Q.
Assume `d > `+ d. Then one at least of the `d numbers

exp(xiyj), (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is transcendental.

It is clear that the interesting case is ` = 2, d = 3 (or ` = 3, d = 2, which gives the same result because
of the symmetry), and this explains the name of the result.

One conjectures that the conclusion is still valid under the weaker hypothesis `d ≥ ` + d : this is the
four exponentials conjecture:

Conjecture 1.8 (four exponentials). — Let x1, x2 be two Q-linearly independent complex numbers and
y1, y2 also two Q-linearly independent complex numbers. Then one at least of the 4 numbers

exp(xiyj), (i = 1, 2, j = 1, 2)

is transcendental.

The six exponentials theorem occurs for the first time in a paper by L. Alaoglu and P. Erdős : On
highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448–469; when these authors
try to prove Ramanujan’s assertion that the quotient of two consecutive superior highly composite numbers
(∗) is a prime, they need to know that if x is a real number such that px1 and px2 are both rational numbers,
with p1 and p2 distinct prime numbers, then x is an integer; however this statement (special case of the
four exponentials conjecture) is yet unproved; they quote Siegel and claim that x indeed is an integer if
one assumes pxi to be rational for three distinct primes pi; this is just a special case of the six exponentials

(∗) Ramanujan defines an integer n to be a superior highly composite number if there exists ε > 0 such
that the divisor function d(n) (number of divisors of n) satisfies d(m)m−ε < d(n)n−ε for m 6= n; for
further references, see for instance M. Waldschmidt, Some transcendental aspects of Ramanujan’s work,
Proc. Ramanujan Cent. Intern. Conf., Annamalainagar Dec. 1987, Ramanujan Math. Soc., 1 (1988),
67–76.
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theorem. They deduce that the quotient two consecutive superior highly composite numbers is either a
prime, or else a product of two primes.

The six exponentials theorem can be deduced from a very general (and complicated) result of Schneider
(Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise, Math. Ann. 121 (1949),
131–140). The four exponentials conjecture is equivalent to the first of the eight problems at the end of
Schneider’s book [S]. An explicit statement of the six exponentials conjecture, together with a proof, has
been published independently and at about the same time by S. Lang and K. Ramachandra:

– S. Lang, Nombres transcendants, Sém. Bourbaki 18ème année (1965/66), N◦ 305; Algebraic values of
meromorphic functions, 2, Topology 5 (1966), 363–370; see also [L] Chap.2.

– K. Ramachandra, Contributions to the theory of transcendental numbers, Acta Arith. 14 (1968), 65–88;
see also [R] Chap.2.

They both formulated the four exponentials conjecture explicitly.
We shall come back on this subject in part 3 of these lectures (Chapters 13 and 14).

1Exercises 1. Let z be a complex number. Write <z for the real part of z.
a) For any δ > 0, the condition |<z| ≤ δ implies

|ez − 1| ≤ eδ − 1

δ
|z|,

hence
|ez − 1| ≤ |z|eδ.

Hint. For x = <z, ∣∣∣∣∫ 1

0

etzdt

∣∣∣∣ ≤ ∫ 1

0

etxdt.

b) For any 0 ≤ θ < 1, the condition |ez − 1| ≤ θ implies, for the principal value of the complex logarithm,

| log z| ≤ 1

1− θ
|z − 1| .

Hint. Check that, for any t ∈ R satisfying t ≥ −θ, the following upper bound holds:

| log(1 + t)| ≤ |t|
1− θ

.

c) Let ϑ ∈ R and v, w ∈ C satisfy

|we−v − 1| ≤ ϑ and 0 ≤ ϑ < 1.

Show that there exists ` ∈ C with e` = w and

|`− v| ≤ 1

1− ϑ
|we−v − 1|.

Hint. Define ` = v + log(we−v) where log is the principal value of the logarithm.

2. Complete the proof of lemma 1.4 by applying the pigeonhole principle to the points

b1 log a1 + · · · bm log am, (0 ≤ bi ≤ B, 1 ≤ i ≤ m)

which all lie in the interval [0,mB logA].
Hint. Check Bm−1 log 2 ≥ m logA and use exercise 1a with δ = log 2.

3. Write a shorter proof of lemma 1.3: show that the statements (i), (ii) and (iii) are also equivalent to:
(iv) The natural map M⊗k K → E , which extends the injection from M to E , is still injective.
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Hint. Let (µi)i∈I be a basis of the k-vector space M, and let (γj)j∈J be a basis of the k-vector space K.
Then µi ⊗ γj, (i ∈ I, j ∈ J) is a basis of M⊗k K over k:

M⊗k K =

{∑
i∈I

µi ⊗ βi ; βi ∈ K with supp
(
βi)i∈I finite

}

=

∑
j∈J

λj ⊗ γj ; λj ∈M with supp
(
λj)j∈J finite


=

∑
i∈I

∑
j∈J

cijµi ⊗ γj ; cij ∈ K with supp
(
cij)i∈I,j∈J finite

 ,

where finite support means that all but finitely many elements vanish.
The map M⊗k K → E is nothing but∑

i∈I
µi ⊗ βi 7−→

∑
i∈I

µiβi,
∑
j∈J

λj ⊗ γj 7−→
∑
j∈J

λjγj

as well as ∑
i∈I

∑
j∈J

cijµi ⊗ γj 7−→
∑
i∈I

∑
j∈J

cijµiγj .

4. Let k ⊂ K be two fields and V be a vector subspace of Kd. Show that the following conditions are
equivalent:
(i) V is intersection of hyperplanes which are defined by linear forms with coefficients in k.
(ii) V has a basis whose elements belong to kd.
(iii) There exists a surjective linear map Kd −→ Kr with kernel V whose matrix (in the canonical bases)
has coefficients in k.

Such a subspace V is called rational over k.

5. Show that Theorem 1.1 is also equivalent to:
(i) Let d be a positive integer; let V be a subspace of Cd which is rational over Q (see exercise 4) such that
V ∩Qd = 0. Then V ∩ Ld = 0.

(ii) Let `, d be positive integers and λ1, . . . , λ` be Q-linearly independent elements in Ld. Then λ1, . . . , λ`
are Q-linearly independent.

Hint. The implication (ii)⇒ Theorem 1.1 is clear (take d = 1).
For the proof of Theorem 1.1⇒ (i), write V as intersection of Q-rational hyperplanes; for (`1, . . . , `d) ∈

V ∩ Ld, choose a basis of the Q-vector subspace of C spanned by `1, . . . , `d.
For the proof of (i) ⇒ (ii), assume β1λ1 + · · · + β`λ` = 0; choose a basis γ1, . . . , γr of the Q-vector

subspace of C spanned by β1, . . . , β`, and use (iv) with d replaced by dr.

6. (1972 Putnam Prize competition). Using the calculus of finite differences, show that, if t ∈ R is such that
nt ∈ Z for all n ≥ 1, then t ∈ N.
Hint. First method (cf. H. Halberstam. – Transcendental numbers; The Mathematical Gazette 58
(1976), 276–284.)
Let a be a non-negative integer; assume

nt ∈ Z, (n+ 1)t ∈ Z, · · · , (n+ a)t ∈ Z

for infinitely many n ≥ 1, with 0 ≤ t < a; we have to prove t ∈ {0, 1, . . . , a − 1}. For τ a positive integer,
consider the Taylor series expansion of (d/dx)τ (X − 1)a at the origin:

a∑
i=0

(−1)i
(
a

i

)
iτ =

{
0 for 0 ≤ τ < a,
(−1)aa! for τ = a.
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Deduce that, for infinitely many n > 0, the number

un =

a∑
i=0

(−1)i
(
a

i

)
(n+ i)τ

is an integer. Check also that

un = (−1)at(t− 1) · · · (t− a+ 1)nt−a +O(nt−a−1)

and deduce the desired statement.

Second method -- Balasubramanian.

Let N ≥ 1 be an integer; define f(x) = (N + x)t. Show (by induction on k) that the k-th difference(
∆kf

)
(x) =

(
∆k−1f

)
(x+ 1)−

(
∆k−1f

)
(x)

for k ≥ 1, with
(
∆0f

)
(x) = f(x), is(

∆kf
)
(x) =

∫ 1

0

· · ·
∫ 1

0

f (k)(x+ t1 + · · ·+ tk)dt1 · · · dtk

(where f (k) is the k-th derivative of f). Choose k = [t] + 3; show that there exists a real number u0 =
u0(t,N) > 0 such that

|f (k)(u)| ≤ u−2 for u > u0.

Deduce
(
∆kf

)
(n) = 0 for n ∈ N sufficiently large. Since f (k) maintains the same sign on the real positive

numbers, deduce that f (k) = 0, hence f is a polynomial and t ∈ N.

1References for Chapter 1 One of the first books on transcendental numbers is
[G] A.O. Gel’fond. – Transcendental Number Theory; Moscow, 1952; English transl. Dover Publ., N.Y.,
1960.

Here is another reference of the same period of time:
[S] Th. Schneider. – Einführung in die transzendenten Zahlen; Springer Verlag 1957; trad. franç., Introduc-
tion aux Nombres Transcendants, Paris, Gauthier-Villars.

A further reference including a solution of Hilbert’s seventh problem by boths methods of Schneider
and Gel’fond is
[R] K. Ramachandra. – Lectures on transcendental numbers; The Ramanujan Institute, Vol. 1, Univ. of
Madras, 1969.

A condensed exposition of the main results which were known ten years ago can be found in
[B] A. Baker. – Transcendental Number Theory; (Cambridge Univ. Press, 2nd ed. 1979)
The first chapter introduces rather old and very short proofs of classical results: Liouville, Hermite–
Lindemann and Lindemann–Weierstrass. The second chapter contains a proof of Baker’s theorem.

A review of classical proofs of the transcendence of the number e and π is given in the appendix of
[M] K. Mahler. – Lectures on Transcendental Numbers; Springer Lecture Notes in Math., 546 (1976).

The first book which introduced the subject in a general setting (starting with the usual exponential
function, and going up to commutative algebraic groups) in a clear and understandable way is
[L] S. Lang. – Introduction to Transcendental Numbers; Addison-Wesley 1966.
It’s still a good reference, in spite of many corrections which should be made.

The methods which we are going to use just started to grow ten years ago. See for instance:
[W1] M. Waldschmidt. – Transcendence Methods; Queen’s Papers in Pure and Applied Math., 52 (1979).

Another introduction to Schneider’s method (Chapter 2), Gel’fond’s method (Chapter 3) and Baker’s
method (Chapter 8) is given in:
[W2] M. Waldschmidt. – Nombres Transcendants; Springer Lecture Notes in Math., 402 (1974).
Chapter 1 of this last reference contains a few prerequisites dealing with algebraic number theory and complex
function theory. But we shall repeat all that we need in this lectures.

A detailed study of the history of irrational and transcendental numbers during the 18th and 19th
centuries has been written recently:
M. Serfati. – Quadrature du Cercle, Fractions Continues et autres Contes; Fragments d’histoire des Mathématiques
4, Brochure A.P.M.E.P. N◦86, 1992.



2-1

2.– SKETCH OF THE PROOF

The aim of the first part of these lectures (Chapters 2 to 6) is to give a complete proof of Baker’s
Theorem 1.1. In the present chapter we introduce the main ideas of the proof.

Throughout this chapter, the notations will be as follows: logα1, . . . , logαn+1 are Q-linearly independent
elements of L (which means that αi = exp(logαi) is algebraic), and β1, . . . , βn are algebraic numbers.

Assuming
logαn+1 = β1 logα1 + · · ·+ βn logαn,

we want to deduce that 1, β1, . . . , βn are Q-linearly dependent. As we saw in lemma 1.3, this will imply
Baker’s Theorem 1.1.

We first give a sketch of the proof, then we provide more details in the special case where n = 1
(this is Gel’fond-Schneider’s theorem) and logα1, β = β1 are both real numbers. Hence we prove that if
β logα1 = logα2 belongs to L (which means α2 ∈ Q), then β is rational. As an example one gets the

transcendence of numbers like 2
√

2 and log 2/ log 3. We shall use Liouville’s estimate whose proof will be
given only later in Chapter 3.

1Schneider’s method with interpolation determinants We shall work with the following n+ 1 functions of n
variables:

z1, . . . , zn, α
z1
1 · · ·αznn ,

where, of course, αz11 · · ·αznn stands for exp(z1 logα1 + · · ·+zn logαn). The main point is that these functions
take algebraic values at all the points of the form

(s1 + sn+1β1, . . . , sn + sn+1βn), (s1, . . . , sn+1) ∈ Zn+1.

The set of these points is a finitely generated subgroup of Cn, which we write

Y = Zn + Z(β1, . . . , βn).

Another important property of our functions is that they are algebraically independent: if P is a non-zero
polynomial in n+ 1 variables (with, say, complex coefficients), then the function

F (z1, . . . , zn) = P
(
z1, . . . , zn, α

z1
1 · · ·αznn

)
does not vanish identically (exercise 3). The classical sketch of proof in transcendental number theory involves
the construction of an auxiliary polynomial P (with algebraic coefficients) such that the associated function
F has many zeroes (for several points y of Y ). Here, following M. Laurent, we shall not construct such
an auxiliary function, but we shall only consider the matrix which is associated to the system of equations
F (y) = 0.

For brevity, we write s for (s1, . . . , sn+1) ∈ Zn+1. When S is a positive real number, we define Zn+1(S)

as the set of s in Zn+1 with |si| < S, (1 ≤ i ≤ n+ 1); this set has
(
2[S]− 1

)n+1
elements.

We need to choose a large integer S; how large it should be can be explicitly specified, but it’s sufficient
here to say that it must be large compared with finitely many quantities arising from the data logαi and βi
(namely their degrees, and also the maximum absolute value of the coefficients of their minimal polynomials).
Also we need two more parameters, say L0 and L1, which correspond to the degree in the n first variables,
and in the last one, respectively, of the polynomial P above. The matrix which we are going to consider will
be (

(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn
(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,
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where the index of row is, say, λ, and the index of columns is s; (the ordering of the rows or columns
will be irrelevant: we shall be interested only in the rank of this matrix); λ runs over the (n + 1)-tuples
(λ1, . . . , λn+1) of elements in Nn+1 satisfying λ1 + · · ·+ λn ≤ L0 and λn+1 ≤ L1; hence the number of rows
is
(
L0+n
n

)
(L1 + 1). On the other hand s runs over the (n+ 1)-tuples in Zn+1(S), hence there are (2S− 1)n+1

columns. We shall choose our parameters in such a way that (2S − 1)n+1 ≥
(
L0+n
n

)
(L1 + 1).

The proof can be divided in two parts: in the first one, which is the purely transcendental part, we shall
prove that our matrix has rank strictly less than the number L :=

(
L0+n
n

)
(L1 + 1). In the second part, which

is of a geometric nature (zero estimate), we show that this condition on the rank of the matrix implies the
desired linear dependence condition on 1, β1, . . . , βn.

Details on the second part of the proof are given in Chapter 5 for the general case; a simple example is
worked out in §2 below.

Let us now consider more closely the first part. We consider any determinant ∆ of a L× L matrix out
of the above matrix. This means that we have a subset of s’s, and we can write

∆ = det

(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

.

We want to prove that ∆ vanishes. We first bound |∆| from above: |∆| ≤ ε for some value of ε which we
shall compute in terms of L0, L1 and S (and it is convenient to take these parameters sufficiently large to
perform these computations). This upper bound for |∆| arises from a lemma, due to Michel Laurent, which
concerns all interpolation matrices (see Chapter 4; a simple case is explained below in lemma 2.2); indeed
we can write

∆ = det

(
fλ(s1 + sn+1β1, . . . , sn + sn+1βn)

)
λ,s

,

where, for λ = (λ1, . . . , λn+1) ∈ Zn+1, we define

fλ = zλ1
1 · · · zλnn

(
αz11 · · ·αznn

)λn+1
.

As we shall see in Chapter 4, the upper bound for |∆| follows from Schwarz lemma for functions of a single
variable.

Next we deduce from the upper bound that ∆ vanishes; this is a simple application of Liouville’s
inequality, which is explained in Chapter 3. This will complete the transcendental part of the proof.

1The zero estimate for the real case of Gel’fond-Schneider’s theorem We consider here the second part of
the proof, namely the zero estimate. In the case n = 1, one can use analytic arguments and derive results
on exponential polynomials in one variable. We only give one easy example of such a result, which involves
real functions of one real variable. This will enable us to show that if β is an irrational real number and
logα a non-zero real number, then the matrix(

(s1 + s2β)λ0
(
αs1+s2β

)λ1

)
(λ0,λ1),(s1,s2)

with

{
0 ≤ λ0 ≤ L0, 0 ≤ λ1 ≤ L1,
|s1| < S, |s2| < S

is of rank (L0 + 1)(L1 + 1) as soon as (L0 + 1)(L1 + 1) ≤ (2S − 1)2. This plainly means that if P ∈ C[X,Y ]
is a non-zero polynomial of degree at most L0 in X and L1 in Y , then the function of a single variable
F (z) = P (z, αz1) cannot vanish at all the points s1 + s2β for (s1, s2) ∈ Z2(S). This is where we need the
assumption that logα and β are both real numbers; also the argument we are going to use does not seem to
give anything in the case n ≥ 2.

The following result was already used in a similar context by A.O.Gel’fond and Yu.V.Linnik in Chapter
12 (Transcendance de quelques classes de nombres p.221–228) of [GL]. See also problem 75, Part V of Chapter
1 in [PS].

Lemma 2.1. — Let a1, . . . , an be polynomials in R[t] of degrees d1, . . . , dn, and let w1, . . . , wn be pairwise
distinct real numbers. Then the real function of one real variable

F (t) =

n∑
i=1

ai(t)e
wit
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has at most d1 + · · ·+ dn + n− 1 real zeroes.

In this result the zeroes are counted with multiplicities (this is important for the proof, which will be
by induction); however, for our application, we need only an upper bound for the number of distinct real
zeroes. It’s also interesting to remark that simple arguments from linear algebra show that the upper bound
in lemma 2.1 is best possible (see exercises 1 and 2 at the end of this Chapter). Further related exercises are
given in Chapter 6 of [W] (in particular exercise 6.1.c of [W] where interpolation determinants are explicitly
computed).

Proof. We prove this lemma by induction on the integer k := d1 + · · · + dn + n. In the case k = 1, then
n = 1 and the result is obvious. Assume k ≥ 2. After multiplication of F by e−wnt, we may assume wn = 0.
Hence wi 6= 0 for 1 ≤ i < n. If F has at least N real zeros, then (Rolle) its derivative F ′ has at least N − 1
real zeros. However, since wn = 0, we have

F ′(t) =

n−1∑
i=1

ãi(t)e
wit + (d/dt)an(t)

where
ãi = wiai + (d/dt)ai

is a polynomial of degree exactly di for 1 ≤ i < n, and dn − 1 for i = n (we consider here that the zero
polynomial is of degree −1). One uses the induction hypothesis which yields N − 1 ≤ d1 + · · ·+ dn + n− 2,
hence N is bounded as claimed.

1The interpolation determinant in one variable We now come back to the proof of Gel’fond-Schneider theo-
rem. The upper bound for |∆| is slightly easier in the case n = 1.

We shall say that a complex function of one variable is analytic in a closed disk |z| ≤ R of C if it is
continuous on this disk and analytic inside.

Lemma 2.2. —Let r and R be two real numbers with 0 < r ≤ R, f1, . . . , fL be functions of one complex
variable, which are analytic in the disc |z| ≤ R of C, and let ζ1, . . . , ζL belong to the disk |z| ≤ r. Then the
determinant

∆ = det

 f1(ζ1) . . . fL(ζ1)
...

. . .
...

f1(ζL) . . . fL(ζL)


is bounded from above by

|∆| ≤
(
R

r

)−L(L−1)/2

L!

L∏
λ=1

|fλ|R.

As usual, we have denoted by |f |R the number sup{|f(z)| ; |z| ≤ R} when f is analytic in the disk
{z ∈ C ; |z| ≤ R} of C. Notice also that the conclusion is trivial in the case R = r.

Proof. The determinant Ψ(z) of the matrix
(
fλ(ζµz)

)
is a function of one complex variable which is analytic

in the disk |z| ≤ R/r. We shall prove that it has a zero of multiplicity at least L(L − 1)/2 at the origin;
then, using Schwarz lemma, one deduces

|∆| = |Ψ(1)| ≤
(
R

r

)−L(L−1)/2

|Ψ|R/r.

The trivial upper bound

|Ψ|R/r ≤ L!

L∏
λ=1

|fλ|R

gives the desired conclusion.
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Let us come back to our claim on the order of vanishing of Ψ at the origin. Each fλ can be written as
the sum of its Taylor series; since the determinant is multilinear, one reduces the problem to the cases where
fλ(z) = znλ ; in this case

Ψ(z) = zn1+···+nL det
(
ζnλµ

)
;

if Ψ(z) does not vanish identically, then the nµ are pairwise distinct, and we get a factor zL(L−1)/2, which is
what we wanted.

1Proof of the real case of Gel’fond-Schneider theorem Let `1 ∈ L ∩ R and β ∈ Q ∩ R be such that `2 = β`1
also belong to L. Define αi = e`i , (i = 1, 2), so that αi ∈ Q

∗
and αβ1 = α2. We want to prove that β is

rational.
We denote by c a sufficiently large real number. A suitable value for c can be easily computed once

the proof is completed; it depends only on `1 and β (and involves also the algebraic number α2). Next we
choose three rational integers L0, L1 and S which are subject to the following conditions:

L0 ≥ 2, L1 ≥ 2, S ≥ 2,

cL0 logS ≤ L, cL1S ≤ L, L ≤ (2S − 1)2,

with L = (L0 + 1)(L1 + 1). For instance one can take

L1 = [logS]2 and L0 = [S2(logS)−3]

with S sufficiently large.
Let s(1), . . . , s(L) be any elements in Z2(S). We consider the L× L determinant

∆ = det

(
(s

(µ)
1 + s

(µ)
2 β)λ0

(
α
s
(µ)
1

1 α
s
(µ)
2

2

)λ1
)
λ,µ

with λ = (λ0, λ1), (0 ≤ λ0 ≤ L0, 0 ≤ λ1 ≤ L1), and with 1 ≤ µ ≤ L. We use lemma 2.2 with r = S(1 + |β|),
R = e2r and

fλ(z) = zλ0αλ1z
1 , ζµ = s

(µ)
1 + s

(µ)
2 β.

We bound log |fλ|R by L0 logR+ L1R|`1|; hence

log |∆| ≤ −L(L− 1) + log(L!) + LL0 logR+ LL1R|`1|
≤ −L2 + c1L(L0 logS + L1S),

where c1 (like c2 below) is a positive constant which can be easily computed in terms of `1 and β.
Our choice of the parameters L0, L1 and S shows that the dominating term in the right hand side is

−L2. More precisely, we get
log |∆| ≤ −L2/2

provided that c > 5c1, say, and that L is sufficiently large.
We shall show in the next Chapter (lemma 3.15) that if ∆ does not vanish, then

log |∆| ≥ −c2L(L0 logS + L1S).

Again, assuming c sufficiently large with respect to c2, we conclude ∆ = 0. This shows that the matrix(
(s1 + s2β)λ0

(
αs1+s2β

1

)λ1
)

(λ0,λ1),(s1,s2)

, with

{
0 ≤ λ0 ≤ L0, 0 ≤ λ1 ≤ L1,
|s1| < S, |s2| < S

is of rank < L. From lemma 2.1 we conclude that the points s1 + s2β, (|s1| < S, |s2| < S) are not pairwise
distinct, hence β is rational.
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1Exercises 1.
a) Let w1, . . . , wn distinct real numbers, d1, . . . , dn non-negative rational integers, and u1, . . . , uN distinct
real numbers, with N = d1 + · · ·+dn+n−1. Show that there exist polynomials a1, . . . , an in R[t], of degrees
d1, . . . , dn respectively, such that the function

F (t) =

n∑
i=1

ai(t)e
wit

satisfies F (u1) = · · · = F (uN ) = 0.
Hint. Use lemma 2.1 as well as linear algebra.
b) Give also a generalization where the uj are no more distinct, but multiplicities are required.
Hint. See [W] Exercise 6.1.a.

2. (Algebraic version of lemma 2.1: upper bound for the number of consecutive integral zeroes of an
exponential polynomial. )

Let K be a field, α1, . . . , αn non-zero elements of K which are pairwise distinct, and a1, . . . , an non-zero
polynomials in K[X], of degrees say d1, . . . , dn. Then the function Z −→ K which is defined by

F (m) =

n∑
i=1

ai(m)αmi

cannot vanish on a set of d1 + · · ·+ dn + n consecutive integers.

3. For u = (u1, . . . , un) and z = (z1, . . . , zn) in Cn, define u · z = u1z1 + · · · + unzn. Let w1, . . . , wt be
pairwise distinct elements of Cn. Show that the t functions ew1·z, . . . , ewt·z are algebraically independent
over the field Q(z1, . . . , zn) : if P ∈ C[X1, . . . , Xn, Y1, . . . , Yt] is a non-zero polynomial in n + t variables,
then the function

P
(
z1, . . . , zn, e

w1·z, . . . , ewt·z
)

is not identically zero.
Hint. Use induction on t like in the proof of lemma 2.1.

4. The above proof of Gel’fond-Schneider’s theorem requires the hypothesis that logα and β are real
algebraic numbers only because of lemma 2.1. Complete the proof in the complex cases by using the
following result of Tijdeman (see for instance [W]):

Let a1, . . . , an be polynomials in C[t] of degrees d1, . . . , dn, and let w1, . . . , wn pairwise distinct complex
numbers. Define Ω = max{|w1|, . . . , |wn|}. Then the number of zeroes of the function

F (z) =

n∑
i=1

ai(z)e
wiz

in the disk |z| ≤ R of C is at most 2(d1 + · · ·+ dn + n− 1) + 5RΩ.

5. Compute explicitly a suitable value for c in the proof of §4.
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[PS] G.Pólya and G.Szegő. – “Problems and theorems in analysis”; Volume 2, Springer Verlag (Grund. der
Math. Wiss. 216, 1976).
[W] M.Waldschmidt. – Nombres transcendants; Springer Lecture Notes 402 (1974).



3-1

3.– HEIGHTS – LIOUVILLE INEQUALITY

A non-zero rational integer has absolute value at least 1; a non-zero rational number has absolute
value at least the inverse of a denominator. Liouville’s inequality is an extension of these estimates and
provides a lower bound for a non-zero algebraic number. More specifically, we are given finitely many (fixed)
algebraic numbers γ1, . . . , γq, and we have a polynomial P ∈ Z[X1, . . . , Xq] which does not vanish at the
point (γ1, . . . , γq); the algebraic number we want to estimate from below is P (γ1, . . . , γq). The lower bound
must depend explicitly on the degrees of P , as well as on an upper bound for the absolute values of its
coefficients.

In order to do so, we introduce a notion of height for an algebraic number. We study this height with
somewhat more details than are strictly necessary, because it’s an important tool in many situations.

1 p-adic valuation and p-adic absolute values over Q For x ∈ Q, x 6= 0, we write the decomposition of x into
a product of prime factors as follows

x = ±
∏
p

pvp(x).

This defines, for each prime number p, a map vp from Q∗ to Z, which we extend by vp(0) = ∞. The map
vp : Q −→ Z ∪ {∞} thus obtained is the p-adic valuation over Q; it satisfies the following properties :
(i) for x ∈ Q, vp(x) =∞ is equivalent to x = 0

(ii) for (x, y) ∈ Q2, vp(xy) = vp(x) + vp(y)
(iii) for (x, y) ∈ Q2, vp(x+ y) ≥ min{vp(x), vp(y)}.

To vp is associated an absolute value | |p, which is the map from Q to Q defined

|x|p = p−vp(x).

The p-adic absolute value satisfies the following properties :
(i) for x ∈ Q, |x|p = 0 is equivalent to x = 0

(ii) for (x, y) ∈ Q2, |xy|p = |x|p|y|p
(iii) for (x, y) ∈ Q2, |x+ y|p ≤ max{|x|p, |y|p}.

This p-adic absolute value defines a distance on Q, hence a topology. The ball of center a ∈ Q and
radius p−r (with r ∈ Z) :

D(a, r) = {x ∈ Q ; |x− a|p ≤ p−r} = {x ∈ Q ; vp(x− a) ≥ r}

is the set of rational numbers x such that the difference x − a is divisible by pr, i.e. such that x − a is the
product of pr by a rational number with denominator not divisible by p; for r ≥ 1, this means that the
numerator of x− a (written as a quotient of two coprime integers) is congruent to 0 modulo pr. This is why
p-adic numbers are useful for the study of congruences.

Writing, as usual, by | | the usual absolute value on Q, we have the product formula

|x|
∏
p

|x|p = 1 for all x ∈ Q∗,

which can also be written additively :∑
p

vp(x) log p = log |x| for all x ∈ Q∗.
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1The absolute logarithmic height (Weil) We denote by Q̄ an algebraic closure of Q. Here, we do not consider
this field Q̄ as a subfield of C, but we consider all the possible embeddings.

A number field is a subfield k of C which, considered as a vector space over Q, is of finite dimension;
this dimension is denoted by [k : Q] and is called the degree of k (over Q).

Two absolute values on k are said to be equivalent if they define the same topology on k; a place of
k is an equivalence class of non trivial absolute values. Let | | be a non-trivial absolute value on k. The
restriction of this absolute value to Q is equivalent either to the usual absolute value on Q (in this case the
absolute value | | is called Archimedean), or else to a p-adic absolute value (in this case the absolute value
| | is said to be ultrametric).

In each equivalence class v we choose the representative | |v which is normalized by{
|x|v = x if x ∈ Q, x > 0, and v is Archimedean,
|p|v = 1/p if v extends the p-adic valuation of Q.

We write v | ∞ if v is Archimedean, and v | p if v extends the p-adic valuation. We denote by Mk (resp. M∞k )
the set of normalized absolute values (resp. Archimedean normalized absolute values) of k. For v ∈Mk, kv
will be the completion of k at the place v. The completion of Q for the p-adic valuation is the field Qp of
p-adic numbers.

According to the theorem of the primitive element (see exercise 1), a number field has a generator :
there exists an algebraic number α ∈ k such that k = Q(α). Denote by

f(X) = a0X
d + · · ·+ ad ∈ Z[X]

the minimal polynomial of α : f is irreducible in Z[X] (this means that f is irreducible in Q[X] and the
rational integers a0, . . . , an are relatively prime), f(α) = 0 and a0 > 0.
a) Let α1, . . . , αd be the roots of f in C. There are d embeddings of k into C, which are given by

k −→ C
α 7−→ αi

(1 ≤ i ≤ d). To each embedding σ : k −→ C we associate an absolute value | |σ by |γ|σ = |σ(γ)|. We obtain
by this way all the Archimedean places of k. If σ(α) ∈ R, then σ(k) ⊂ R and kv = R; the embedding σ and
the place v are called real. To a real place v corresponds one and only one real embedding of k; in this case
we define dv = 1. If σ(α) 6∈ R, then kv = C; the embedding σ and the place v are called complex; to such
a place v correspond two (complex conjugate) embeddings of k into C, and we set dv = 2. Let r1 be the
number of real roots of f and r2 the number of pairs of conjugate complex roots of f , with d = r1 + 2r2;
then the number of Archimedean places of k is r1 + r2, and∑

v∈M∞
k

dv = d.

The numbers
(
|α1|, . . . , |αd|

)
are the same as

(
|α|v ; v ∈M∞k

)
where each |α|v is repeated dv times; this

can also be written
d∏
i=1

(X − |αi|) =
∏

v∈M∞
k

(X − |α|v)dv .

b) Let p be a prime number. We denote by Cp the completion of an algebraic closure of Qp. The absolute

value of x ∈ Cp is denoted by |x|p. Let α
(p)
1 , . . . , α

(p)
d be the roots of f in Cp. The embeddings of k into Cp

are given by
k −→ Cp
α 7−→ α

(p)
i

(1 ≤ i ≤ d). To each embedding σ : k −→ Cp we associate an absolute value | |σ, which is defined by
|γ|σ = |σ(γ)|p. This gives all the places of k above p. Given a place v of k which extends the p-adic absolute
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value, there are usually several embeddings σ of k into Cp to which this place is associated; their number dv
is the local degree at v; this is the degree of the extension kv/Qp. Hence

d =
∑
v|p

dv.

The numbers
(
|α(p)

1 |p, . . . , |α
(p)
d |p

)
are the same as the numbers

(
|α|v ; v | p

)
where each |α|v is repeated dv

times; this can be written
d∏
i=1

(X − |α(p)
i |p) =

∏
v|p

(X − |α|v)dv .

Let again k be a number field of degree d. For each place v of k we have defined a local degree dv which
satisfies {

dv = [kv : Qp] if v | p,
dv = [kv : R] if v ∈M∞k .

The product formula reads ∏
v∈Mk

|x|dvv = 1 for x ∈ k, x 6= 0.

The relations d =
∑
v∈M∞

k
dv =

∑
v|p dv can be generalized as follows : if k′ is a finite extension of k,

one defines a map from Mk′ onto Mk by mapping w onto the restriction v of w on k; one writes : w | v; then

(3.1)
∑
w|v

[k′w : kv] = [k′ : k]

(cf. for instance [L1] Chap. 2 §1 p.39 cor.1).
Let α be an algebraic number; when k is a number field which contains α, we define

h(α) =
1

d

∑
v∈Mk

dv log max{1, |α|v}.

This is the (Weil) absolute logarithmic height of the number α. Using (3.1), one checks that it does not
depend on the choice of the number field k containing α, but only on α.
Example. For two rational integers a, b which are relatively prime,

h(a/b) = log max{|a|, |b|}.

Property 3.2. — For algebraic numbers α1 and α2,

(3.3) h(α1α2) ≤ h(α1) + h(α2)

and

(3.4) h(α1 + α2) ≤ log 2 + h(α1) + h(α2).

Moreover, for any algebraic number α 6= 0 and for any n ∈ Z,

(3.5) h(αn) = |n|h(α).

Proof. The upper bound (3.3) is a consequence of the upper bound

max{1, xy} ≤ max{1, x}max{1, y} for all x ≥ 0, y ≥ 0,
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while (3.4) follows from the inequality

max{1, x+ y} ≤ 2 max{1, x}max{1, y} for all x ≥ 0, y ≥ 0.

Property (3.5) reduces to h(α) = h(1/α) for α 6= 0, which follows from the product formula, since max{1, x} =
xmax{1, 1/x} for x > 0.

Remark. The term log 2 in the right hand side of the estimate (3.4) cannot be replaced by a smaller absolute
constant, as shown by the following example : α1 = q/(q−1), α2 = q/(q+1) with q an even integer. Another
example is α1 = α2 = 1.

The next lemma provides an upper bound for the absolute logarithmic height of an algebraic number
which is given as the value of a polynomial in algebraic numbers γ1, . . . , γq.

When f ∈ C[X1, . . . , Xt] is a polynomial in t variables, with complex coefficients, we denote by L(f)
its length, which is the sum of the modulus of its complex coefficients. We shall prove (as a consequence of
lemma 3.7 below) the following estimate :

Lemma 3.6. — Let f ∈ Z[X1, . . . , Xt] be a non-zero polynomial in t variables with rational integer coeffi-
cients. Write degXi (1 ≤ i ≤ t) for the partial degrees of f . Let γ1, . . . , γt be algebraic numbers. Then

h
(
f(γ1, . . . , γt)

)
≤ logL(f) +

t∑
i=1

(
degXi f

)
h(γi).

For instance, when p1/q1 and p2/q2 are two rational numbers with (p1, q1) = (p2, q2) = 1 and qi > 0,
then lemma 3.6 yields

h

(
p1

q1
+
p2

q2

)
≤ log 2 + log max{|p1|, q1}+ log max{|p2|, q2}.

However, it’s more efficient to write p1/q1 = a/c and p2/q2 = b/c with gcd(a, b, c) = 1 and c > 0 :

h

(
a

c
+
b

c

)
≤ log max{|a+ b|, c}

≤ log 2 + log max{|a|, |b|, c}.

This example suggests a refinement of lemma 3.6, using a notion of simultaneous height for several numbers.
Let k be a number field of degree d; let ϑ0, . . . , ϑs and λ be elements of k with (ϑ0, . . . , ϑs) 6= (0, . . . , 0) and
λ 6= 0; from the product formula it follows that the number

1

d

∑
v∈Mk

dv log max{|ϑ0|v, . . . , |ϑs|v},

which is attached to the (s+ 1)-tuple (ϑ0, . . . , ϑs) ∈ ks+1, is the same as the number

1

d

∑
v∈Mk

dv log max{|λϑ0|v, . . . , |λϑs|v},

which is attached to the (s+1)-tuple (λϑ0, . . . , λϑs) ∈ ks+1; therefore this number depends only on the class
(ϑ0 : · · · : ϑs) of (ϑ0, . . . , ϑs) in the projective space Pn(k); we denote it by h(ϑ0 : · · · : ϑs). For instance
h(α) = h(1 : α).
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Lemma 3.7. — Let k be a number field and s1, . . . , st be positive integers; for 1 ≤ i ≤ t, let γi1, . . . , γisi be
elements of k; denote by γ the point

(
γij
)

1≤j≤si,1≤i≤t
in ks1+···+st . Further, let f be a non-zero polynomial

in s1 + · · · + st variables, with coefficients in Z, of total degree at most Ni with respect to the si variables
corresponding to γi1, . . . , γisi . Finally, denote by L(f) the length of f (sum of the absolute values of the
coefficients). Then

h
(
f(γ)

)
≤ logL(f) +

t∑
i=1

Nih(1 : γi1 : · · · γisi).

We deduce lemma 3.6 by taking si = 1 for 1 ≤ i ≤ t.

Proof. Write

f =
∑
λ

pλ

t∏
i=1

si∏
j=1

X
λij
ij ,

where pλ are rational integers and λ = (λij) runs over a finite subset of Ns1+···+st . Let v be a place of k. If
v is ultrametric, then

log max{1, |f(γ)|v} ≤ log max

1,max
λ

t∏
i=1

si∏
j=1

|γij |λijv


≤

t∑
i=1

Ni log max{1, |γi1|v, . . . , |γisi |v}.

If v is Archimedean, then

log max{1, |f(γ)|v} ≤ logL(f) + log max

1,max
λ

t∏
i=1

si∏
j=1

|γij |λijv


≤ logL(f) +

t∑
i=1

Ni log max{1, |γi1|v, . . . , |γisi |v}.

Using the relation
∑
v∈M∞

k
dv = d, we easily deduce the conclusion.

1Mahler’s measure Let f ∈ C[X] be a non-zero polynomial of degree d with leading coefficient a0 > 0 :

f(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad = a0

d∏
i=1

(X − αi).

The Mahler’s measure of f is the number

M(f) = a0

d∏
i=1

max{1, |αi|}.

This defines a multiplicative function :

M(f1f2) = M(f1)M(f2)

for f1 and f2 in C[X]. Let us check

(3.8) M(f) = exp

(∫ 1

0

log |f(e2iπt)|dt
)
.
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For this, we consider the analytic function

g(z) = zdf(1/z) = a0

d∏
i=1

(1− αiz);

its zeroes in the unit disk |z| < 1 are the 1/αi, with |αi| > 1; Jensen’s formula (which is easier in the case of
polynomials; see for instance [M]) yields∫ 1

0

log |g(e2iπt)|dt = log |g(0)|+
∑
|αi|>1

log |αi|;

this proves (3.8).

When α be an algebraic number with minimal polynomial f ∈ Z[X], we define its Mahler’s measure by
M(α) = M(f).

Lemma 3.9. — Let α be an algebraic complex number of degree d. Then

h(α) =
1

d
log M(α).

Proof. Denote, as before, by a0 > 0 the leading coefficient of the minimal polynomial of α, by k the number
field Q(α), and, for v ∈Mk, by dv the local degree of k at v. Since

M(α) = a0

∏
v∈M∞

k

max{1, |α|v}dv ,

the desired relation reduces to

a0 =
∏

v 6∈M∞
k

max{1, |α|v}dv .

The product formula

a0 =
∏
p

|a0|−1
p

shows that it’s sufficient to check

|a0|−1
p =

∏
v|p

max{1, |α|v}dv .

Therefore the result reduces to the following lemma:

Lemma 3.10. — Let p be a prime number; let

f(X) = a0X
d + a1X

d−1 + · · ·+ ad

be a polynomial of Z[X] with degree d and gcd(a0, . . . , ad) = 1. Denote by α1, . . . , αd the roots of f in Cp :

f(X) = a0

d∏
i=1

(X − αi).

Then

|a0|p
d∏
i=1

max{1, |αi|p} = 1.
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Proof. We may assume |α1|p ≤ · · · ≤ |αd|p. Since the ai are relatively prime, max{|a0|p, . . . , |ad|p} = 1. Let
us write ai/a0 as a symmetric function of the αi :

ai
a0

= (−1)i
∑

s1,...,si

αs1 · · ·αsi (1 ≤ i ≤ d).

If |αi|p ≤ 1 for all i = 1, . . . , d, then |ai|p ≤ |a0|p and max{|a0|p, . . . , |ad|p} = |a0|p = 1, which gives the
desired result. Otherwise let j, (1 ≤ j ≤ d), be such that

|α1|p ≤ · · · ≤ |αj−1|p ≤ 1 < |αj |p ≤ · · · ≤ |αd|p.

Then

max

{∣∣∣∣ aia0

∣∣∣∣
p

; 1 ≤ i ≤ d

}
=

∣∣∣∣ad−j+1

a0

∣∣∣∣
p

= |αj · · ·αd|p =

d∏
i=1

max{1, |αi|p},

hence

max{|a1|p, . . . , |ad|p} = |a0|p
d∏
i=1

max{1, |αi|p}.

Since this number is ≥ |a0|p, we deduce

max{|a0|p, . . . , |ad|p} = |a0|p
d∏
i=1

max{1, |αi|p},

hence the result.

Remark 1. When α is an algebraic number, lemma 3.10 shows that α is an algebraic integer if and only if
|α|v ≤ 1 for all ultrametric absolute values of Q(α).

Remark 2. Let α be an algebraic number with conjugates α1, . . . , αd. If D ∈ Z is such that∣∣∣∣∣D∏
i∈I

αi

∣∣∣∣∣
v

≤ 1

for all subsets I of {1, . . . , d} and all ultrametric places v, then

|D|p
d∏
i=1

max
{

1, |αi|p
}
≤ 1

for each prime number p and each embedding of Q(α1, . . . , αd) into Cp; hence |D|p ≤ |a0|p for each p, which
means that a0 divides D. This shows that a0 is the positive generator of the ideal of D ∈ Z for which, for
any subset {i1, . . . , it} of {1, . . . , d}, the number Dαi1 · · ·αit is an algebraic integer.

Remark 3 (M. Laurent). Let α be a non-zero algebraic number. The ring of integers Zk of the number field
k = Q(α) is a Dedekind domain ; the principal fractional ideal

(
α
)

can be written B/C, where B and C are
non-zero relatively prime integral ideals of k. Let us show that

C =
{
γ ∈ Zk ; γα ∈ Zk

}
and N C = a0,

where N C is the absolute norm of the ideal C.
We write (

α
)

=
∏
P
PmP(α),
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where P runs over the set of prime ideals of Zk. Hence

B =
∏
P
Pmax{0,mP(α)}, C =

∏
P
Pmax{0,−mP(α)}.

Recall that the absolute norm NP of P is NP = Card(Zk/P). If v ∈Mk is the ultrametric place associated
to P and dv the local degree, then

|α|dvv = NP−mP(α)

(the product of the left hand side for all ultrametric v, as well as the product of the left hand side for all
prime ideals P, is 1/|N (α)|, where N (α) is the norm of α) ; indeed, for γ ∈ Zk and m ≥ 1, we have

γ ∈ Pm ⇐⇒ |γ|dvv ≤ NP−m.

Using remark 1, we conclude

C =
{
γ ∈ Zk ; |γ|v ≤ |α|−1

v for all ultrametric v ∈Mk

}
=
{
γ ∈ Zk ; γα ∈ Zk

}
and

B =
{
γα ; γ ∈ C

}
.

Further, by the multiplicativity property of N , we deduce from lemma 3.10:

N C =
∏
P

NPmax{0,−mP(α)} =
∏

v ultrametric

max
{

1, |α|−dvv

}
= a0.

1Usual height and size There are several other notions of heights or size (in French : “taille”) for algebraic
numbers. Here are a few examples, with comparisons. Usually, a good notion of height includes the property
that the set of algebraic numbers of bounded height and degree is finite. To give estimates for the number
of elements of such sets is also an interesting question (see the reference to Schanuel in [L4]).

The usual height H(f) of a polynomial f(X) = a0X
d + a1X

d−1 + · · · + ad ∈ C[X] is the maximum of
the complex modulus of its coefficients :

H(f) = max{|a0|, . . . , |ad|}.

The usual height H(α) of an algebraic number α is the usual height of its minimal polynomial over Z.
The house of an algebraic number is the maximum of the modulus of its conjugates in C :

α = max{|α1|, . . . , |αd|}

when the minimal polynomial of α is written in C[X] as

f(X) = a0X
d + · · ·+ ad = a0

d∏
i=1

(X − αi).

The denominator den(α) of α is the positive generator of the ideal of D ∈ Z for which Dα is an algebraic
integer; it is a divisor of a0.

Among several notions of size, the most frequently used is

s(α) = log max{den(α) ; α }.

Lemma 3.11. — For α ∈ Q̄ of degree d, we have

(3.12)
1

d
logH(α)− log 2 ≤ h(α) ≤ 1

d
logH(α) +

1

2d
log(d+ 1)
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and
1

d
s(α) ≤ h(α) ≤ log den(α) + log max

{
1, α

}
≤ 2s(α).

Proof. Let us write (3.12) in the equivalent form

2−dH(α) ≤ M(α) ≤ H(α)
√
d+ 1;

the first of these inequalities is trivial. The second follows from the arithmetico-geometric inequality :

exp

(∫ 1

0

log
∣∣f(e2iπt

)∣∣dt) ≤ ∫ 1

0

∣∣f(e2iπt
)∣∣dt.

Using this bound for fp, with p positive real, we deduce

M(f) ≤
(∫ 1

0

∣∣f(e2iπt
)∣∣pdt)1/p

.

For p = 2 we obtain the desired estimate :

M(f)2 ≤ (d+ 1)H(f)2.

The proof of the second series of inequalities does not involve any difficulty and is left as an exercise.

1Liouville inequalities The simplest such inequality, from which all other are derived, is

|n| ≥ 1 for all n ∈ Z, n 6= 0.

We used it already in Chapter 1. One of the most useful is

(3.13) log |α|v ≥ −[Q(α) : Q]h(α)

for all α ∈ Q̄, α 6= 0, and all places v of Q(α). For the proof, we first remark that for all α ∈ Q̄ (including
α = 0), we have

log |α|v ≤ [Q(α) : Q]h(α);

further, if α 6= 0, then h(α) = h(α−1) (see (3.5)).
From lemma 3.7 we now deduce the following statement: under the hypotheses of lemma 3.7, if the

number f(γ) does not vanish, then for all places v of the field k, we have

log |f(γ)|v ≥ −d logL(f)− d
t∑
i=1

Nih(1 : γi1 : · · · : γisi).

where d = [k : Q].
We give a slight refinement, where d logL(f) is replaced by (d− 1) logL(f) when v is an Archimedean

place.

Lemma 3.14 (Liouville inequality). — Let k be a number field of degree d, v be an Archimedean
place of k and s1, . . . , st be positive integers; for 1 ≤ i ≤ t, let γi1, . . . , γisi be elements of k. Further,
let f be a polynomial in s1 + · · · + st variables, with coefficients in Z, which does not vanish at the point
γ =

(
γij
)

1≤j≤si,1≤i≤t
. Assume f is of total degree at most Ni with respect to the si variables corresponding

to γi1, . . . , γisi . Finally, denote by L(f) the length of f (sum of the absolute values of the coefficients). Then

log |f(γ)|v ≥ −(d− 1) logL(f)− d
t∑
i=1

Nih(1 : γi1 : · · · : γisi).
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The simplest case t = 1, s1 = 1 can be written as follows: for a polynomial f ∈ Z[X] of degree ≤ N and
an algebraic number α ∈ C of degree d which is not a root of f , we have

|f(α)| ≥ L(f)1−de−dNh(α)

(We take for v the Archimedean place associated with the given embedding of Q(α) in C).

Proof. We write the product formula for f(γ) 6= 0:

dv log |f(γ)|v = −
∑
w 6=v

dw log |f(γ)|w,

where w runs over the places of k distinct from v. If w is Archimedean we have

log |f(γ)|w ≤
t∑
i=1

Ni log max
{

1, |γi1|w, . . . , |γisi |w
}

+ logL(f);

the sum of dw for w Archimedean and w 6= v is d− dv ≤ d− 1. If w is ultrametric, the same estimate holds
without the term logL(f). We conclude the proof by using the bound

∑
w 6=v

dw

t∑
i=1

Ni log max
{

1, |γi1|w, . . . , |γisi |w
}
≤ d

t∑
i=1

Nih(1 : γi1 : · · · : γisi).

Using inequality (3.13) for α = β − (p/q) (or, if v is Archimedean, using lemma 3.14 for the polynomial
in a single variable f(X) = qX − p), we deduce that for each algebraic number β, there exists a constant
c(β) > 0 such that for all p/q ∈ Q with q > 0 and p/q 6= β, and for any place v of Q(β), we have∣∣∣∣β − p

q

∣∣∣∣
v

≥ c(β)

max{|p| ; q}d

with d = [Q(β) : Q] (and |p| is the usual absolute value of p).
Finally, the size inequality{

log |α|v ≥ −(d− 1) log α − d log denα if v is Archimedean
log |α|v ≥ −d log α − d log denα if v is ultrametric

for all α ∈ Q̄, α 6= 0 is proved by writing
– that the norm over Q of αden(α) is a non-zero rational integer if v is Archimedean,
– the product formula for αden(α) if v is ultrametric.

1Lower bound for a determinant Recall (see §2.1) that for S a positive real number, Zn+1(S) denotes the set
of n+ 1 tuples s = (s1, . . . , sn+1) ∈ Zn+1 with |sj | < S for 1 ≤ j ≤ n+ 1. Now let S1, . . . , Sn+1 be positive
real numbers; we write S for (S1, . . . , Sn+1) and we denote by Zn+1(S) the set of s = (s1, . . . , sn+1) ∈ Zn+1

which satisfy |si| < Si, (1 ≤ i ≤ n+ 1).
Here is a consequence of lemma 3.14:

Proposition 3.15. — Let α1, . . . , αn+1 be non-zero algebraic numbers and β1, . . . , βn be algebraic numbers.
Denote by D the degree of the number field Q(α1, . . . , αn+1, β1, . . . , βn). Let L0, L1 and S1, . . . , Sn+1 be
positive rational integers; define L =

(
L0+n
n

)
(L1 + 1) and S = max{S1, . . . , Sn+1}. Further let s(1), . . . , s(L)

be any elements in Zn+1(S). Consider the L× L determinant

∆ = det

(
(s

(µ)
1 + s

(µ)
n+1β1)λ1 · · · (s(µ)

n + s
(µ)
n+1βn)λn

(
α
s
(µ)
1

1 · · ·αs
(µ)
n+1

n+1

)λn+1
)
λ,µ
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with λ = (λ1, . . . , λn+1) ∈ Nn+1, λ1 + · · ·+λn ≤ L0 and λn+1 ≤ L1 and with 1 ≤ µ ≤ L. Then either ∆ = 0
or else

1

L
log |∆| ≥ −(D − 1)

(
L0 log(2S) + logL

)
−DL1

n+1∑
i=1

Sih(αi)−DL0h(1 : β1 : · · · : βn).

Proof. The number ∆ is the value, at the point (α1, . . . , αn+1, α
−1
1 , . . . , α−1

n+1, β1, . . . , βn), of the polynomial
Q(X1, . . . , Xn+1, Y1, . . . , Yn+1, Z1, . . . , Zn), which is defined by

Q(X,Y , Z) = det

(
Qλ,µ(X,Y , Z)

)
λ,µ

,

where

Qλ,µ(X,Y , Z) =

n∏
j=1

(s
(µ)
j + s

(µ)
n+1Zj)

λj

n+1∏
i=1

(
X

max{s(µ)
i
,0}

i Y
max{−s(µ)

i
,0}

i

)λn+1

For each i, λ, µ, the polynomialQλ,µ is of degree≤ λn+1 max{s(µ)
i , 0} inXi and of degree≤ λn+1 max{−s(µ)

i , 0}
in Yi; moreover eachQλ,µ is of total degree at most L0 with respect to the variables Z1, . . . , Zn; the coefficients
are rational integers ; the sum of their absolute values is bounded by

L(Qλ,µ) ≤
n∏
j=1

(|s(µ)
j |+ |s

(µ)
n+1|)λj ≤ (2S)L0 .

It follows easily that the polynomial

Q =
∑
{σ}

ε(σ)

L∏
µ=1

Qσ(µ),µ,

(where σ runs over the set of bijective maps from {1, . . . , L} onto the set of (λ1, . . . , λn+1), and ε(σ) is +1
or −1, and depends on the ordering of the λ’s) is a polynomial of degree in Xi as well as in Yi at most

Si
∑
λ

λn+1 ≤
1

2
LL1Si,

of total degree at most LL0 with respect to Z1, . . . , Zn, while its length satisfies

L(Q) ≤ L!(2S)LL0 .

We use lemma 3.14 with t = 2n+3, s1 = · · · = s2n+2 = 1, s2n+3 = n, γi1 = αi for 1 ≤ i ≤ n+1, γi1 = α−1
i−n−1

for n+2 ≤ i ≤ 2n+2 and γ2n+3,j = βj for 1 ≤ j ≤ n, Ni = Nn+i+1 ≤ LL1Si/2, (1 ≤ i ≤ n+1), N2n+3 = LL0,
and we use the fact that αj and α−1

j have the same height.

1Lower bound for the height An algebraic integer whose complex conjugates are all of modulus ≤ 1 is a
root of unity. Indeed, for such an α, the set of α`, (` ≥ 1), is finite (each α` is a root of a polynomial with
rational integer coefficients of degree d and whose coefficients have usual absolute values at most 2d, where
d is the degree of α). This gives the following statement, due to Kronecker : if a non-zero algebraic number
α ∈ k satisfies |α|v ≤ 1 for all v ∈Mk, then α is a root of unity.

Therefore the only algebraic numbers α which satisfy h(α) = 0 are 0 and the roots of unity; the other
ones satisfy h(α) > 0. To give a sharp lower bound for h(α) (when it is not zero) in terms of the degree of
α is an interesting and difficult problem (see [L4] Chap.9 §7).

If a non-zero algebraic number α satisfies M(α) < 2, then α is an integer, and α−1 also; hence α is an
algebraic unit. The problem is now to derive a lower bound for the height of algebraic units which are not
roots of unity.
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It is easy to see (exercise 7) that for each positive integer d there exists a positive number c(d) such
that, for any non-zero algebraic number α which is not a root of unity and is of degree ≤ d, the inequality
h(α) ≥ c(d) is valid. The example α = 21/d shows that such a function c(d) must satisfy c(d) ≤ (log 2)/d.
Lehmer’s problem is : is-it possible to choose c(d) = c0/d for some positive absolute constant c0 ? The
smallest known value for dh(α) is logα0 = 0.1623576 . . . where α0 = 1.1762808 . . . is the root of the reciprocal
polynomial of degree 10 :

X5Q
(
X + (1/X)

)
for Q(Y ) = (Y + 1)2(Y − 1)(Y + 2)(Y − 2)− 1.

The first result in the direction of Lehmer’s problem is due to Schinzel and Zassenhaus (1965) : when
α 6= 0 is an algebraic number of degree d ≥ 2 which is not a root of unity, then h(α) > c/2d for some
absolute constant c > 0. In 1971, Blanksby and Montgomery [B-M] refined this result and proved h(α) >
1/
(
52d2 log(6d)

)
. In 1978, C.L. Stewart [St] introduced a method from transcendental number theory to

prove h(α) > 1/
(
104d2 log d

)
; this is marginally weaker than the previous result, but the interest lies in

the method. Indeed, in 1979, Dobrowolski [Do] extended Stewart’s argument and obtained the following
statement: for each ε > 0, there exists an integer d0(ε) such that, for d > d0(ε),

h(α) >
1− ε
d

(
log log d

log d

)3

;

this result is effective: according to [Do], for all d ≥ 3, h(α) > (1/1200d)
(
log log d/ log d

)3
. Later Cantor-

Straus [C-S] introduced an interpolation determinant and replaced 1 − ε by 2 − ε. Finally R. Louboutin
[Lo] reached (9/4) − ε by a modification of the determinant introduced by Cantor and Straus; the same
result with (9/4)− ε has been also obtained by M. Meyer using a construction of an auxiliary function (like
Dobrowolski), but with Siegel’s lemma replaced by a lemma due to Bombieri and Vaaler.

Our aim in this section is to give a further example of a transcendence proof using an interpolation
determinant.

Theorem 3.16. — Let α be a non-zero algebraic number of degree d ≥ 2; assume

h(α) ≤ 1

2200d2 log d
.

Then α is a root of unity.

Our proof will follow the method of Stewart in [St], apart from the fact that we replace the auxiliary
function by an interpolation determinant. A variant of this proof is given in [MW]. In Chapter 7 (proof of
lemma 7.2), we shall use the following consequence of theorem 3.16: if α 6= 0 is not a root of unity, then

h(α) >
1

103d3
.

We split the proof in two parts: the first one is a transcendence argument, the second is the choice of
parameters. Here is the first part:

Proposition 3.17. — Let L ≥ 2 be an even integer, A ≥ 2 an integer and C > 0 a real number. Let α be
an algebraic number of degree d satisfying |α| ≥ 1. Assume

(3.18)
( π
A

)2

+
(
AL log |α|

)2 ≤ 1

C2

and

(3.19)

(
1− 1

L

)
logC > 1 +

2d

L
logL+

d

2
ALh(α).
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Then α is a root of unity.

Proof. We denote by log the principal value of the logarithm with imaginary part in ]− π, π]. We consider
the AL numbers (not necessarily distinct)

= logαs, (0 ≤ s < AL),

which all sit in an interval of length 2π. We write this interval ] − π, π] as a union of A intervals Ij =
] − π + (2πj/A),−π +

(
2π(j + 1)/A

)
], 0 ≤ j ≤ A − 1. Using Dirichlet box principle, we deduce that there

exists j with 0 ≤ j ≤ A − 1 such that Ij contains at least L of our AL numbers. Consider the center
ϑ = −π +

(
π(2j + 1)/A

)
of the interval Ij . Then there exist rational integers sλ, (1 ≤ λ ≤ L) with

0 ≤ s1 < s2 < · · · < sL < AL, such that∣∣= log
(
αsλ
)
− ϑ

∣∣ ≤ π

A
, (1 ≤ λ ≤ L).

From (3.18), using the estimate
0 ≤ log |αsλ | < AL log |α|

we deduce

(3.20)
∣∣log

(
αsλ
)
− iϑ

∣∣ ≤ 1

C
, (1 ≤ λ ≤ L).

Consider the L× L determinant

∆ = det
(
αsλ`

)
1≤λ≤L,−L/2<`≤L/2

This determinant is closely related to a Vandermonde determinant:

∆

L∏
λ=1

αsλ(L−2)/2 =
∏

1≤λ<µ≤L

(
αsµ − αsλ

)
.

If α is not a root of unity, then ∆ 6= 0. On the other hand we can write ∆ = f(α, α−1), where f ∈ Z[X,Y ]
is defined by

f(X,Y ) =
∑
σ

ε(σ)
∏

−L/2<`≤L/2

Xσ(`) max{`,0}Y σ(`) max{−`,0};

in the sum, σ runs over the bijective maps from {(−L/2) + 1, . . . , L/2} onto {s1, . . . , sL}, and ε(σ) is the
signature of the corresponding permutation. The length of f is at most

∑
σ 1 = L!. The degree of f with

respect to X is bounded by

∑
`

σ(`) max{`, 0} < AL

L/2∑
`=0

` =
1

8
AL2(L+ 2),

while the degree in Y is at most

∑
`

σ(`) max{−`, 0} < AL

(L/2)−1∑
`=0

` =
1

8
AL2(L− 2).

From Liouville’s estimate we deduce, when α is not a root of unity,

1

L
log |∆| > −(d− 1) logL− d

4
AL2h(α).

In order to derive an upper bound for |∆|, we define

fλ(z) = exp
{
z
(
logαsλ − iϑ

)}
, (1 ≤ λ ≤ L),
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ζ` = `, (−L/2 < ` ≤ L/2), r = L/2, R = CL/2.

Since |e`iϑ| = 1, we have

|∆| =
∣∣∣∣det

(
fλ(ζ`)

)
1≤λ≤L,−L/2<`≤L/2

∣∣∣∣.
Using (3.20), we obtain

log |fλ|R < R/C = L/2.

We apply lemma 2.2:
1

L
log |∆| ≤ −L− 1

2
logC + logL+

L

2
.

Combining with the lower bound for |∆|, we conclude

d

4
AL2h(α) + d logL+

L

2
>
L− 1

2
logC.

This is clearly contradictory with (3.19). Therefore α is a root of unity.

Proof of Theorem 3.16. Let α be a non-zero algebraic number of degree d satisfying

h(α) <
1

Bd2 log d

for some positive number B. We want to prove that if B is sufficiently large, then α is a root of unity. The
case d = 2 is easy (see exercise 7) ; therefore we assume d ≥ 3.

As noticed before, as soon as h(α) < (log 2)/d, α is an algebraic integer. We may replace α by a conjugate
of α; therefore there is no loss of generality to assume |α| ≥ 1. From the upper bound log |α| ≤ dh(α) we
deduce

log |α| < 1

Bd log d
.

If we find two integers L ≥ 2 and A ≥ 2, with L even, such that the number C which is defined by

1

C2
=
( π
A

)2

+

(
AL

Bd log d

)2

satisfies

(3.21)

(
1− 1

L

)
logC > 1 +

2d

L
logL+

AL

2Bd log d
,

then Proposition 3.17 yields the conclusion. We put A = 30. Here is our choice of L for various values of d,
together with the corresponding value for B:

d = 3 4 5 6 7 8 9

L = 24 32 46 58 78 80 90

B = 2200 1900 1700 1600 1500 1500 1500

Finally for d ≥ 8 we check (3.21) with B = 1500 by chosing L = 2
[
2d log(2d)

]
and A = 30. This

completes the proof of Theorem 3.16.

1Open problems 1. (Lehmer’s problem — see §7). Does there exist an absolute constant c > 0 such that,
for any non-zero algebraic number which is not a root of unity, dh(α) ≥ c ?

2. In the case f(X) = qX − p with p and q rational integers, Liouville’s inequality gives an estimate for the
approximation of algebraic numbers by rational numbers; in this special case this estimate is not the best
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known (theorem of Thue, Siegel, Roth, Schmidt). Is-it possible to improve the estimate in the general case
of lemma 3.14 ? Even an ineffective result would be useful.

1Exercises 1. Let α1, . . . , αs be algebraic numbers; define k = Q(α1, . . . , αs) and d = [k : Q]. Show that there
exist rational integers a2, . . . , as with 0 ≤ ai ≤ d(d− 1)/2 such that the number α = α1 + a2α2 + · · ·+ asαs
satisfies k = Q(α).

2. For f ∈ C[X1, . . . , Xt], we denote by |f |1 the upper bound of f(z) on the unit polydisk:

|f |1 = sup
{
|f(z1, . . . , zt)| ; |zi| = 1, 1 ≤ i ≤ t

}
.

Hence |f |1 ≤ L(f). Show that in lemmas 3.6, 3.7 and 3.14, one can replace logL(f) by log |f |1.
Hint. Start by proving the following statement: if a0, . . . , aN , y are complex numbers, then∣∣∣∣∣

N∑
i=0

aiy
i

∣∣∣∣∣ ≤ sup
|z|=1

∣∣∣∣∣
N∑
i=0

aiz
i

∣∣∣∣∣ ·max
(
1, |y|

)N
.

When |y| ≤ 1, this inequality follows from the maximum modulus principle, for the polynomial a0 + a1z +
· · ·+ aNz

N ; when |y| > 1, perform the change of variables z′ = 1/z.
Deduce by induction: for a polynomial f ∈ C[z1, . . . , zt], when y1, . . . , yt are complex numbers,

∣∣f(y1, . . . , yt)
∣∣ ≤ |f |1 t∏

i=1

max
(
1, |yi|

)degzi f .

3. For algebraic numbers ϑ0, . . . , ϑs, not all of which are zero, check

h(ϑ0 : · · · : ϑs) ≤
s∑
i=0

h(ϑi).

4. Show that in lemma 3.14, if the Archimedean place v is not real, then the conclusion can be replaced by

log |f(γ)|v ≥ −
(
d

2
− 1

)
logL(f)− d

2

t∑
i=1

Nih(1 : γi1 : · · · : γisi).

Show also that if v is an ultrametric place of k, then

log |f(γ)|v ≥ −
d

dv

(
logL(f) +

t∑
i=1

Nih(1 : γi1 : · · · : γisi)

)
.

where dv is, as usual, the local degree at the place v.

5. Let f ∈ Z[X] be a non-zero polynomial of degree d with leading coefficient a0 > 0 and let α ∈ C be a
zero of f .
a) Let p/q be a rational number with q > 0 such that f(p/q) 6= 0. Show that∣∣∣∣α− p

q

∣∣∣∣ ≥ max{1, |α|}
q(|p|+ q)d−1M(f)

.

b) Deduce that for an algebraic number α of degree d, if we set

c(α) =
max{1, |α|}

(2 + |α|)d−1M(α)
,
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then for all p/q ∈ Q with p/q 6= α we have ∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)

qd
.

c) Show that, for each κ > |f ′(α)|, there are only finitely many p/q ∈ Q with∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

κqd
.

Example: for α a real quadratic number, which is root of a polynomial aX2 + bX + c of discriminant
∆ = b2 − 4ac > 0, for each κ >

√
∆ there exist q0 > 0 such that, for p/q ∈ Q with q > q0,∣∣∣∣α− p

q

∣∣∣∣ > 1

κq2
.

6. a) Let β be a non-zero algebraic number and ` a non-zero logarithm of an algebraic number. Define
α = e` and D = [Q(α, β) : Q]. Then

|β`| >
(

2eh(α)+h(β)
)−D

.

Hint. Using (3.13), deduce |β| ≥ e−Dh(β). Using lemma 3.14, show that |α − 1| ≥ 2
(

2eh(α)
)−D

if α 6= 1.

From exercise 1 of Chapter 1, deduce min{|α− 1|, 1} < 2|`|}.
b) Let `1, . . . , `m be logarithms of algebraic numbers and b1, . . . , bm rational integers. Let D be the

degree of a number field containing the m algebraic numbers αj = exp(`j), (1 ≤ j ≤ m). If the number

Λ = b1`1 + · · ·+ bm`m

does not vanish, then

|Λ| ≥ 2−D exp

−D
m∑
j=1

|bj |h(αj)

 .

7.
a) Check that for a non-zero algebraic number α of degree d ≤ 4 which is not a root of unity, the number
dh(α) = log M(α) is bounded from below by the value given in the following table (the last column provides
a polynomial which yields the minimum):

d = dh(α) ≥ minimum for

1 log 2 = 0.6931 . . . X − 2

2 log
(
(1 +

√
5)/2

)
= 0.4812 . . . X2 −X − 1

3 0.2811 . . . X3 −X − 1

4 0.3223 . . . X4 −X − 1

b) Show that the proof of Kronecker’s result (see §7) is effective: if d is a positive integer, there exists a
positive number c(d) such that, for any non-zero algebraic numbers α which is not a root of unity and is of
degree ≤ d, the inequality h(α) ≥ c(d) is valid.
Hint. Let α be an algebraic unit of degree d. Assume that there exists a positive integer ` such that

M(α)` < 1 + 2−d and ` ≥ 2d
(
2d+1 + 1

)d−1
.
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Check H(αj) ≤ 2d for 1 ≤ j ≤ ` and deduce that the numbers 1, α, . . . , α` are not pairwise distinct.
c) Let A and d be two positive integers, H and C two positive real numbers, and α a non-zero algebraic
number of degree d. Assume

dh(α) ≤ 1/H,
1

C2
=
( π
A

)2

+

(
2A− 1

H

)2

and
C > 2de(2A−1)/H .

Show that α is a root of unity of order < 2A.
Hint. Show that there exists an integer r in the range 1 ≤ r ≤ 2A− 1 such that | log(αr)| ≤ 1/C ; deduce
|αr − 1| < 2/C. Use Liouville’s inequality (3.14) for f(X) = Xr − 1 and conclude.
d) Deduce from c) that a suitable value for c(d) in question b) above is 2−2d−4.
Hint. Choose A = 2d+2, H = A2.

8.
a) Let L ≥ 2 be an even integer and α a real algebraic number of degree d satisfying α > 1. Define
C = 2/(L log |α|). Prove

logC ≤ 2d

L− 1
logL+

d

3
(L+ 1)h(α) +

L

L− 1
.

Hint. Repeat the proof of Proposition 3.17 with {s1, . . . , sL} replaced by {(−L/2) + 1, . . . , L/2}.
b) Under the assumptions of Proposition 3.17, assume that α is not real; show that (3.19) can be replaced
by (

1− 1

L

)
logC > 1 +

d

L
logL+

d

4
ALh(α).

Hint. Use exercise 4.
c) Deduce an improvement of the constant 2200 in theorem 3.16.
Remark. Further improvements are possible; see [MW].

9. (Dobrowolski). Let α be a non-zero algebraic integer of degree d satisfying

α ≤ 1 +
1

4ed2
.

Let p be a prime number in the range 2ed < p < 4ed. For each positive integer k, define

Sk =
d∑
i=1

αki .

Check the estimates, for k ≤ d,

|Sk| ≤ d
(

1 +
1

4ed2

)d
< de

and

|Skp| ≤ d
(

1 +
1

4ed2

)4ed2

< de.

Deduce |Sk − Skp| < p. On the other hand, check the congruences Sk ≡ Spk ≡ Skp (mod p) ; deduce
Sk = Skp for 1 ≤ k ≤ d. Show that α and αp are conjugate. Conclude that α is a root of unity.
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[F-T] A. Fröhlich and M.J. Taylor. – Algebraic number theory; Cambridge studies in advanced mathematics,
27, Cambridge Univ. Press 1991, Chap. 1, 2, 3.
[L1] S. Lang. – Algebraic Number Theory; Addison-Wesley 1970.
[L2] S. Lang. – Elliptic Curves Diophantine Analysis; Springer Verlag, Grund. der Math. Wiss., 231 (1978),
Chap. 4 §1, p.77–84, et Chap 7 §1 p.159–162.
[L3] S. Lang. – Fundamentals of Diophantine Geometry; Springer Verlag (1983), Chap. 3 §1, p. 50–54.
[L4] S. Lang. – Number theory 3; Encycl. of Math. Sciences, 60, Springer Verlag 1991.
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ANNEX TO CHAPTER III.– INEQUALITIES BETWEEN DIFFERENT HEIGHTS OF A
POLYNOMIAL

From a manuscript by Alain DURAND

Let f ∈ C[X] be a non-zero polynomial with complex coefficients of degree d:

f = a0X
d + a1X

d−1 + · · ·+ ad = a0

d∏
i=1

(X − αi).

There are several notions of height for f ; for instance we have the usual height of f (see §4):

H(f) = max{|a0|, |a1|, . . . , |ad|},

Mahler’s measure of f (see §3):

M(f) = |a0|
d∏
i=1

max{1, |αi|},

the length of f (see §2):
L(f) = |a0|+ |a1|+ · · ·+ |ad|,

the Euclidean norm of f :

L2(f) =
(
|a0|2 + |a1|2 + · · ·+ |ad|2

)1/2
=

(∫ 1

0

∣∣f(e2iπt
)∣∣2dt)1/2

,

and finally the sup norm on the unit disk (or on the unit circle, which is the same by the maximum modulus
principle):

‖f‖ = sup
|z|≤1

|f(z)| = sup
|z|=1

|f(z)|.

The figure below (due to the late Alain Durand) provides an upper bound for the quotient of one of the
norms (left column) by another one (first row); in each case but two, below the upper bound is displayed one
polynomial for which the estimate is optimal (where fd denotes the polynomial 1 + X + · · · + Xd). There
are two exceptions where the optimal result is not known:
(1) the upper bound for M(f)/H(f) reads

M(f) ≤
√
d+ 1H(f);

there exists A > 0 such that for each d ≥ 1 there is such a polynomial f of degree d with

M(f) ≥ A
√
d+ 1H(f).

(2) the upper bound for L(f)/‖f‖ reads

L(f) ≤
√
d+ 1‖f‖;

there exists A > 0 such that for each d ≥ 1 there is such a polynomial f of degree d with

L(f) ≥ A
√
d+ 1‖f‖.
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H(f) L2(f) L(f) ‖f‖ M(f)

H(f) ≤ 1 1 1 1

(
d

[d/2]

)
Xd Xd Xd (X + 1)d

L2(f) ≤
√
d+ 1 1 1 1

(
2d

d

)1/2

fd Xd Xd (X + 1)d

L(f) ≤ d+ 1
√
d+ 1 1

√
d+ 1 2d

fd fd (2) (X + 1)d

‖f‖ ≤ d+ 1
√
d+ 1 1 1 2d

fd fd Xd (X + 1)d

M(f) ≤
√
d+ 1 1 1 1 1

(1) Xd Xd Xd
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4.– INTERPOLATION DETERMINANTS

In this Chapter we denote by f1, . . . , fL analytic functions in Cn, and by ζ1, . . . , ζL elements of Cn. Our
aim is to give an upper bound for the determinant

∆ = det

(
fλ(ζµ)

)
1≤λ,µ≤L

,

following an idea due to Michel Laurent [L1], [L2], [L3]. We show that the function of a single complex
variable z

Ψ(z) = det

(
fλ(zζµ)

)
1≤λ,µ≤L

has a zero of high multiplicity at the origin. Then Schwarz lemma provides the desired upper bound. At
the end of this Chapter, we remark that the proofs can be considered as “elementary” so far as no complex
analysis is required.

For x = (x1, . . . , xn) ∈ Cn we denote by |x| the number max{|x1|, . . . , |xn|}. When f is an analytic
function inCn, we denote by |f |R the maximum of |f(x)| for |x| ≤ R.

For κ = (κ1, . . . , κn) ∈ Nn we denote by ‖κ‖ the number κ1 + · · ·+ κn.

1Schwarz lemma The only tool from complex analysis which occurs in these lectures is the following result:

Lemma 4.1. — Let r > 0 and R > 0 be positive real numbers such that

max
1≤µ≤L

|ζµ| ≤ r and R ≥ r.

Let T be the multiplicity of the zero z = 0 of the function Ψ at the origin. Then

|∆| ≤
(
R

r

)−T
L!

L∏
λ=1

|fλ|R.

Proof. Define E = R/r. From Schwarz lemma in one variable we deduce

|Ψ(1)| ≤
(
R

r

)−T
|Ψ|E .

However Ψ(1) = ∆, and

|Ψ|E ≤ L!

L∏
λ=1

|fλ|R.

1Estimate for the multiplicity of Ψ at the origin Here is a generalization in several variables of lemma 2.2.
The proof in the one dimensional case involved the number

Θ1(L) = min {κ1 + · · ·+ κL} =
L(L− 1)

2
,

where the minimum runs over the L-tuples (κ1, . . . , κL) of non-negative integers which are pairwise distinct.
In the general case n ≥ 1, we define

Θn(L) = min {‖κ1‖+ · · ·+ ‖κL‖}

where the minimum runs over the L-tuples (κ1, . . . , κL) of elements in Nn which are pairwise distinct.
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Lemma 4.2. — The function Ψ has a zero at z = 0 of multiplicity ≥ Θn(L).

Proof. Since the determinant is multilinear, by expanding each fλ in Taylor series at the origin, we may
assume that each fλ is a monomial fλ(ζ) = ζκλ , with κλ ∈ Nn. In this case fλ(zζ) = ζκλz‖κλ‖.

In the row indexed by λ, we have a common factor z‖κλ‖:

Ψ(z) = det

(
ζκλµ

)
1≤λ,µ≤L

· z‖κ1‖+···+‖κL‖.

If the elements κ1, . . . , κL in Nn are not pairwise distinct, then this determinant vanishes and Ψ = 0. If they
are pairwise distinct, then Ψ has a zero at 0 of multiplicity at least ‖κ1‖ + · · · + ‖κL‖, which proves our
claim.

1Lower bound for Θn Here is a lower bound for the coefficient Θn(L):

Lemma 4.3. — For L > 2nen+1 we have

Θn(L) ≥ n

6e
L(n+1)/n.

Proof. To begin with we assume only L ≥ 2. The smallest value for the sum ‖κ1‖+ · · ·+ ‖κL‖ is reached by
chosing for κµ successively:

(0, . . . , 0);
the n elements of Nn of length 1:

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1);

the
(
n+1

2

)
=
(
n+1
n−1

)
elements of length 2:

(2, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1), (0, . . . , 0, 2);

and so on.
In general, for a a non-negative integer, the number of elements κ ∈ Nn of length ‖κ‖ = a is the

coefficient of za in the series

∑
κ∈Nn

z‖κ‖ =

( ∞∑
k=0

zk

)n
=

1

(1− z)n
=
∑
a≥0

(
n+ a− 1

a

)
za,

hence this number is (
n+ a− 1

a

)
=

(
n+ a− 1

n− 1

)
.

For any positive integer A we have
A−1∑
k=0

(
n+ k

n

)
=

(
n+A

n+ 1

)
;

this is an easy consequence (by induction) of the formula(
n+ k − 1

n+ 1

)
+

(
n+ k − 1

n

)
=

(
n+ k

n+ 1

)
.

Let A be the positive integer such that

A∑
a=0

(
n+ a− 1

n− 1

)
=

(
n+A

n

)
≤ L <

(
n+A+ 1

n

)
.
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This integer A is the integral part of the real number α which is defined by

(α+ n) · · · (α+ 1)/n! = L.

We have

‖κ1‖+ · · ·+ ‖κL‖ ≥
A∑
a=0

a

(
n+ a− 1

n− 1

)
= n

A∑
a=1

(
n+ a− 1

n

)

= n

A−1∑
a=0

(
n+ a

n

)
= n

(
n+A

n+ 1

)
,

hence

Θn(L) ≥ n
(
n+A

n+ 1

)
.

We bound A from below by α− 1; we deduce

(n+A)(n+A− 1) · · · (1 +A)A ≥ (α+ n− 1) · · ·αA =
α

α+ n
(α+ n) · · · (α+ 1)A =

α

α+ n
n!AL;

therefore
Θn(L) ≥ n

n+ 1
· α

α+ n
·AL.

Now we bound α from below by B − n and A by B − n− 1 with

B ≥ (n!L)1/n >
n

e
L1/n.

and we obtain

Θn(L) ≥ n

n+ 1
BL

(
1− n

B

)(
1− n+ 1

B

)
.

This inequality holds for all L ≥ 1 and n ≥ 1. Assume now L ≥ 2nen+1; then B ≥ 2(n+ 1),

1− n+ 1

B
≥ 1

2
and consequently 1− n

B
≥ 1

2
;

since n/4e(n+ 1) ≥ 1/6e for n ≥ 2 (lemma 4.3 is true for n = 1), the desired result follows.

1Conclusion We now combine the three preceding lemmas as follows:

Proposition 4.4. — Let `1, . . . , `n, β1, . . . , βn be complex numbers. For 1 ≤ i ≤ n define αi = exp(`i).
There exists a constant c = c(`1, . . . , `n, β1, . . . , βn) > 0, which can be easily computed, and satisfies the
following property: let L0, L1 and S be rational integers ≥ 2, define L =

(
L0+n
n

)
(L1 +1), and let s(1), . . . , s(L)

be any elements in Zn+1(S). Consider the L× L determinant

∆ = det

(
(s

(µ)
1 + s

(µ)
n+1β1)λ1 · · · (s(µ)

n + s
(µ)
n+1βn)λn

(
α
s
(µ)
1 +s

(µ)
n+1

β1

1 · · ·αs
(µ)
n +s

(µ)
n+1

βn
n

)λn+1
)
λ,µ

with λ = (λ1, . . . , λn+1) ∈ Nn+1, λ1 + · · ·+ λn ≤ L0 and λn+1 ≤ L1, and with 1 ≤ µ ≤ L. Then

1

L
log |∆| ≤ −L1/n + c(L0 logS + L1S).

Proof. We consider the functions

fλ(z) = zλ1
1 · · · zλnn

(
αz11 · · ·αznn

)λn+1
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and the points

ζµ =
(
s

(µ)
1 + s

(µ)
n+1β1, . . . , s

(µ)
n + s

(µ)
n+1βn

)
∈ Cn.

For any R > 0 we plainly have

log |fλ|R ≤ L0 logR+ L1R

n∑
i=1

|`i|.

We choose

r = S

(
1 + max

1≤j≤n
|βj |
)
, R = re6e/n.

From lemmas 4.1 and 4.2 one deduces

(4.5) log |∆| ≤ −6e

n
Θn(L) + logL! + LL0 logR+ LL1R

n∑
i=1

|`i|.

Assuming L ≥ 2nen+1, we can apply lemma 4.3 and conclude 6e
n Θn(L) ≥ L1+1/n; the desired result readily

follows.
If L ≤ 2nen+1, then the result is an easy consequence of (4.5).

1Avoiding the use of complex analysis We conclude this Chapter with a remark that the proofs we give in
these lectures do not require any complex analysis : from this point of view they are “elementary”. The only
point where analysis played any role so far was in the use of Schwarz lemma, in the proof of lemma 4.1. But
we use it only for exponential polynomials in one variable, and in this case the estimate is quite easy:

Lemma 4.5. – Let aij (for 1 ≤ i ≤ s, 1 ≤ j ≤ t) and wj (for 1 ≤ j ≤ t) be complex numbers. Assume that
the exponential polynomial

F (z) =

s∑
i=1

t∑
j=1

aijz
iewjz

has a zero of multiplicity ≥ T at the origin. Then for z0 ∈ C and R ≥ |z0| we have

|F (z0)| ≤
(
R

|z0|

)−T s∑
i=1

t∑
j=1

|aij |Rie|wj |R.

Proof. We consider the Taylor expansion of F at the origin:

F (z) =
∑
n≥0

αnz
n where αn =

min{s,n}∑
i=1

t∑
j=1

aij
wn−ij

(n− i)!
.

By assumption α0 = · · · = αT−1 = 0. For n ≥ T we have (R/|z0|)T ≤ (R/|z0|)n (because R ≥ |z0|), hence

|F (z0)| =

∣∣∣∣∣∣
∑
n≥T

αnz
n
0

∣∣∣∣∣∣
≤
∑
n≥T

|αn| |z0|n

≤
(
R

|z0|

)−T ∑
n≥T

|αn| Rn.

We now use the trivial bound

∑
n≥T

|αn| Rn ≤
min{s,n}∑
i=1

t∑
j=1

|aij |
∑
n≥i

|wj |n−i

(n− i)!
Rn,
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where the right hand side is nothing else than

s∑
i=1

t∑
j=1

|aij |Rie|wj |R.

1Exercises 1. With the notations of lemma 4.3, show that for all n ≥ 1 and ε > 0, there exists L0 = L0(n, ε)
such that, for L ≥ L0, we have

Θn(L) ≥
(
n(n!)1/n

n+ 1
− ε
)
L(n+1)/n.

In particular, for n ≥ 2 and for L sufficiently large,

Θn(L) ≥ 1

2
L(n+1)/n.

2. Give an explicit value for the constant c in Proposition 4.4.
Hint. See Chapter 7 §4, Step 2.

1References
[L1] M.Laurent. – Sur quelques résultats récents de transcendance; Journées arithmétiques Luminy 1989,
Astérisque, 198–200 (1991), 209–230.
[L2] M.Laurent. – Hauteurs de matrices d’interpolation; in Approximations Diophantiennes et Nombres
Transcendants, Luminy 1990, éd. P. Philippon, de Gruyter 1992, 215–238.
[L3] M. Laurent. – Linear forms in two logarithms and interpolation determinants; this volume, Appendix.
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5.– ZERO ESTIMATE

The first zero estimate in connection with transcendental number theory was given by Gel’fond [G] in
his work around 1948 on algebraic independence of transcendental numbers; the proof was of an analytic
nature. Such arguments have been developed later, but turned out not to be sufficient. Algebraic arguments
have been introduced by Brownawell and Masser [BM], then refined by Masser [Ma]. The proof we are going
to give in section 2 has its source in a letter of D.W. Masser which is quoted in [MW]; in §3 we use Moreau’s
version [Mo] of Masser’s paper [Ma], as well as Philippon’s approach [P] to this question.

In all this Chapter we denote by K any field of zero characteristic.

1 The main result The aim of this Chapter is to prove the following result:

Proposition 5.1. — Let α1, . . . , αn+1 be non-zero elements of K which generate a multiplicative subgroup
of K∗ of rank ≥ n. Let β1, . . . , βn be elements of K. Assume that there exist three positive rational integers
L0, L1 and S satisfying

(S/2n)n+1 ≥ (L0L1)n, S ≥ 2n(n+ 1) and Sn > L1,

such that the rank of the matrix(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,

is strictly less than
(
L0+n
n

)
(L1 + 1). Then the numbers 1, β1, . . . , βn are linearly dependent over Q.

In the matrix above the index of row is, as usual,

λ = (λ1, . . . , λn+1) ∈ Nn+1, λ1 + · · ·+ λn ≤ L0, λn+1 ≤ L1,

while the index of columns is s ∈ Zn+1(S). Recall that when S is a non-negative integer, Zn+1(S) is the set
of s = (s1, . . . , sn+1) ∈ Zn+1 with |si| < S, (1 ≤ i ≤ n+ 1).

Our assumption on the rank of the matrix means that there exists a non-zero polynomial P ∈ K[X1, . . . , Xn, Y ],
of total degree ≤ L0 in the variables X1, . . . , Xn and of degree ≤ L1 in Y , which vanishes at all the points(

s1 + sn+1β1, . . . , sn + sn+1βn, α
s1
1 · · ·α

sn+1

n+1

)
∈ Kn ×K∗, s ∈ Zn+1(S)

(we emphasize the fact that the last coordinate does not vanish: we are working in fact with the product
of the additive group of Kn with the multiplicative group K∗). In this Chapter, we shall use two sorts of
elimination: firstly we eliminate the variable Y thanks to a resultant; next we use Bézout’s theorem to deal
with the variables (X1, . . . , Xn), which we denote for simplicity by X.

The assumption Sn > L1 does not matter in our application ; in fact, as soon as n > 1, it is a
consequence of the hypothesis (S/2n)n+1 ≥ (L0L1)n. Here, the constant 2nnn+1, which appears implicitly
in this hypothesis, does not play an important role either. What is important to know is that a stronger
estimate is true, with the condition (S/2n)n+1 ≥ (L0L1)n replaced by 2nSn+1 ≥ (n+ 1)n+2Ln0L1 (this is a
consequence of the main result in [P]; see exercise 7). However we found it useful to give here this simpler
proof of a weaker result. It may be also considered as an introduction to the slightly more sophisticated
arguments of Chapter 8.

The basic idea of the proof of Proposition 5.1 is to remark that if P satisfies the above vanishing property,
and if S′ and S′′ are two positive integers satisfying S ≥ S′ + S′′ − 1, then all the polynomials

P
(
X1 + s′1 + s′n+1β1, . . . , Xn + s′n + s′n+1βn, α

s′1
1 · · ·α

s′n+1

n+1 Y
)
,
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for s′ ∈ Zn+1(S′), vanish at all points(
s′′1 + s′′n+1β1, . . . , s

′′
n + s′′n+1βn, α

s′′1
1 · · ·α

s′′n+1

n+1

)
∈ Kn ×K∗,

for s′′ ∈ Zn+1(S′′).

1Elimination of Y In this section, we eliminate the last variable Y between the polynomials

P
(
X1 + s′1 + s′n+1β1, . . . , Xn + s′n + s′n+1βn, α

s′1
1 · · ·α

s′n+1

n+1 Y
)
, s′ ∈ Zn+1(S′).

a) Statement of the result

Denote K∗tors the torsion subgroup of K∗ (viz. the group of roots of unity) and by σ be the canonical
surjective map of K∗ onto the quotient K∗/K∗tors.

Lemma 5.2. — Let α1, . . . , αn+1 be non-zero elements of K, β1, . . . , βn be elements of K and L0, L1, S′,
S′′ be positive rational integers. Define S = S′ + S′′ − 1, and assume

Card
{
σ
(
α
s′1
1 · · ·α

s′n+1

n+1 ) ; s′ ∈ Zn+1(S′)
}
> L1.

Assume further that there exists a non-zero polynomial P ∈ K[X,Y ] of total degree ≤ L0 in X0, . . . , Xn

and of degree ≤ L1 in Y for which

P
(
s1 + sn+1β1, . . . , sn + sn+1βn, α

s1
1 · · ·α

sn+1

n+1

)
= 0 for all s ∈ Zn+1(S).

Then there exists a non-zero polynomial Q ∈ K[X] of total degree ≤ 2L0L1 for which

Q
(
s′′1 + s′′n+1β1, . . . , s

′′
n + s′′n+1βn

)
= 0 for all s′′ ∈ Zn+1(S′′).

The proof of lemma 5.2 will use an argument of D.W. Masser (cf. [MW], §4). It’s interesting to notice
that lemma 5.2 completes the proof of Proposition 5.1 in the case n = 1; this means that for the proof of
Gel’fond-Schneider theorem a single elimination is sufficient.

b) The Kronecker u-resultant

Here is an extension of lemma 4.2 in [MW]:

Lemma 5.3. — Let F1, . . . , Fr be polynomials in K[X1, . . . , Xn, Y ], of total degree at most L0 in X1, . . . , Xn

and of degree at most L1 in Y ; we assume that they have no common irreducible factor, in the factorial ring
K[X1, . . . , Xn, Y ], of degree ≥ 1 with respect to Y . Let (ξj , ηj), (j ∈ J) be common zeroes to F1, . . . , Fr in
Kn×K. Then there exists a non-zero polynomial in K[X1, . . . , Xn], of total degree ≤ 2L0L1, which vanishes
at all the points ξj , (j ∈ J).

Proof. Introduce 2r new variables U1, . . . , Ur, V1, . . . , Vr. Then define the two polynomials G and H in the
ring A = K[U1, . . . , Ur, V1, . . . , Vr, X1, . . . , Xn, Y ] by

G =

r∑
i=1

UiFi(X1, . . . , Xn, Y ), H =

r∑
i=1

ViFi(X1, . . . , Xn, Y ).

Let R ∈ K[U1, . . . , Ur, V1, . . . , Vr, X1, . . . , Xn] be the resultant of the polynomials G and H with respect to
the variable Y (see for instance [W1] Chap.5, or [V], for a definition of the resultant). Then the following is
true:
(i) R 6= 0. Indeed, suppose R vanishes; then G and H have a common irreducible factor Q in the factorial

ring A, with Q of degree ≥ 1 in Y . Then Q is one of the irreducible factors of G, hence does not depend
on V1, . . . , Vr; in the same way Q does not depend on U1, . . . , Ur, hence is a common factor of F1, . . . , Fr
in the ring K[X1, . . . , Xn, Y ]; this is a contradiction.

(ii) The polynomial R is of total degree ≤ 2L0L1 in X1, . . . , Xn.
(iii) For j ∈ J , we have R(U1, . . . , Ur, V1, . . . , Vr, ξj) = 0, because R is a linear combination of G and H with

coefficients in the ring A.
We obtain the desired polynomial in K[X1, . . . , Xn] vanishing at all the points ξ1, . . . , ξN by taking any

non-zero coefficient of a monomial in U1, . . . , Ur, V1, . . . , Vr in the expansion ofR inK[X1, . . . , Xn][U1, . . . , Ur, V1, . . . , Vr].

c) Another lemma

Here we solve a very simple functional equation.
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Lemma 5.4. — Let Q ∈ K[X1, . . . , Xn, Y ] be irreducible and of degree ≥ 1 in Y . Let u1, . . . , un, v, λ be
elements of K with λ 6= 0 and v not a root of unity. Assume

Q(X1 + u1, . . . , Xn + un, vY ) = λQ(X1, . . . , Xn, Y ).

Then Y divides Q.

Proof. We expand Q in K[X][Y ]:

Q(X,Y ) =

d∑
i=0

ai(X)Y j ,

and we write our assumption:

ai(X + u)vi = λai(X), (0 ≤ i ≤ d).

Looking at the homogeneous term of higher degree in ai(X), we deduce vi = λ for all i such that ai(X) 6= 0.
Since v is not a root of unity, there is only one index i for which ai(X) 6= 0; further we have i 6= 0 because
Q depends on Y . This shows that Q reduces to a single term ai(X)Y i with i 6= 0 and ai(X) ∈ K[X] ; our
assumption that Q is irreducible implies that it is of the form cY with c ∈ K, c 6= 0.

d) Proof of lemma 5.2

Obviously we may suppose that Y does not divide P and that P 6∈ K[X1, . . . , Xn]. For s = (s1, . . . , sn+1) ∈
Zn+1, we define a map Ts from the ring K[X1, . . . , Xn, Y ] into itself by

TsQ(X1, . . . , Xn, Y ) = Q
(
X1 + s1 + sn+1β1, . . . , Xn + sn + sn+1βn, α

s1
1 · · ·α

sn+1

n+1 Y
)
.

The image of an irreducible polynomial is still an irreducible polynomial, and the degree in each variable of
Q and TsQ is the same.
1) We prove that the polynomials TsP for s ∈ Zn+1(S′) have no common irreducible factor of degree ≥ 1 in
Y .

Let

P = Q0

k∏
i=1

Qrii

be a decomposition of P into a product, where Q0 ∈ K[X] does not depend on Y , while for 1 ≤ i ≤ k, Qi
is an irreducible polynomial in K[X,Y ] of degree ≥ 1 in Y (such a decomposition is unique up to constant
factors). We notice that k ≤ L1. Then

TsP = (TsQ0)

k∏
i=1

(TsQi)
ri

and TsQ0 ∈ K[X] does not depend on Y , while for 1 ≤ i ≤ k, TsQi is an irreducible polynomial in K[X,Y ]
of degree ≥ 1 in Y . We proceed by contradiction: assume that there is an irreducible polynomial Q of degree
≥ 1 in Y which divides all TsP . Then for each such s there is an index i(s) with 1 ≤ i(s) ≤ k and a non-zero
element cs of K such that

Q = csTsQi(s).

Consider the map

s 7−→
(
i(s), σ

(
αs11 · · ·α

sn+1

n+1

))
from Zn+1(S′) into {1, . . . , k}×K∗/K∗tors. Using our assumption on L1 together with Dirichlet box principle,
we see that there exist two different s in Zn+1(S′), say s′ and s′′, for which the two following properties hold:
– the two indices i(s′) and i(s′′) are the same; let i0 be this common value;

– the two elements σ
(
α
s′1
1 · · ·α

s′n+1

n+1

)
and σ

(
α
s′′1
1 · · ·α

s′′n+1

n+1

)
are distinct.
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The difference s = s′ − s′′ is a non-zero element of Zn+1 which has the property

TsQi0 = λQi0

for some λ ∈ K∗ and
αs11 · · ·α

sn+1

n+1 is not a root of unity.

Since Y does not divide P , lemma 5.4 with

ui = si + sn+1βi, (1 ≤ i ≤ n), v = αs11 · · ·α
sn+1

n+1

gives the desired contradiction.
2) The application of lemma 5.3 to the set of polynomials

{F1, . . . , Fr} =
{
Ts′P ; s′ ∈ Zn+1(S′)

}
and to the following set {(ξi, ηi) ; 1 ≤ i ≤ N} ⊂ Kn ×K∗:{

(s′′1 + s′′n+1β1, . . . , s
′′
n + s′′n+1βn, α

s′′1
1 · · ·α

s′′n+1

n+1 ) ; s′′ ∈ Zn+1(S′′)
}

gives the conclusion.

1 An homogeneous zero estimate for the additive group Kn As we said earlier, the proof of this section relies
on Moreau’s version [Mo] of Masser’s paper OPEP [Ma] as well as on Philippon’s paper [P]. I am thankful
to Daniel Bertrand, Laurent Denis, Patrice Philippon and Damien Roy for useful discussions on this matter.

a) Statement of the result

The aim of this §3 is to prove the following result:

Lemma 5.5. — Let β1, . . . , βn be elements of K. Assume that there exist two integers D and S satisfying(
2S

n
− 1

)n+1

> Dn,

and also that there exists a non-zero polynomial P ∈ K[X1, . . . , Xn], of total degree ≤ D which vanishes on
the set {

(s1 + sn+1β1, . . . , sn + sn+1βn) ; (s1, . . . , sn+1) ∈ Zn+1(S)
}
.

Then 1, β1, . . . , βn are linearly dependent over Q.

In the case n = 2 one can prove such a result by using the same argument as in §2 (see exercise 3);
hence for a proof of Baker’s theorem with only three logarithms the resultant is sufficient. The general case
will be dealt with by means of Bézout’s theorem.

b) Bézout’s theorem

Here is the geometric tool of this Chapter.

Lemma 5.6. — Assume K is algebraically closed. Let (Pi)i∈I be a family of polynomials in K[X1, . . . , Xn],
each of which is of total degree ≤ D. Assume that the set F of common zeroes to all Pi in Kn is finite. Then

CardF ≤ Dn.

Proof. We shall use some properties of the degree of affine varieties; we refer to exercise 4 in Chapter 8 for
another proof.

We may assume I = {1, . . . , n} by replacing, if necessary, the family (Pi)i∈I by a regular sequence of n
polynomials in the ideal they generate (cf. [Ma], “inductive lemma”; the argument is similar to Kronecker
u-resultant in lemma 5.3), which means that, for 1 ≤ i ≤ n, the algebraic set

Yi = Z(P1) ∩ · · · ∩ Z(Pi)
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is of codimension i. In this case, if we denote by Di the total degree of Pi, (1 ≤ i ≤ n), we show that

CardF ≤ D1 · · ·Dn.

For 1 ≤ i ≤ n− 1, Yi is not contained in the hypersurface Hi = Z(Pi+1), hence

deg(Yi ∩Hi) ≤ (deg Yi)(degHi).

However Yi ∩Hi = Yi+1 and degHi = Di+1. By induction we deduce

deg Yi ≤ D1 · · ·Di, (1 ≤ i ≤ n).

For i = n, the degree of F = Yn is nothing else than CardF .

Remark. Much deeper results are given in [V].

c) A further lemma

When V is a vector subspace of Kn and F any finite subset of Kn, we denote by (F + V)/V the image of F
under the canonical map of Kn onto Kn/V.

Lemma 5.7. Let V be a vector subspace of Kn of codimension r, F a finite subset of Kn, and (Pi)i∈I a
set of polynomials in K[X1, . . . , Xn], each of which is of total degree ≤ D. Assume that the set of common
zeroes in Kn of all Pi is

F + V = {y + v ; y ∈ F, v ∈ V}.

Then
Card

(
(F + V)/V

)
≤ Dr.

Proof. The case V = 0, r = n follows from lemma 5.6. In the general case, after a change of basis of Kn,
we may assume V = Kn−r × {0}r; hence we identify Kn/V with {0}n−r ×Kr. We apply lemma 5.6 to the
following polynomials in r variables

Pi(v,Xn−r+1, . . . , Xn), (i ∈ I, v ∈ V);

indeed the set of common zeroes of these polynomials is exactly (F + V)/V.

d) The main zero estimate

We now prove a general zero estimate from which we shall later deduce lemma 5.5.
When E is a subset of Kn containing 0 and d a non-negative integer, we define

E[d] =
{
x1 + · · ·+ xd ; xi ∈ E, (1 ≤ i ≤ d)

}
;

for instance E[0] = {0}, E[1] = E and E[0] ⊂ E[1] ⊂ E[2] · · ·

Proposition 5.8. Let n and D two positive integers and E a subset of Kn containing 0. Assume that there
exists a non-zero polynomial P ∈ K[X1, . . . , Xn], of total degree ≤ D, which vanishes on E[n]; then there
exists a vector subspace V of Kn of codimension r ≥ 1 in Kn such that

Card
(
(E + V)/V

)
≤ Dr.

Proof. There is no loss of generality to assume that the field K is algebraically closed. Denote by Z = Z(P )
the hypersurface which is defined by P in Kn. We introduce a collection of algebraic subsets of Kn:

Z0 = Z, Z1 =
⋂
γ∈E

(Z0 − γ),
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Zs =
⋂
γ∈E

(Zs−1 − γ), (1 ≤ s ≤ n),

so that
Zn =

⋂
γ∈E[n]

(Z − γ).

Our hypothesis that Z contains E[n] implies that for 1 ≤ s ≤ n, Zs contains E[n− s], and in particular Zn
contains 0. Moreover we have

Z0 ⊃ Z1 ⊃ · · · ⊃ Zn
because 0 ∈ E. Notice that Z0 is of dimension n−1 while Zn is of dimension ≥ 0; let t be the largest integer
in the range 1 ≤ t ≤ n for which dimZt−1 ≤ n− t. Therefore n− t− 1 < dimZt ≤ dimZt−1 ≤ n− t. The
two algebraic sets Zt and Zt−1 have the same dimension, hence have a common component Y of dimension
n− t. Define

S =
{
x ∈ Kn ; x+ Y ⊂ Zt−1

}
.

For each γ ∈ E we have γ + Zt ⊂ Zt−1; this shows that S contains E. Now let

V =
{
x ∈ Kn ; x+ Y = Y

}
.

Then V is at the same time an additive subgroup of Kn, and an algebraic subset of Kn:

V =
⋂
y∈Y

(Y − y);

hence V is a vector subspace of Kn (cf. exercise 6). Moreover

S =
⋂
y∈Y

(Zt−1 − y) =
⋂
y∈Y

⋂
γ1∈E

· · ·
⋂

γt−1∈E

(
Z − y − γ1 − · · · − γt−1

)
;

this shows that S is an algebraic set of dimension ≤ dimZt, which is intersection of hypersurfaces of degrees
≤ D. Next S contains V; further, for x ∈ S, we have x + V ⊂ S. Furthermore, for x′ and x′′ in Kn, the
condition x′ + Y = x′′ + Y implies x′ + V = x′′ + V. However, since Zt−1 has only finitely many connected
components (for the Zariski topology), the set of x+ Y with x ∈ S is finite, and therefore the set of classes
x+ V also; we choose a finite subset F = {x1, . . . , xm} in Kn so that S/V = (F + V)/V; we see that S and
V have the same dimension, say n − r, the irreducible components of S being the xi + V, 1 ≤ i ≤ m. We
also have r ≥ 1; in fact, since

n− r = dimS ≤ dimZt−1 = n− t,

we have 1 ≤ t ≤ r. We conclude by using lemma 5.7:

Card
(
(E + V)/V

)
≤ Card(S/V) ≤ Dr.

e) A lemma on the subgroup Zn + Z(β1, . . . , βn) of Kn

For the proof of lemma 5.5 we need one more lemma which explains how the conclusion on the linear
dependence of 1, β1, . . . , βn will appear: it comes from the conclusion of Proposition 5.8.

Lemma 5.9. — Let β1, . . . , βn be elements of K. Define

Y = Zn + Z(β1, . . . , βn) ⊂ Kn

=
{

(s1 + sn+1β1, . . . , sn + sn+1βn) ; (s1, . . . , sn+1) ∈ Zn+1
}

and, for S ≥ 1, S ∈ Z,

Y (S) =
{

(s1 + sn+1β1, . . . , sn + sn+1βn) ; (s1, . . . , sn+1) ∈ Zn+1(S)
}
.
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Then the following conditions are equivalent.
(i) The numbers 1, β1, . . . , βn are linearly independent over Q.
(ii) For any vector subspace V ⊂ Kn of codimension r ≥ 1, we have

rkZ

(
(Y + V)/V

)
≥ r + 1.

(iii) For all S ≥ 1 and any vector subspace V ⊂ Kn of codimension r ≥ 1, we have

Card
((
Y (S) + V

)
/V
)
≥ (2S − 1)r+1.

(ii)′ For any vector subspace W ⊂ Kn+1 of codimension r ≥ 1, containing (β1, . . . , βn,−1), we have

rkZ

(
(Zn+1 +W)/W

)
≥ r + 1.

(iii)′ For all S ≥ 1 and any vector subspace W ⊂ Kn+1 of codimension r ≥ 1 containing (β1, . . . , βn,−1),
we have

Card
((

Zn+1(S) +W
)
/W
)
≥ (2S − 1)r+1.

Proof.
The proofs of (ii)⇔ (ii)′ and of (iii)⇔ (iii)′ are easily obtained by considering the linear surjective map

Kn+1 −→ Kn

(z1, . . . , zn+1) 7−→ (z1 + zn+1β1, . . . , zn + zn+1βn)

whose kernel is the line K(β1, . . . , βn,−1).
The fact that (iii)⇒ (ii) is trivial. Also the implication (ii)′ ⇒ (i) is clear: (ii)′ implies that the point

(β1, . . . , βn,−1) is not contained in a hyperplane which is rational over Q.

The useful part of the statement is (i)⇒ (iii)′. Assume Card
((

Zn+1(S) +W
)
/W
)
< (2S − 1)r+1. Let

σW : Kn+1 → Kn+1/W denote the canonical surjective map and (e1, . . . , en+1) denote the canonical basis
of Kn+1. There exists a subset {i1, . . . , ir} of {1, . . . , n + 1} such that

(
σW(ei1), . . . , σW(eir )

)
is a basis of

Kn+1/W. For ease of notation we assume that {i1, . . . , ir} = {1, . . . , r}.
Let j be an index in the range r + 1 ≤ j ≤ n+ 1. We consider the elements s of Zn+1 for which si = 0

for r + 1 ≤ i ≤ n+ 1 and i 6= j; the elements

σW(s1e1 + · · ·+ srer + sjej) ; (s1, . . . , sr, sj) ∈ Zr+1(S)

belong to
(
Zn+1(S) +W

)
/W ; since Card

(
Zr+1(S)

)
> Card

((
Zn+1(S) +W

)
/W
)

, these elements are not

pairwise distinct (this is once more a consequence of the pigeon hole principle). Hence there is a relation

a
(j)
1 e1 + · · ·+ a(j)

r er + ej ∈ W

with rational numbers a
(j)
i . This means that W is generated by the n+ 1− r elements(

a
(j)
1 , . . . , a(j)

r , 0, . . . , 0, 1, 0, . . . , 0) ∈ Qn+1 (r + 1 ≤ j ≤ n+ 1).

Since n+ 1− r = dimW < n+ 1, the (n+ 1− r)× (n+ 1) matrix
a

(r+1)
1 · · · a

(r+1)
r 1 0 · · · 0

a
(r+2)
1 · · · a

(r+2)
r 0 1 · · · 0

...
. . . · · ·

...
...

. . .
...

a
(n+1)
1 · · · a

(n+1)
r 0 0 · · · 1
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is of rank n+ 1− r < n+ 1; therefore there exists (b1, . . . , bn+1) ∈ Zn+1, (b1, . . . , bn+1) 6= 0, such that

b1z1 + · · ·+ bn+1zn+1 = 0 for all z ∈ W;

in other termsW is a subspace of Kn+1 which is generated by elements of Qn+1; this means that it is rational
over Q; since it is of codimension ≥ 1, it follows that it is contained in a hyperplane which is rational over Q
(cf. Chapter 1 exercise 4). Now the point (β1, . . . , βn,−1) belongs toW, hence we get the desired non-trivial
linear dependence relation between β1, . . . , βn and 1.

f) Proof of lemma 5.5

For x ∈ R we denote by bxc the smallest integer ≥ x: in other words x ≤ bxc < x + 1. Put S1 = bS/nc;
this means that S1 is the integer defined by S ≤ nS1 ≤ S + n − 1. If a1, . . . , an are rational integers with
ai < S1, then a1 + · · ·+ an < S. Therefore, if we set

E =
{

(s1 + snβ1, . . . , sn + sn+1βn) ; |sj | < S1, (1 ≤ j ≤ n+ 1)
}
,

then E[n] ⊂ Y (S). Under the assumptions of lemma 5.5, the polynomial P vanishes on Y (S), hence on
E[n]. From Proposition 5.8 we deduce that there exists a vector subspace V of Kn of codimension r ≥ 1 in
Kn such that

Card
(
(E + V)/V

)
≤ Dr.

Our hypothesis

Dn <

(
2S

n
− 1

)n+1

,

implies

Dr < (2S1 − 1)r+1,

hence

Card
(
(E + V)/V

)
< (2S1 − 1)r+1.

Finally lemma 5.9 (with S replaced by S1) implies that 1, β1 . . . , βn are linearly dependent over the rationals.

1 Proof of Proposition 5.1 We start with the assumptions of Proposition 5.1. Define S′′ = bS/2c and
S′ = S − S′′ + 1. Our assumption the α1, . . . , αn+1 generate a multiplicative group of rank ≥ n means that
there exists n distinct elements {i1, . . . , in} among {1, . . . , n+ 1} such that αi1 , . . . , αin are multiplicatively
independent. Since S + 1 ≤ 2S′ ≤ S + 2, our hypothesis Sn > L1 implies (2S′ − 1)n > L1. This shows that
the assumptions of lemma 5.2 are satisfied.

Our assumption S ≥ 2n(n+ 1) enables us to deduce from the main condition (S/2n)n+1 ≥ (L0L1)n the

inequality
(
(S/n) − 1

)n+1
> (2L0L1)n; from the inequality S′′ ≥ S/2 we deduce (2L0L1)n <

(
(2S′′/n) −

1
)n+1

; this shows that the hypotheses of lemma 5.5 are satisfied with D = 2L0L1 and S replaced by S′′.
This completes the proof of Proposition 5.1.

1Open problems 1. The conclusion of lemma 5.2 in the case n = 1 is that the set of s1 +s2β1, for s ∈ Z2(S′′),
has at most 2L0L1 elements. Is-it possible to improve the constant 2 in this upper bound ? This would
enable one to improve the lower bounds for linear forms in two logarithms (see [MW]). One cannot replace
2 by a constant < 1.

2. Can one improve the constant (n/2)n+1 (when n ≥ 2) in the hypothesis of Lemma 5.5 ?

1Exercises 1. Using lemma 5.2, complete the proof of Gel’fond-Schneider theorem in the complex cases
(going back to the proof of the real case in Chapter 2 §4, replace lemma 2.1 by lemma 5.2).

2. Prove the following refinement of Proposition 5.1 (compare with [MW] Proposition 4.1) : one can replace
the hypotheses

(S/2n)n+1 ≥ (L0L1)n, S ≥ 2n(n+ 1) and Sn > L1,
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by (
S′′

n
− 1

)n+1

≥ (L0L1)n

and
Card

{
σ
(
αs11 · · ·α

sn+1

n+1 ) ; s ∈ Zn+1(S′)
}
> L1

(with the same notations as in lemma 5.2) when S′ and S′′ are positive integers with S = S′ + S′′ − 1.

3. Using a resultant in the same way as in §2, prove the following variant of the case n = 2 of lemma 5.5:
Let β1, β2 be two elements of K. Assume that there exist integers D, S′, S′′ and S satisfying

S = S′ + S′′ − 1, (2S′ − 1)2 > D and (2S′′ − 1)3 > 2D2,

and also that there exists a non-zero polynomial P ∈ K[X1, X2], of total degree ≤ D which vanishes on the
set {

(s1 + s3β1, s2 + s3β2) ; (s1, s2, s3) ∈ Z3(S)
}
⊂ K2.

Then 1, β1, β2 are linearly dependent over Q.
Hint. Define Γ(S) =

{
(s1 + s3β1, s2 + s3β2) ; (s1, s2, s3) ∈ Z3(S)

}
, and similarly Γ(S′) and Γ(S′′). For

γ = (γ1, γ2) ∈ K2, define TγP (X,Y ) = P (γ1 +X, γ2 + Y ).
a) Assume that the polynomials TγP , γ ∈ Γ(S′) have a common irreducible factor Q. Show that there exist
c ∈ K∗ and γ0 = (γ0

1 , γ
0
2) ∈ Γ(2S′ − 1) with γ0 6= 0 and Tγ0Q = cQ. Show that there exists R ∈ K[T ] such

that Q(X,Y ) = R(γ0
2X − γ0

1Y ). Check that the set of ϑ ∈ K such that R(γ0
2X − γ0

1Y + ϑ) divides P has
at most D elements. Deduce that there are at most D elements in the image of Γ(S′) under the mapping
K2 −→ K which maps (z1, z2) to γ0

2z1 − γ0
1z2. Derive the desired conclusion from lemma 5.9.

b) Assume that the polynomials TγP , γ ∈ Γ(S′) have no common irreducible factor. The goal is to show
CardΓ(S′′) < (2S′′−1)3, which implies that β1 and β2 are both rational numbers. Show that, if CardΓ(S′′) =
(2S′′ − 1)3, then there exists λ ∈ K∗ such that the (2S′′ − 1)3 numbers γ1 + λγ2 ∈ K, (γ1, γ2) ∈ Γ(S′′), are
pairwise distinct. Eliminate Y by means of Kronecker u-resultant between the polynomials TγP (X−λY, Y ).

4. Prove the following variant of Proposition 5.8 (cf. [W2]) : let n and D two positive integers and E1, . . . , En
subsets of Kn containing 0. Assume that there exists a non-zero polynomial P ∈ K[X1, . . . , Xn], of total
degree ≤ D, which vanishes on

E1 + · · ·+ En :=
{
x1 + · · ·+ xn ; xi ∈ Ei, 1 ≤ i ≤ n

}
.

then there exists an integer t and a vector subspace V of Kn, of codimension r in Kn, such that

Card
(
(Et + V)/V

)
≤ Dr

and
1 ≤ t ≤ r ≤ n.

5. Let n and D two positive integers and E a subset of Kn. Assume that there exists a vector subspace V
of Kn of codimension r ≥ 1 in Kn such that

Card
(
(E + V)/V

)
<

(
D + r

r

)
.

Show that there exists a non-zero polynomial P ∈ K[X1, . . . , Xn], of total degree ≤ D, which vanishes on E.

6. A subset V of Kn which is at the same time an additive subgroup of Kn and an algebraic subset of Kn

is a vector subspace of Kn.
Hint. See lemma 8.6.

7. With the notations of lemma 5.9, prove that the conditions (i) to (iii)’ are also equivalent to the following
ones :
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(iv) For any hyperplane V of Kn which is rational over Q,

rkZ

(
(Y + V)/V

)
≥ 2.

(v) For all S ≥ 1 and any hyperplane V ⊂ Kn which is rational over Q, we have

Card
((
Y (S) + V

)
/V
)
≥ (2S − 1)2.

8. Using Theorem 8.1, prove the following variant of Proposition 5.1: Let α1, . . . , αn+1 be non-zero elements
of K which generate a multiplicative subgroup of K∗ of rank ≥ n. Let β1, . . . , βn be elements of K. Assume
that there exist three positive rational integers L0, L1 and S satisfying

2nSn+1 ≥ (n+ 1)n+2Ln0L1, S ≥ n(n+ 1) and L0 ≥ 4,

such that the rank of the matrix(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,

is strictly less than
(
L0+n
n

)
(L1 + 1). Then the numbers 1, β1, . . . , βn are linearly dependent over Q.
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6.– PROOF OF THE MAIN THEOREM

In this Chapter we complete the proof of Theorem 1.1

Step 0. Assumptions.
Let `1, . . . , `n+1 be Q-linearly independent logarithms of algebraic numbers and β1, . . . , βn be algebraic

numbers. We assume

(6.1) `n+1 = β1`1 + · · ·+ βn`n.

For 1 ≤ i ≤ n+ 1, define αi = e`i .
The sentence “there exists a constant c1 > 0 such that . . . ” means that one can compute explicitly (and

easily: exercise 1) a number c1 > 0 in terms of n, `1, . . . , `n+1 and β1, . . . , βn which satisfies the desired
property.

Step 1. Choice of the parameters.
We denote by c a sufficiently large real number depending only on n, `1, . . . , `n+1 as well as on β1, . . . , βn.
Next we choose three rational integers L0, L1 and S which are required to satisfy

L0 ≥ 2, L1 ≥ 2, S ≥ 2,

cL0 logS ≤ L1/n, cL1S ≤ L1/n, c(L0L1)n ≤ Sn+1,

with L =
(
L0+n
n

)
(L1 + 1). For instance one can take

L1 = [logS]2n and L0 = [S1+1/n(logS)−3n]

with S sufficiently large.

Step 2. Definition of ∆.
Consider the L× (2S − 1)n+1 matrix

M =

(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,

where the index of row is λ and the index of column is s; as usual, λ runs over the (n+1)-tuples (λ1, . . . , λn+1)
of elements in Nn+1 satisfying λ1 + · · · + λn ≤ L0 and λn+1 ≤ L1 , while s runs over the (n + 1)-tuples in
Zn+1(S).

Let s(1), . . . , s(L) be any elements in Zn+1(S). We consider the following determinant of a L×L matrix

∆ = det

(
(s

(µ)
1 + s

(µ)
n+1β1)λ1 · · · (s(µ)

n + s
(µ)
n+1βn)λn

(
α
s
(µ)
1

1 · · ·αs
(µ)
n+1

n+1

)λn+1
)
λ,µ

.

Step 3. Upper bound for |∆|.
Our assumption (6.1) enables us to write, for (s1, . . . , sn+1) ∈ Zn+1,

α
s1+sn+1β1

1 · · ·αsn+sn+1βn
n = αs11 · · ·α

sn+1

n+1 .

Therefore we can use Proposition 4.4: there exists a constant c1 > 0 such that

1

L
log |∆| ≤ −L1/n + c1(L0 logS + L1S).
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Step 4. Liouville inequality.
We use our assumption that the numbers α1, . . . , αn+1, β1, . . . , βn are algebraic: from Proposition 3.15

we deduce that there exists a constant c2 > 0 such that either ∆ = 0 or else

1

L
log |∆| ≥ −c2(L0 logS + L1S).

However in step 1 we chose c sufficiently large with respect to c1 and c2, and therefore we deduce from step
3 that ∆ = 0.

Step 5. Consequence of the zero estimate.
From Step 4 we deduce that the rank of the matrix M is strictly less than L.
Our hypothesis that logα1, . . . , logαn+1 are linearly independent over Q implies that the rank of the

multiplicative subgroup of C∗ generated by α1, . . . , αn+1 is at least n.
Our conditions on the parameters imply Ln−1

1 Sn < Ln0 and Ln0L
n
1 < Sn+1, hence L2n−1

1 < S. This
allows us to use Proposition 5.1, and we deduce that 1, β1, . . . , βn are linearly dependent over Q. Thanks to
lemma 1.3, this completes the proof of Theorem 1.1.

1Exercise 1. Compute the constants c1 and c2 above, and deduce a suitable value for c.
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7.– A FIRST MEASURE WITH SIMPLE PROOF

In the second part of these lectures, which starts with the present Chapter, we produce explicit measures
of linear independence of logarithms of algebraic numbers. In this Chapter we prove such an estimate by
using the method of the first part. Our aim is to present a proof as transparent as possible, not to give a
sharp estimate. The result we reach is far from the best known, but is non trivial, and is quite sufficient for
many Diophantine problems. Refinements of this estimate will be discussed in Chapter 10.

1 Statement of the result

Theorem 7.1. — Let `1, . . . , `m be logarithms of algebraic numbers, αi = exp(`i), (1 ≤ i ≤ m) and
β1, . . . , βm be algebraic numbers. We assume that the number

Λ = β1`1 + · · ·+ βm`m

does not vanish. Let D be the degree of the number field Q(α1, . . . , αm, β1, . . . , βm) over Q and let logH
be an upper bound for the absolute logarithmic height of the 2m numbers α1, . . . , αm, β1, . . . , βm, with
H ≥ max{e,D}. Assume also e|`i| ≤ D logH for 1 ≤ i ≤ m. Then

|Λ| ≥ exp
{
−(103m3D logH)κ(m)

}
with κ(m) = 2m(m!)2.

Here is the plan of this Chapter. We show in section 2 that there is no loss of generality, for the proof of
Theorem 7.1, to assume that the numbers `1, . . . , `m are linearly independent over Q. Next (§3) we consider
the coefficients βi; it would be a loss of generality to assume that they are independent over Q; indeed,
the most interesting case is when they are all rational integers; but we show that the general case can be
reduced to the special case where the βi satisfy some condition of linear independence; it turns out that, in
the special case, we will be able to prove a stronger result (see Proposition 7.10). The purely transcendental
part of the proof is given in section 4. We complete the proof of theorem 7.1 in section 5.

1 On the linear independence of the logarithms In this section we show that for the proof of Theorem 7.1,
we may assume that the numbers `1, . . . , `m are linearly independent over Q.

We need the following lemma:

Lemma 7.2. — Let `1, . . . , `m be Q-linearly dependent logarithms of algebraic numbers; define αj = e`j ,
(1 ≤ j ≤ m). Let logH ≥ 1 be an upper bound for max1≤j≤m h(αj) and also for max1≤j≤m |`j |/D, where D
is the degree of the number field K = Q(α1, . . . , αm) over Q. Then there exist rational integers t1, . . . , tm,
not all of which are zero, such that

t1`1 + · · ·+ tm`m = 0

and
max{|t1|, . . . , |tm|} ≤

(
103mD3 logH

)m−1
.

Proof. (cf. [W] lemma 4.1, [L] Chap. 9 §7; see also [M]). We assume, as we may without loss of generality,
that m ≥ 2, and that any m− 1 of `1, . . . , `m are linearly independent. Thus there exists a unique (up to a
factor ±1) set of relatively prime integers t1, . . . , tm such that

t1`1 + · · ·+ tm`m = 0.

Hence
αt11 · · ·αtmm = 1.
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Let k be an integer, 1 ≤ k ≤ m. We define

c = (103mD3 logH)−1.

Using Minkowski’s linear form theorem (e.g. [S1] p.33 Th. 2C) we see that there exist integers s1, . . . , sm,
not all zero, such that

|sj − sktj/tk| < c, (1 ≤ j ≤ m, j 6= k), and |sk| ≤ 1/cm−1.

We now prove the relation s1`1 + · · ·+ sm`m = 0, from which the desired upper bound |tk| ≤ c−m+1 readily
follows. We first show that the number α = αs11 · · ·αsmm is a root of unity. Using (3.3) and (3.5) for the
number

αtk =

m∏
j=1

α
sjtk
j =

∏
1≤j≤m

α
sjtk−sktj
j ,

we get

|tk|h(α) ≤
∑

1≤j≤m,j 6=k

|sjtk − sktj |h(αj),

hence
h(α) ≤ cm logH ≤ (10D)−3.

So by Theorem 3.16 it follows that α is a root of unity. Let N be the order of α; then ϕ(N) ≤ D (where ϕ
is Euler function), therefore N ≤ 2D2 ≤ 2π/(cm|`j |) and

N

m∑
j=1

sj`j ∈ 2iπZ.

We observe that ∣∣∣∣∣∣N
m∑
j=1

sj`j

∣∣∣∣∣∣ =

∣∣∣∣∣∣N
m∑
j=1

(
sj −

sktj
tk

)
`j

∣∣∣∣∣∣ < cN
∑

1≤j≤m,j 6=k

|`j | ≤ 2π,

and we conclude
m∑
i=1

sj`j = 0.

We deduce from lemma 7.2 the following result:

Lemma 7.3. – Let m0 be a positive integer and U(x, y) be a positive function of two variables x ∈ N, x ≥ 1
and y ∈ R, y ≥ 1. For 1 ≤ m ≤ m0, denote by (Pm) the following property:
(Pm) for each non-vanishing linear combination

Λ = β1`1 + · · ·+ βm`m

of logarithms of algebraic numbers with algebraic coefficients, if the field

Q(e`1 , . . . , e`m , β1, . . . , βm)

has degree ≤ D over Q, and if H ≥ max{e,D} satisfies, for 1 ≤ j ≤ m,

logH ≥ h(αj), logH ≥ e|`j |/D and logH ≥ h(βj),

then
|Λ| ≥ exp

{
−U(m,D logH)

}
.
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Assume, for 1 ≤ m ≤ m0, that (Pm) holds whenever `1, . . . , `m are linearly independent over Q. Assume
further that, for 2 ≤ m ≤ m0 and T = (103mD3 logH)m−1, the following inequality holds:

U
(
m− 1, D log(2TH2)

)
+ log T ≤ U(m,D logH).

Then, for 1 ≤ m ≤ m0, (Pm) holds also when `1, . . . , `m are linearly dependent over Q.

Proof. The proof is by induction on m0; for m0 = 1 the result is obvious: since Λ does not vanish, the number
`1 is not zero, hence is independent over Q. Assume m0 ≥ 2; consider a non-vanishing linear combination
in m logarithms (with m ≤ m0) such that there is a linear dependence relation between `1, . . . , `m; from
lemma 7.2 we deduce that there exist rational integers t1, . . . , tm such that

t1`1 + · · ·+ tm`m = 0

and
0 < max{|t1|, . . . , |tm|} ≤ T with T =

(
103mD3 logH

)m−1
.

One of the ti, say tm, is not zero. We eliminate `m:

tmΛ = β̃1`1 + · · ·+ β̃m−1`m−1

with β̃j = tmβj − βmtj , (1 ≤ j ≤ m − 1). Lemma 3.6 with f(X1, X2) = tmX1 − tjX2 shows that, for

1 ≤ j ≤ m− 1, the height of β̃j is bounded by

h(β̃j) ≤ log(2T ) + h(βj) + h(βm) ≤ logH ′ with H ′ = 2TH2.

We deduce, either from the induction hypothesis (if `1, . . . , `m−1 are linearly dependent) or from hypothesis
(Pm−1) (otherwise):

|tmΛ| ≥ exp
{
−U
(
m− 1, D logH ′

)}
.

Hence
|Λ| ≥ exp

{
−U
(
m− 1, D logH ′

)
− log T

}
≥ exp

{
−U
(
m,D logH

)}
.

Using lemma 7.3 with the function

U
(
m,D logH

)
= (103m3D logH)κ(m),

where κ(m) = 2m(m!)2, we see that there is no loss of generality, for the proof of Theorem 7.1, to assume that
`1, . . . , `m are linearly independent over Q. Notice that the assumption of lemma 7.3 (namely that property
(Pm) is satisfied when the `i are linearly independent) is true for m = 1 thanks to Liouville’s inequality (see
exercise 6 a in Chapter 3).

1On the linear independence of the coefficients The transcendence argument requires that some determinant
does not vanish; an easy way of ensuring this condition is to assume that the coefficients β1, . . . , βm satisfy
some linear independence condition. We show here how the general case will follow.

Lemma 7.4. – Let m0 be a positive integer, U(x, y) and T0(x, y) be two positive functions of two variables
x ∈ N, x ≥ 1 and y ∈ R, y ≥ 1. Denote by (Pm) the same property as in lemma 7.3. Assume, for
1 ≤ m ≤ m0, that (Pm) holds provided that β1, . . . , βm satisfy the following linear independence condition:
for (b1, . . . , bm) ∈ Zm with 0 < max{|b1|, . . . , |bm|} < T0(m,D logH), we have

b1β1 + · · ·+ bmβm 6= 0.

Assume further that, for 2 ≤ m ≤ m0, the following inequality holds:

U
(
m− 1, 2D(logH)T0(m,D logH)

)
+ log T0(m,D logH) ≤ U(m,D logH).
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Then, for 1 ≤ m ≤ m0, (Pm) holds also when β1, . . . , βm do not satisfy the linear independence condition.

Proof. Once more the proof is by induction on m0, once more the result is obvious if m0 = 1. Take m with
2 ≤ m ≤ m0. Assume that there exists (b1, . . . , bm) ∈ Zm with 0 < max{|b1|, . . . , |bm|} < T0(m,D logH)
such that

b1β1 + · · ·+ bmβm = 0.

One of the coefficients, say bm, does not vanish; we eliminate βm:

bmΛ =

m−1∑
i=1

βi ˜̀i

with
˜̀
i = bm`i − bi`m, (1 ≤ i ≤ m− 1).

Notice that, when `1, . . . , `m are linearly independent, then ˜̀
1, . . . , ˜`m−1 are also linearly independent. If we

set αi = exp(`i) and α̃i = exp( ˜̀
i), we have α̃i = αbmi /αbim and

h(α̃i) ≤ |bm|h(αi) + |bi|h(αm) ≤ logH ′ with logH ′ = 2(logH)T0(m,D logH).

From the induction hypothesis or from hypothesis (Pm−1) we deduce

|bmΛ| ≥ exp
{
−U(m− 1, D logH ′)

}
,

hence
|Λ| ≥ exp

{
−U(m− 1, D logH ′)− log T0(m,D logH)

}
≥ exp

{
−U(m,D logH)

}
.

We shall use lemma 7.4 with

U(m,D logH) =
(
103m3D logH

)κ(m)

and

T0(m,D logH) = 2
[
103m3D logH

]2(m−1)2

.

The following inequalities (where T0 stands for T0(m,D logH))

U
(
m− 1, 2D(logH)T0

)
≤
(

4
(
103m3D logH

)2(m−1)2+1
)κ(m−1)

and (
2(m− 1)2 + 1

)
κ(m− 1) ≤ (2m2 −m)κ(m− 1) ≤ κ(m)−mκ(m− 1)

imply

U
(
m− 1, 2D(logH)T0

)
+ log T0 ≤ U(m,D logH);

this enables us to check the hypothesis of lemma 7.4 for m ≥ 2. Hence, for the proof of Theorem 7.1, we
may assume b1β1 + · · ·+ bmβm 6= 0 for all 0 6= (b1, . . . , bm) ∈ Zm(T0). Incidentally, we shall prove a stronger
result than Theorem 7.1 in this special case, namely with κ(m) = 2m(m!)2 replaced by 2m3.

Here is how this independence condition on the coefficients βi will take place in the proof.
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Lemma 7.5. – Let K be a field of characteristic zero, S1 be a positive integer and V be a subspace of Km

of codimension r ≥ 1, such that

Card
((

Zm(S1) + V
)
/V
)
< (2S1 − 1)r+1.

Then
1) there exists a basis (v1, . . . , vm−r) of V with vj ∈ Zm(2S1 − 1) for 1 ≤ j ≤ m− r.
2) the vector space V is intersection of r hyperplanes of equations

bi1z1 + · · ·+ bimzm = 0, (1 ≤ i ≤ r),

where, for 1 ≤ i ≤ r, bi = (bi1, . . . , bim) is in Zm(2S1 − 1).

Proof. This is an effective version of the implication (i)⇒ (iii)′ in lemma 5.9. The proof of the first assertion

is the same : we use Dirichlet box principle together with the assumption on Card
((

Zm(S1) + V
)
/V
)

(see

also exercise 3a). Notice that this assumption also implies V 6= 0, thus m > r.
In an earlier version of this lemma, a weaker form of the second assertion was proved: the vector space

V is contained in a hyperplane of equation b1z1 + · · ·+ bmzm = 0, where b = (b1, . . . , bm) 6= 0 is in Zm(S2),
with S2 = (m−1)!2m−1(S1−1)m−1 +1 (see exercise 2); this yielded a larger value for κ(m) in Theorem 7.1,
namely κ(m) = 2m(m!)3. The refinement which follows is due to D. Roy ; I reproduce his argument here.

a) Assume first r = 1. In this case V is the kernel of a linear form ϕ : Km −→ K, given by

ϕ(x1, . . . , xm) = b1x1 + · · ·+ bmxm,

where b1, . . . , bm are relatively prime rational integers. After permutation of the coordinates and replacement
of ϕ by −ϕ if necessary, we may assume b1 = max{|b1|, . . . , |bm|}. From the hypothesis Cardϕ

(
Zm(S1)

)
<

(2S1 − 1)2, we shall deduce b1 < 2S1 − 1. For this purpose we define

di = gcd(b1, . . . , bi), (1 ≤ i ≤ m),

and we consider the set

E =
{

(x1, . . . , xm) ∈ Zm ; −S1 < xi ≤ −S1 +
di−1

di
, 2 ≤ i ≤ m

}
.

Notice first that the restriction of ϕ to E is injective: indeed, if two distinct elements of E give the same
image by ϕ, their difference (y1, . . . , ym) belongs to kerϕ and satisfies

|yi| < di−1/di, (2 ≤ i ≤ m);

let i ≥ 2 be the largest integer such that yi 6= 0:

biyi = −b1y1 − · · · − bi−1yi−1;

hence di−1 divides biyi; since gcd(bi, di−1) = di, the quotient di−1/di divides |yi|, which contradicts the
inequality |yi| < di−1/di. Therefore ϕ is injective on E ∩ Zm(S1); this implies

(2S1 − 1)

m∏
i=2

min
{

2S1 − 1, di−1/di
}
< (2S1 − 1)2.

From this estimate follows di−1/di < 2S1 − 1 for 2 ≤ i ≤ m, and then

2S1 − 1 >

m∏
i=2

di−1/di = d1/dm = b1.
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b) Assume now r ≥ 1. Choose r linear forms L1, . . . , Lr such that V is the intersection of their kernels. After
permutation of the coordinates if necessary, we may assume that the m linear forms L1, . . . , Lm are still
linearly independent, where Lr+i(z) = zi for 1 ≤ i ≤ m− r. This means that the kernel of the projection on
the first m− r coordinates is injective on V; therefore, for m− r < i ≤ m, the projection

πi : Km −→ Km−r+1

(x1, . . . , xm) 7−→ (x1, . . . , xm−r, xi)

is injective on V. Fix i with m−r < i ≤ m. Now πi(V) is a hyperplane in Km−r+1 and πi maps Zm(S1) onto
Zm−r+1(S1); further, since V ∩ kerπi = 0, for each x ∈ Zm(S1), the classes modulo V of the (2S1 − 1)r−1

elements x+ y, (y ∈ Zm(S1) ∩ kerπi) are pairwise distinct; therefore (see lemma 10.3)

Card
((

Zm(S1) + V
)
/V
)
≥ (2S1 − 1)r−1Card

((
Zm−r+1(S1) + πi(V)

)
/πi(V)

)
.

From the assumption Card
((

Zm(S1) + V
)
/V
)
< (2S1 − 1)r+1 we deduce

Card
((

Zm−r+1(S1) + πi(V)
)
/πi(V)

)
< (2S1 − 1)2;

from a) it follows that πi(V) is the kernel of a linear form Km−r+1 −→ K with integer coefficients of absolute
value < 2S1 − 1; we compose this form with πi and get a linear form on Km whose kernel contains V and
whose coefficients satisfy the required property.

We now use lemma 7.5 and refine the zero estimate (Proposition 5.1) as follows:

Lemma 7.6. — Let α1, . . . , αn+1 be non-zero elements of K which generate a multiplicative subgroup of
K∗ of rank ≥ n. Let β1, . . . , βn be elements of K. Assume that there exist three positive rational integers
L0, L1 and S satisfying

Sn+1 ≥ (2n)n+1(L0L1)n, S ≥ 2n(n+ 1) and Sn > L1,

such that the rank of the matrix(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,

is strictly less than
(
L0+n
n

)
(L1 +1). As before, in the above matrix, the index of rows is λ = (λ1, . . . , λn+1) ∈

Nn+1 with λ1 + · · · + λn ≤ L0 and 0 ≤ λn+1 ≤ L1, while the index of columns is s ∈ Zn+1(S). Then there
exists a linear dependence relation

b1β1 + · · ·+ bnβn = bn+1

with (b1, . . . , bn+1) ∈ Zn+1 and

0 < max
1≤i≤n+1

|bi| <
S

n
.

Proof. From the assumption S ≥ 2n(n+ 1) we deduce(
S

n

)n+1

< 2

(
S

n
− 1

)n+1

,

because (
1 +

1

2n+ 1

)n+1

< 2 for n ≥ 1.

We repeat the proof of Proposition 5.1: we set S′′ = bS/2c, S′ = S − S′′ + 1. Therefore we have{
S′ = S′′ = (S + 1)/2 if S is odd,
S′ = (S/2) + 1, S′′ = S/2 if S is even.
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The assumption Sn > L1 implies (2S′ − 1)n > L1 and enables us to use lemma 5.2. We deduce from

the inequalities S′′ ≥ S/2 and
(
(S/n) − 1

)n+1
> (2L0L1)n that the hypotheses of lemma 5.5 are satisfied

with D = 2L0L1 and S replaced by S′′. We now repeat the proof of lemma 5.5: we define S1 = bS′′/nc;
from Proposition 5.8 and lemma 5.9 we deduce that there exists a vector subspace V of Kn+1 containing
(β1, . . . , βn,−1) such that

Card
((

Zn+1(S1) + V
)
/V
)
< (2S1 − 1)r+1

where r ≥ 1 is the codimension of V in Kn+1. Notice that S1 = bS/2nc < (S/2n) + 1, hence 2S1 − 2 ≤
(S−1)/n. Finally we use lemma 7.5: the vector space V is contained in a hyperplane b1z1+· · ·+bn+1zn+1 = 0
with |bi| ≤ 2S1 − 2, and the point (β1, . . . , βn,−1) belongs to V.

1The transcendence proof We prove the following result:

Proposition 7.7. — Let `1, . . . , `n+1 be logarithms of algebraic numbers, αi = exp(`i), (1 ≤ i ≤ n + 1)
and β1, . . . , βn be algebraic numbers with max{|β1|, . . . , |βn|} ≤ 1. Let D be the degree of the number field
Q(α1, . . . , αn+1, β1, . . . , βn) over Q and let A, B and E be real numbers, which are ≥ e, and satisfy

max
1≤i≤n+1

h(αi) ≤ logA, E max
1≤i≤n+1

|`i| ≤ D logA

and
h(1 : β1 : · · · : βn) ≤ logB.

Assume that there exist three positive rational integers S, L0, L1, all ≥ 2, satisfying the following condition,
where L :=

(
L0+n
n

)
(L1 + 1) and Θn(L) was defined in Chapter 4 §2:

(7.8)
1

L
Θn(L) logE ≥ D log(2L) +DL0 log(2BS) + L0 logE + (3n+ 1)DL1S logA.

Assume further that the following matrix is of rank L:(
(s1 + sn+1β1)λ1 · · · (sn + sn+1βn)λn

(
αs11 · · ·α

sn+1

n+1

)λn+1

)
λ,s

,

where the index of rows is λ = (λ1, . . . , λn+1) ∈ Nn+1 with λ1 + · · · + λn ≤ L0 and 0 ≤ λn+1 ≤ L1, while
the index of columns is s ∈ Zn+1(S). Then the number

Λ = β1`1 + · · ·+ βn`n − `n+1

does not vanish, and if we write |Λ| = e−U , we have

(7.9)
U

L
≤ D logL+DL0 log(2BS) + 2(n+ 1)DL1S logA.

The assumption on the rank of the matrix implies in particular L ≤ (2S − 1)n+1.

Proof. We introduce two determinants, one with algebraic entries which is called ∆r, while the second ∆n

is an interpolation determinant. The determinant ∆r will be different from zero because of our assumption
on the rank of the matrix; from Liouville’s estimate we get a lower bound for |∆r|. Further |∆n| is small,
because it is an interpolation determinant. Furthermore the difference |∆r −∆n| is bounded from above by
a small multiple of |Λ|; this gives the desired lower bound for |Λ|.
Step one: Lower bound for |∆r|

Our hypothesis on the rank of the matrix shows that there exist L elements s(1), . . . , s(L) in Zn+1(S),
such that the determinant

∆r = det

(
(s

(µ)
1 + s

(µ)
n+1β1)λ1 · · · (s(µ)

n + s
(µ)
n+1βn)λn

(
α
s
(µ)
1

1 · · ·αs
(µ)
n+1

n+1

)λn+1

)
λ,µ

does not vanish. From Proposition 3.15 we deduce

1

L
log |∆r| ≥ −U1

with
U1 = (D − 1)

(
L0 log(2S) + logL

)
+DL0 logB + (n+ 1)DL1S logA.
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Step two: Upper bound for |∆n|
Let us define

∆n = det

(
n∏
i=1

(s
(µ)
i + s

(µ)
n+1βi)

λiα
(s

(µ)
i

+s
(µ)
n+1

βi)λn+1

i

)
λ,µ

.

We apply the results of Chapter 4 to the functions

fλ(z1, . . . , zn) = zλ1
1 · · · zλnn e(`1z1+···+`nzn)λn+1

and to the points

ζµ =
(
s

(µ)
1 + s

(µ)
n+1β1, . . . , s

(µ)
n + s

(µ)
n+1βn

)
∈ Cn, (1 ≤ µ ≤ L)

with r = 2S and R = Er (we use our assumption |βj | ≤ 1). From our hypothesis E|`i| ≤ D logA we deduce

log |fλ|R ≤ L0 logR+ L1R

n∑
i=1

|`i|

≤ L0 log(2ES) + 2nDL1S logA.

Therefore lemmas 4.1 and 4.2 give
1

L
log |∆n| ≤ −U2

with

U2 =
1

L
Θn(L) logE − logL− L0 log(2ES)− 2nDL1S logA.

Step three: Upper bound for |∆r −∆n|
We write ∆r as a polynomial in α1, . . . , αn+1 and α−1

1 , . . . , α−1
n+1 with coefficients in Q(β1, . . . , βn):

∆r =
∑
t

qtα
t1
1 · · ·α

tn+1

n+1 ,

where t = (t1, . . . , tn+1) with |ti| ≤ LL1S. Thanks to our hypothesis |βi| ≤ 1 we have∑
t

|qt| ≤ L!(2S)LL0 .

The number ∆n is obtained by replacing αn+1 by αβ1

1 · · ·αβnn . We set x = αn+1 and y = αβ1

1 · · ·αβnn :

∆r −∆n =
∑
t

qte
`1t1+···`ntn

(
xtn+1 − ytn+1

)
.

Since |`i| ≤ (D/E) logA, we have

log |∆r −∆n| ≤ L logL+ LL0 log(2S) +
nD

E
LL1S logA+ log max

|t|≤LL1S
|xt − yt|.

For any integer t in the range −LL1S ≤ t ≤ LL1S, we have (compare with exercise 1 of Chapter 1; notice
also that there is no loss of generality to assume |Λ|LL1S ≤ 1)

|xt − yt| ≤ |αtn+1| |1− etΛ| ≤ e|t`n+1||tΛ|e|tΛ|

≤ eLL1S|Λ|eLL1S|`n+1|.

Therefore

log |xt − yt| ≤ D

E
LL1S logA+ log(LL1S) + 1− U.

We shall bound

1 + log(2LL1S) +
D

E
(n+ 1)LL1S logA

by (n+ 1)DLL1S logA. This is allowed by the inequalities A ≥ e, E ≥ e, D ≥ 1, n ≥ 1, S ≥ 2, L1 ≥ 2 and
L ≥ 9, and the fact that the number x = 2eLL1S is greater than 72e, hence satisfies log x ≤ (1/e2)(e− 1)x.
We deduce

|∆r −∆n| ≤ e−LU3

with

U3 =
U

L
− L0 log(2S)− (n+ 1)DL1S logA− logL+

log 2

L
.
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Step four: Conclusion
We write the triangular inequality:

|∆r| ≤ |∆n|+ |∆r −∆n|

from which we deduce, using steps 1, 2 and 3,

e−LU1 ≤ e−LU2 + e−LU3 .

Our assumption (7.8) implies U1 + (1/L) log 2 ≤ U2, from which we deduce U3 ≤ U1 + (1/L) log 2. This
concludes the proof of Proposition 7.7.

1Proof of Theorem 7.1 We first deduce from Proposition 7.7 the following result:

Proposition 7.10. – With the same assumptions as in Theorem 7.1, assume that there is no linear relation
b1β1 + · · ·+ bmβm = 0 between β1, . . . , βm with rational integers bi satisfying

0 < max
1≤i≤m

|bi| < 2T 2(m−1)2 where T =
[
103m3D logH

]
.

Assume also that `1, . . . , `m are linearly independent over Q. Then the conclusion of Theorem 7.1 holds with
κ(m) replaced by 2m3, namely

|Λ| ≥ exp
{
−(103m3D logH)2m3}

.

Proof.

a) We divide by the largest |βi|.
We shall assume βm = −1 and |βi| ≤ 1 for 1 ≤ i ≤ m − 1, and in this case we shall prove the lower

bound
|Λ| ≥ exp

{
−(103m3D logH)2m3−1

}
.

The general case will follow from Liouville’s inequality (3.13):

max
1≤j≤m

|βj | ≥ H−D

thanks to the trivial upper bound

(103m3D logH)2m3−1 +D logH ≤ (103m3D logH)2m3

.

We shall use Proposition 7.7 with n = m − 1, E = e, A = H, B = Hm (cf. exercise 3 of Chapter 3). We
shall check later L > 2nen+1; lemma 4.3 shows that one has Θn(L) ≥ nL1+(1/n)/6e.

b) Preliminary comments.
Let us explain how we shall choose our other parameters; we shall make the real choice only later.
We want to choose L0, L1 and S positive integers so that the right hand side of (7.9) is as small as

possible, while condition (7.8) is satisfied, and also the matrix is of maximal rank. Thanks to lemma 7.6 and
to our assumption on the linear independence of the β’s, this last condition will be satisfied as soon as

(7.11) (2n)n+1(L0L1)n ≤ Sn+1

(the conditions S ≥ 2n(n+ 1) and Sn > L1 will be checked later). Let us come back to condition (7.8); we
shall check below that

(7.12) D log(2L) +DL0 log
(
2Hn+1S

)
+ L0 < 25n3DL0 logH

This reduces (7.8) to the condition

L1/n ≥ 150en2DL0 logH +
6e

n
(3n+ 1)DL1S logH.
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Since we do not try to get the best possible constant, we shall impose

L1/n ≥ 103n2DL0 logH and L1/n ≥ 500nDL1S logH.

The simplest choice is

L0 = L1/n
(
103n2D logH

)−1

and
L1 = L1/n

(
500nDS logH

)−1
.

We now replace L by Ln0L1/n
n, which is a good approximation; this gives

L1/n =
S

2n2

(
103n3D logH

)n+1
.

Now we have

L0 =
S

2n

(
103n3D logH

)n
and

L1 =
(
103n3D logH

)n
.

From (7.11), we deduce that a good choice for S is

S = 2n
(
103n3D logH

)2n2

,

which implies

L1/n =
1

n

(
103n3D logH

)2n2+n+1
.

This is the way these parameters are chosen, the only substantial difference being that in Proposition 7.7
these parameters are supposed to be integers, while the preceding computations provide real numbers.

c) Choice of the parameters.
Here is now the real choice we make. Recall that n = m− 1, hence

T =
[
103(n+ 1)3D logH

]
.

We put

S = 2nT 2n2

, L0 = T 2n2+n and L1 = Tn.

The following estimates for L :=
(
L0+n
n

)
(L1 + 1) will be useful:

(7.13) n−nT 2n3+n2+n < L < 2T 2n3+n2+n.

The inequality on the left is a consequence of the bound n! ≤ nn, while the inequality on the right hand side
comes from the estimate

1

n!

(
1 +

n

L0

)(
1 +

1

L1

)
< 2.

In particular the inequality L > 2nen+1 is obvious.

d) Verification of (7.11).

We have L0L1 = T 2n(n+1) and Sn+1 = (2n)n+1T 2n2(n+1). The other conditions S ≥ 2n(n + 1) and
Sn > L1 of lemma 7.6 are trivial. Our assumption that β1, . . . , βn,−1 do not satisfy a linear dependence
relation with coefficients < 2T 2n2

shows that the conclusion of lemma 7.6 is not true. Hence the assumption
on the rank of the matrix in Proposition 7.7 is satisfied.

e) Verification of (7.8).
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We use the following estimates:

log(2L) < L0 log(3/2), log(3S) ≤ log(6n) + 2n2 log T < (25n3 − n− 2) logH

(this is where the assumption H ≥ D is used); therefore

D log(2L) +DL0 log
(
2Hn+1S

)
+ L0 < (n+ 2)DL0 logH +DL0 log(3S)

< 25n3DL0 logH <
1

12e
T 2n2+n+1

because T > 103n3D logH; this proves (7.12). We also have

(3n+ 1)DL1S logH ≤ 4nDL1S logH <
8

103n
T 2n2+n+1 <

1

12e
T 2n2+n+1.

From (7.13) we deduce
1

L
Θn(L) logE ≥ 1

6e
T 2n2+n+1;

hence (7.8) follows.

f) Conclusion.
We can now bound U from (7.9). Using the estimates in e) above, we obviously have

D logL+DL0 log(2BS) + 2(n+ 1)DL1S logA <
1

6e
T 2n2+n+1.

Hence (7.9) and (7.13) yield

U <
L

6e
T 2n2+n+1 < T (n+1)3+n3−n.

We bound (n+1)3 +n3−n by 2(n+1)3−1 (we are a bit sloppy at this point, but it does not really matter).
This completes the proof of Proposition 7.10.

Finally, we deduce Theorem 7.1 from Proposition 7.10 as explained in sections 2 and 3: assume first that
`1, . . . , `m are linearly independent over Q; the conclusion is true if β1, . . . , βm satisfy the linear independence
condition stated in Proposition 7.10. Otherwise, we use lemma 7.4 and get the desired conclusion thanks to
Proposition 7.10 (in property (Pm), we restrict our attention to linear independent logarithms). Finally, if
`1, . . . , `m are not Q-linearly independent, we deduce the conclusion from lemma 7.3.

1Open problem Is theorem 7.1 true without the condition e|`i| ≤ D logH ?

1Exercises 1. Prove the following refinement of lemma 7.2: let `1, . . . , `m be Q-linearly dependent logarithms
of algebraic numbers; define αj = e`j , (1 ≤ j ≤ m). For 1 ≤ j ≤ m, let logHj ≥ 1 be an upper bound for
max{h(αj), |`j |/D}. Further D be the degree of the number field K = Q(α1, . . . , αm) over Q. Then there
exist rational integers t1, . . . , tm, not all of which are zero, such that

t1`1 + · · ·+ tm`m = 0

and
|tk| ≤

(
4e(m− 1)D3

)m−1
logH1 · · · logHm/ logHk

for 1 ≤ k ≤ m.
Hint. First use exercise 9 of Chapter 3; next see [W] lemmas 2.6 and 4.1.

2. Let S be a positive integer and v1, . . . , vm−r be m − r linearly independent elements in Zm(S). Show
that the vector space V they span in Cm is contained in a hyperplane of equation b1z1 + · · · + bmzm = 0
with 0 6= (b1, . . . , bm) ∈ Zm(S′) and

S′ = (m− r)!(S − 1)m−r + 1.
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Hint.Since m− r < m, the m− r elements of this basis satisfy a linear dependence condition with rational
integral coefficients: this amounts to write that a m × (m − r) matrix has rank ≤ m − 1 ; expanding
determinants with entries of absolute values ≤ S−1, yields a linear relation with coefficients ≤ (m− r)!(S−
1)m−r.

3. (With D. Roy and W.M. Schmidt). Let S ≥ 2 be a positive integer and V a subspace of Rm of codimen-
sion r ≥ 1 satisfying the following condition (the same as in lemma 7.5)

Card
((

Zm(S) + V
)
/V
)
< (2S − 1)r+1.

a) Show that the intersection V ∩Zm(2S− 1) contains more than (2S− 1)m−r−1 points and contains a basis
of V; hence Λ = V ∩ Zm is a lattice in V of dimension m− r.
Hint. See Exercise 2 in Chapter 10.
b) The determinant det Λ of the lattice Λ in V is the volume of V/Λ, i.e. the volume of a fundamental
domain of Λ in V (see [S2]). Check

det Λ < m3(m−r)/2(2S − 1).

Hint. Choose a basis of V belonging to Zm(2S−1), and denote by P the corresponding parallelepiped. Check
that P contains a fundamental domain of V/Λ.

Define K = V ∩ Rm(2S − 1). Check

Card(K ∩ Λ) det Λ ≤ vol(K + P ),

where vol(K + P ) is the volume of K + P in V (for the metric induced by the metric of Rm). Check also
vol(K + P ) ≤ mm−r(2S − 2)m−r.
c) Denote by ‖ · ‖2 the Euclidean norm in Rm. Deduce from Minkowski’s theorem that there is a basis
v1, . . . , vm−r of V, where vi ∈ Λ satisfy

‖v1‖2 · · · ‖vm−r‖2 ≤ m2(m−r)(2S − 1).

d) Let V⊥ be the orthogonal complement of V in Rm:

V⊥ = {x ∈ Rm ; 〈x, y〉 = 0 for all y ∈ V},

where 〈 , 〉 denotes the usual scalar product in Rm. Then Λ⊥ = Zm ∩ V⊥ is a lattice in V⊥ of dimension r,
with det Λ⊥ = det Λ (see [S2] Chap. 1). Deduce that V is intersection of r hyperplanes in Rm of equations

〈bi, z〉 = 0, (1 ≤ i ≤ r),

where bi = (bi1, . . . , bim) are in Zm and satisfy

‖b1‖2 · · · ‖br‖2 ≤ m2(m−r)(2S − 1).

4. Refine Theorem 7.10 by replacing the single parameter H by two parameters A and B satisfying

h(βj) ≤ logB, (1 ≤ j ≤ m),

max{h(αj), |`j |/D} ≤ logA, (1 ≤ j ≤ m),

logB ≥ log(D logA);

then in the conclusion the factor (D logH)2m3

can be replaced by(
Dm(logB)2m−1 logA

)m2

.
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8.– ZERO ESTIMATE (CONTINUED) by Damien ROY

The present chapter is devoted to a refinement of Proposition 5.1.

Let K be a field of zero characteristic and let d0, d1 be two non-negative integers with d = d0 + d1 > 0.
We denote by G the group Kd0 × (K∗)d1 ; the group law on G will be written additively ; hence its neutral
element is denoted by 0. When Σ is a finite subset of G and n a positive integer, we define

Σ[n] =
{
σ1 + · · ·+ σn ; (σ1, . . . , σn) ∈ Σn

}
.

For each subgroup Φ of Zd1 , we denote by TΦ the following subgroup of (K∗)d1 :

TΦ =
{

(y1, . . . , yd1) ∈ (K∗)d1 ; yϕ1

1 · · · y
ϕd1
d1

= 1 for all ϕ = (ϕ1, . . . , ϕd1) ∈ Φ
}
.

Our aim is to show:

Proposition 8.1. – Let Σ be a finite subset of G containing 0. Assume that there exists a non-zero
polynomial in K[X1, . . . , Xd0 , Y1, . . . , Yd1 ], of total degree ≤ D0 in X1, . . . , Xd0 and of total degree ≤ D1 in
Y1, . . . , Yd1 , which vanishes on Σ[d]. Then there exist a vector subspace V of Kd0 of dimension δ0 ≥ 0 and
a subgroup Φ of Zd1 of rank d1 − δ1 with δ = δ0 + δ1 < d such that

δ!

δ0!δ1!
Card

((
Σ + (V × TΦ)

)
/(V × TΦ)

)
≤ d!

d0!d1!
Dd0−δ0

0 Dd1−δ1
1 .

In fact, we will establish this result in the case where K is algebraically closed. The general case will
be left to the reader (see exercise 1).

1 Some algebraic geometry In this section and in the following ones, K denotes an algebraically closed field
of characteristic zero. In the applications, one can take K equal either to C or to the algebraic closure of Q
in C. We also fix a positive integer d.

(a) Algebraic subsets of Kd

An algebraic subset of Kd is a subset of Kd which is the set of common zeroes of a family of polynomials
in K[X1, . . . , Xd].

From this definition, it follows that the intersection of any family of algebraic subsets of Kd is again
an algebraic subset of Kd. In particular each subset E of Kd is contained in a smallest algebraic subset of
Kd, which will be denoted by E: this is the set of common zeroes of the polynomials which vanish on E. A
finite union of algebraic subsets of Kd is also an algebraic subset of Kd. In particular, if E is a finite union
of sets E1, . . . , Er, then E is the union of E1, . . . , Er.

An algebraic subset of Kd is called irreducible if it cannot be written as the union of two algebraic
subsets of Kd properly contained in it. An irreducible algebraic subset of Kd is also called an algebraic
subvariety of Kd. Thus, if an algebraic subvariety of Kd is contained in a finite union of algebraic subsets of
Kd, then it is contained in one of them. The empty set, the space Kd and the points of Kd are examples of
algebraic subvarieties of Kd. One can show that each algebraic subset V of Kd is a finite union of algebraic
subvarieties V1, . . . , Vs of Kd:

V = V1 ∪ · · · ∪ Vs.

In this decomposition of V , one can require the condition Vi 6⊂ Vj for i 6= j. In this case the subvarieties Vi
are uniquely determined: they are the maximal irreducible algebraic subsets of Kd contained in V , and they
are called the irreducible components of V .

To each non-empty algebraic subvariety of Kd is attached a dimension which is a non-negative integer
≤ d. This dimension satisfies the following properties:
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(i) for a point it is 0, for Kd it is d ;
(ii) if V1, V2 are two distinct algebraic subvarieties of Kd and if V1 ⊂ V2, then dim(V1) < dim(V2).
The dimension of a non-empty algebraic subset of Kd is defined as the maximum of the dimensions of its
irreducible components. We observe:

If V , V ′ are two algebraic subsets of Kd with V ′ ⊂ V , then we have dim(V ′) ≤ dim(V ), with equality
if and only if V and V ′ have a common irreducible component of dimension dim(V ). This follows from the
property (ii) and from the fact that each irreducible component of V ′ is contained in one of V . In particular,
an algebraic subset V of Kd of dimension n contains only finitely many subvarieties of Kd of dimension n.

(b) Hilbert–Samuel polynomial

Let d0, d1 be two non-negative integers with sum d. We now writeKd as a productKd0×Kd1 , and use the
letters Y1, . . . , Yd1 to denote the variablesXd0+1, . . . , Xd. A polynomial P (X,Y ) ∈ K[X1, . . . , Xd0 , Y1, . . . , Yd1 ]
is said to be of bidegree ≤ (D0, D1) if its total degree with respect to the variables X1, . . . , Xd0 is ≤ D0 and
its total degree in the variables Y1, . . . , Yd1 is ≤ D1. We denote by K[X,Y ]≤(D0,D1) the set of elements in
K[X,Y ] which are of bidegree ≤ (D0, D1).

Let E be a non-empty subset of Kd0 ×Kd1 . We denote by KE the set of mappings from E into K, and
we consider the K-linear map

resE : K[X,Y ] −→ KE

which maps each polynomial P ∈ K[X,Y ] to the restriction to E of the polynomial map from Kd in K
induced by P . For each (D0, D1) ∈ N2, we set

H(E;D0, D1) = dimK

(
resE

(
K[X,Y ]≤(D0,D1)

))
.

Since the kernels of resE and resE are the same, we have

H(E;D0, D1) = H(E;D0, D1).

The main point is that for all (D0, D1) ∈ N2 with D0 and D1 sufficiently large, H(E;D0, D1) coincides with
the value at the point (D0, D1) of a polynomial whose degree is the dimension of E:

H(E;D0, D1) =
∑
i+j≤n

aijD
i
0D

j
1 with n = dim(E).

This polynomial which gives the value of H(E;D0, D1) for sufficiently large D0 and D1 is called the Hilbert–
Samuel bi-homogeneous polynomial of E. In fact, each decomposition of Kd into a product Kd0 × · · · ×Kds

with s ≥ 0 gives rise, as above, to a multi-homogeneous Hilbert–Samuel polynomial of E. For s = 0, this is
the usual Hilbert–Samuel polynomial of E.

Let us come back to our special case and denote by

H(E;D0, D1) = n!
∑
i+j=n

aijD
i
0D

j
1

the product by n! of the homogeneous part of degree n = dim(E) of the polynomial which coincides with
H(E;D0, D1) for sufficiently large D0 and D1. It can be proven that the coefficients of H(E;D0, D1) are
rational and non-negative. In the sequel we will need the important fact that if V is an algebraic subset of
Kd of dimension n and if V1, . . . , Vr are its irreducible components of dimension n, then

H(V ;D0, D1) =

r∑
i=1

H(Vi;D0, D1).

Example. For V = Kd, we have

H(Kd;D0, D1) = dimK

(
K[X,Y ]≤(D0,D1)

)
=

(
D0 + d0

d0

)(
D1 + d1

d1

)
=

1

d0!

1

d1!
Dd0

0 Dd1
1 + · · · ,
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hence

H(Kd;D0, D1) =
d!

d0!d1!
Dd0

0 Dd1
1 .

If we choose d0 = d and d1 = 0, the function H(E;D,D1) defined previously does not depend on D1, and
neither does H(E;D,D1). In that case, we denote them respectively by H(E;D) and H(E;D). For any D ∈
N, H(E;D) is simply the dimension over K of the space of mappings from E to K induced by polynomials
of degree ≤ D. We also have H(E;D0, D) = H(E;D) and H(E;D0, D) = H(E;D) independently of D0 if
d0 = 0 and d1 = d. We conclude this section with a proof of the following result.

Lemma 8.2. — Assume d0, d1 > 0. Let E0 and E1 be respectively non-empty subsets of Kd0 and Kd1 ,
and let δ0 and δ1 be the respective dimensions of E0 and E1. Then, the dimension of E0 × E1 is δ0 + δ1 and
we have

H(E0 × E1;D0, D1) =
(δ0 + δ1)!

δ0!δ1!
H(E0;D0)H(E1;D1).

Proof. Let E = E0 × E1. We first observe that we have

H(E;D0, D1) = H(E0;D0)H(E1;D1)

for all (D0, D1) ∈ N2. In fact, if S0 is a maximal subset of K[X]≤D0 whose image under resE0 is linearly in-
dependent in KE0 and if S1 is a maximal subset of K[Y ]≤D1

whose image under resE1
is linearly independent

in KE1 , then the set S consisting of all products P (X)Q(Y ) with P (X) ∈ S0 and Q(Y ) ∈ S1 is a maximal
subset of K[X,Y ]≤(D0,D1) whose image under resE is linearly independent in KE . Since the cardinality of
S0 and S1 are respectively H(E0;D0) and H(E1;D1), this gives the above equality. Therefore, for large
integers D0, D1, the value of H(E;D0, D1) is given by the product of a polynomial in D0 of degree δ0 with
a polynomial in D1 of degree δ1. This shows that the dimension of E0 × E1 is δ0 + δ1 and the equality of
the lemma follows.

1 Algebraic subgroups of G We denote by K∗ the multiplicative group of non-zero elements in K, and by G
the product Kd0 × (K∗)d1 of d0 copies of the additive group of K with d1 copies of the multiplicative group
K∗. A subset E of G is called an algebraic subset of G if E is the set of common zeroes in G of a family of
polynomials in K[X,Y ], a condition which is equivalent to E = E ∩G ; the dimension of E is then defined
as the dimension of E or equivalently as the degree of the polynomial H(E;D0, D1). Further, a subset H of
G is called an algebraic subgroup of G if H is at the same time a subgroup of G and an algebraic subset of
G. When d0 > 0 (resp. when d1 > 0), we have the corresponding notions of algebraic subsets and algebraic
subgroups of Kd0 (resp. of (K∗)d1).

If d0 > 0, each vector subspace V of Kd0 is an algebraic subgroup of Kd0 , since it is defined by linear
equations. On the other hand, if d1 > 0, then for each subgroup Φ of Zd1 , the set

TΦ =
{

(y1, . . . , yd1) ∈ (K∗)d1 ; yϕ1

1 · · · y
ϕd1
d1

= 1 for all (ϕ1, . . . , ϕd1) ∈ Φ
}

is an algebraic subgroup of (K∗)d1 , because, after multiplication of both sides of each equation yϕ1

1 · · · y
ϕd1
d1

= 1
by a product of powers of the yi with sufficiently large positive exponents, we get a set of polynomial equations
which define TΦ. As a consequence, the products V × TΦ are algebraic subgroups of G, being understood
that such a product is V if d1 = 0, and that it is TΦ if d0 = 0. We will show that the converse holds and
moreover that we have:

Proposition 8.3. — The algebraic subgroups of G are the products V × TΦ, where V is a vector subspace
of Kd0 and Φ a subgroup of Zd1 . For such a product, we have

H(V × TΦ;D0, D1) ≥ δ!

δ0!δ1!
Dδ0

0 D
δ1
1 ,

where δ0 = dimK(V ), δ1 = d1 − rkZ(Φ) and δ = δ0 + δ1.

The proof of this inequality will follow immediately from the next three lemmas. Before going into
these lemmas, let us observe that, since no non-zero polynomial vanishes identically on G, we have G = Kd.
Therefore the dimension of G is d and, from the example given before Lemma 8.2, we get

(8.4) H(G;D0, D1) =
d!

d0!d1!
Dd0

0 Dd1
1 .
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Lemma 8.5. — Assume d0 > 0 and d1 > 0. Then, the algebraic subgroups of G are the products H0 ×H1

where H0 is an algebraic subgroup of Kd0 and H1 an algebraic subgroup of (K∗)d1 . Moreover, if the
dimensions of H0 and H1 are respectively δ0 and δ1, then the dimension of H0 ×H1 is δ0 + δ1, and for all
(D0, D1) ∈ N2 we have

H(H0 ×H1;D0, D1) =
(δ0 + δ1)!

δ0!δ1!
H(H0;D0)H(H1;D1).

Proof. It is clear that the product of an algebraic subgroup of Kd0 by an algebraic subgroup of (K∗)d1 is an
algebraic subgroup of G. It remains to show the converse. The rest of the lemma follows from Lemma 8.2.

Let H be an algebraic subgroup of G. Define

H0 = {x ∈ Kd0 ; (x, 1) ∈ H} and H1 = {y ∈ (K∗)d1 ; (0, y) ∈ H}

where 0 and 1 denote respectively the neutral elements of Kd0 and (K∗)d1 . Then, H0 and H1 are algebraic
subgroups of Kd0 and (K∗)d1 respectively, and their product H0 × H1 is contained in H. To prove that
H is precisely H0 × H1, we choose an element (x, y) of H and a polynomial P (X,Y ) ∈ K[X,Y ] which
vanishes identically on H, and we show that P vanishes at (x, 1) and (0, y): since P is arbitrary, this will
imply that (x, 1) and (0, y) belong to H, and therefore (x, y) ∈ H0 ×H1. Let us write x = (x1, . . . , xd0) and
y = (y1, . . . , yd1), and consider the function f :Z2 → K given by

f(m,n) = P (mx1, . . . ,mxd0 , y
n
1 , . . . , y

n
d1)

for all (m,n) ∈ Z2. After simplifications, it can be written in the form

f(m,n) =

s∑
i=1

Qi(m)ani

where Q1(X), . . . , Qs(X) are elements of K[X] and a1, . . . , as are distinct elements of K∗. Since P vanishes
on n(x, y) for all n ∈ Z, we have f(n, n) = 0 for the same values of n. By a property of exponential
polynomials (see Chapter 2, Ex. 2), this implies that Q1(X), . . . , Qs(X) are all equal to 0, and so the
function f vanishes identically on Z2. In particular we have f(1, 0) = 0 and f(0, 1) = 0 which mean that P
vanishes at (x, 1) and at (0, y).

Lemma 8.6. — Assume d0 > 0. Then, the algebraic subgroups of Kd0 are its vector subspaces over K. If
V is a vector subspace of Kd0 over K and if δ0 is its dimension over K, then δ0 is also the dimension of V
as an algebraic subgroup of Kd0 , and for all D ∈ N we have

H(V ;D) = Dδ0 .

Proof. Let H be an algebraic subgroup of Kd0 . It is closed under addition; so, to prove that it is a vector
subspace of Kd0 , it suffices to show that it is also closed under scalar multiplication by the elements of K.
Let x = (x1, . . . , xd0) be an element of H and let P (X) ∈ K[X] be a polynomial which vanishes identically
on H. The function f :K → K given by f(t) = P (tx1, . . . , txd0) for all t ∈ K is a polynomial map. Since
P (nx) = 0 for all n ∈ Z, it vanishes on Z and so it vanishes identically on K. The choice of P being arbitrary,
this shows that tx belongs to H for all t ∈ K, thereby proving that H is closed under scalar multiplication.

Conversely, let V be a vector subspace of Kd0 over K. We already noticed that V is an algebraic
subgroup of Kd0 . If V = 0, we have H(V ;D) = 1 for all D ∈ N. Assume V 6= 0. Put δ0 = dimK(V )
and choose a K-isomorphism θ:Kδ0 → V . The vector space of mappings from V to K is isomorphic to the
vector space of mappings from Kδ0 to K via the map that sends a function f :V → K to the composite
f ◦ θ:Kδ0 → K. If f is induced by a polynomial of K[X1, . . . , Xd0 ] of degree ≤ D then f ◦ θ is induced by a
polynomial of K[X1, . . . , Xδ0 ] of degree ≤ D, and conversely. This shows that for all D ∈ N, we have

H(V ;D) =

(
D + δ0
δ0

)
=

1

δ0!
Dδ0 + · · · .

The formula for H(V ;D) follows.
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Lemma 8.7. — Assume d1 > 0. Then, the map which sends a subgroup Φ of Zd1 to the subgroup TΦ of
(K∗)d1 establishes a bijection between the subgroups of Zd1 and the algebraic subgroups of (K∗)d1 . Moreover,
if Φ is subgroup of Zd1 of rank d1 − δ1, then the dimension of TΦ is δ1 and for all D ∈ N we have

H(TΦ;D) ≥ Dδ1 .

Proof. For each ϕ = (ϕ1, . . . , ϕd1) ∈ Zd1 we define a character χϕ: (K∗)d1 → K∗ by

χϕ(y1, . . . , yd1) = yϕ1

1 · · · y
ϕd1
d1

for all (y1, . . . , yd1) ∈ (K∗)d1 .

We also associate to each algebraic subgroup H of (K∗)d1 a subgroup Φ(H) of Zd1 :

Φ(H) = {ϕ ∈ Zd1 ; H ⊂ ker(χϕ)}.

Our aim is to show that the map which sends a subgroup Φ of Zd1 to the algebraic subgroup TΦ of (K∗)d1 ,
and the map which sends an algebraic subgroup H of (K∗)d1 to the subgroup Φ(H) of Zd1 are inverse one
to the other. This will prove the first half of the proposition. We readily note the inclusions H ⊂ TΦ(H) and
Φ ⊂ Φ(TΦ). It remains to show that in both cases we in fact have an equality.

Consider first an algebraic subgroup H of (K∗)d1 and put H ′ = TΦ(H). By construction, if ϕ and ψ are

elements of Zd1 , then χϕ and χψ restrict to the same character of H in K∗ if and only if ϕ and ψ belong
to the same translate of Φ(H) in Zd1 , in which case they also restrict to the same character of H ′. We will
show the equality H = H ′ by proving that any polynomial P (Y ) ∈ K[Y ] which vanishes on H also vanishes
on H ′. In fact, the function f : (K∗)d1 → K induced by a polynomial can be written as a linear combination

f =
∑
ϕ∈R

pϕχϕ

where R is a finite subset of Nd1 and (pϕ)ϕ∈R is a family of elements of K. Let R be the image of R under
the canonical map from Zd1 to Zd1/Φ(H). For each ϕ ∈ R, we denote by Rϕ the inverse image of ϕ in R
and by χϕ and χ′ϕ the respective characters of H and H ′ in K∗ induced by restriction by χϕ for any ϕ ∈ ϕ :
these characters do not depend on the choice of ϕ. Then, the restriction of f to H and H ′ are respectively∑

ϕ∈R

( ∑
ϕ∈Rϕ

pϕ

)
χϕ and

∑
ϕ∈R

( ∑
ϕ∈Rϕ

pϕ

)
χ′ϕ.

If f vanishes on H, then the left sum is zero, and since the mappings χϕ with ϕ ∈ R are distinct characters
of H in K∗, Artin’s theorem on the independence of characters (∗) implies that they are linearly independent
over K. We then have ∑

ϕ∈Rϕ

pϕ = 0 for all ϕ ∈ R,

and this shows that the restriction of f to H ′ is also zero.
Now, let Φ be a subgroup of Zd1 and let Φ′ = Φ(TΦ). We have Φ ⊂ Φ′ and TΦ = TΦ′ . If Φ 6= Φ′, then,

since K is algebraically closed, there exists a non-trivial character of Φ′ in K∗ which is trivial on Φ. This
character extends to a character c:Zd1 → K∗ given by

c(ϕ1, . . . , ϕd1) = yϕ1

1 · · · y
ϕd1
d1

for an element y = (y1, . . . , yd1) of (K∗)d1 . By construction, we have y ∈ TΦ and y /∈ TΦ′ . This contradiction
shows that we must have Φ = Φ′.

(∗) See for instance S. Lang, Algebra, Second Ed. (1984), Addison Wesley, Chap.8, Theorem 4.1.
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Finally, let Φ be a subgroup of Zd1 and let δ1 = d1 − rkZ(Φ). We choose among the canonical basis of
Zd1 over Z a maximal subset {u1, . . . , uδ1} whose image in Zd1/Φ is linearly independent over Z. For each
D ∈ N, we form the sets

A(D) = {(a1, . . . , ad1) + Φ ; (a1, . . . , ad1) ∈ Nd1 ,
d1∑
i=1

ai ≤ D},

B(D) = {a1u1 + · · ·+ aδ1uδ1 + Φ ; (a1, . . . , aδ1) ∈ Nδ1 ,
δ1∑
i=1

ai ≤ D},

B′(D) = {a1u1 + · · ·+ aδ1uδ1 + Φ ; (a1, . . . , aδ1) ∈ Zδ1 ,
δ1∑
i=1

|ai| ≤ D}.

Then, H(TΦ;D) is the cardinality of A(D) and, since B(D) ⊂ A(D), we get:

H(TΦ;D) ≥ Card(B(D)) =

(
D + δ1
δ1

)
.

On the other hand, since Φ+Zu1 + · · ·+Zuδ1 is of finite index in Zd1 , it contains mZd1 for an integer m ≥ 1,
and there exists an integer c ≥ 1 such that B′(c) contains mA(1). This implies mA(D) ⊂ B′(cD), and since
A(D) is contained in the union of at most md1 translates of mA(D), we obtain:

H(TΦ;D) = Card(A(D)) ≤ md1(1 + 2cD)δ1 .

This inequality and the preceding one show that the degree of the Hilbert–Samuel polynomial of TΦ is δ1
and that we have H(TΦ;D) ≥ Dδ1 . In particular, TΦ has dimension δ1.

1 Algebraic subvarieties of G Most definitions and results about algebraic subsets of Kd also extend to
algebraic subsets of G. First, we see that the family of algebraic subsets of G is closed under union and
intersection. Let us say that an algebraic subset V of G is irreducible or that it is an algebraic subvariety of
G if it cannot be written as the union of two algebraic subsets of G, none of which is V . It follows from this
that whenever an algebraic subvariety of G is contained in a finite union of algebraic subsets of G, then it
is contained in one of them. The empty set is an example of algebraic subvariety of G. In analogy with the
case of the algebraic subsets of Kd, let us define the irreducible components of an algebraic subset V of G as
the maximal algebraic subvarieties of G contained in V . Then, we have the following result which shows in
particular that each algebraic subset of G is a finite union of irreducible ones:

Lemma 8.8. — Each algebraic subset of G has a finite number of irreducible components. If V1, . . . , Vs are
the distinct irreducible components of an algebraic subset V of G, then V is their union, and V 1, . . . , V s are
the distinct irreducible components of the algebraic subset V of Kd. Finally, if V ′ is an algebraic subset of
Kd, and if V ′1 , . . . , V

′
s are the distinct irreducible components of V ′ which meet G, then V ′1 ∩G, . . . , V ′s ∩G

are the distinct irreducible components of the algebraic subset V ′ ∩G of G.

Proof. We begin by establishing the following fact: if V ′ is an algebraic subvariety of Kd, then V ′ ∩G is an
algebraic subvariety of G, and if moreover V ′ ∩ G 6= ∅, then V ′ = V ′ ∩G. In fact, let V ′ be an algebraic
subvariety of Kd. If V ′ ∩ G is empty, it is certainly irreducible. Assume V ′ ∩ G 6= ∅. We observe that the
complement of G in Kd is an algebraic subset U of Kd:

U = {(x1, . . . , xd0 , y1, . . . , yd1) ∈ Kd0 ×Kd1 ; y1 · · · yd1 = 0},

and that we have V ′ ⊂ (V ′ ∩G)∪U . Since V ′ is irreducible and not contained in U , this implies V ′ ⊂ V ′ ∩G,
hence V ′ = V ′ ∩G. Moreover, let V1, V2 be algebraic subsets of G whose union is V ′ ∩G. From the equality
V ′ = V ′ ∩G, we deduce V ′ = V 1 ∪ V 2. Since V ′ is irreducible this implies V ′ = V i for i = 1 or 2, and
therefore V ′ ∩G = Vi for the same value of i. This shows that V ′ ∩G is irreducible and proves our assertion.

Let V ′ be an algebraic subset of Kd and let V ′1 , . . . , V
′
s be the distinct irreducible components of V ′

which meet G. Define V = V ′ ∩G and Vi = V ′i ∩G for i = 1, . . . , s. Since any algebraic subset V of G arises
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in this way, we only have to show that V1, . . . , Vs are the distinct irreducible components of V , that their
union is V , and that V 1, . . . , V s are the distinct irreducible components of V . We first observe that V is the
union of V1, . . . , Vs since V ′ is the union of its irreducible components. By the fact proven at the beginning,
V1, . . . , Vs are irreducible and we have V ′i = V i for i = 1, . . . , s. Since V ′i 6⊂ V ′j for i 6= j, this implies Vi 6⊂ Vj
for i 6= j. Therefore V1, . . . , Vs are the distinct irreducible components of V . Finally, since V is the union of
V1, . . . , Vs, the set V is the union of V 1, . . . , V s. Since V 1, . . . , V s are distinct irreducible components of V ′,
they are all the distinct irreducible components of V .

Remark. The proof of this lemma rests on the fact that G is the complement of an algebraic subset U of
Kd. A similar result holds in general for the algebraic subsets of any quasi-affine algebraic subvariety of Kd

(see Chapter 1, §1 of [H]).

Lemma 8.9. — If W , V are non-empty algebraic subsets of G with W ⊂ V , then their dimensions satisfy
dim(W ) ≤ dim(V ) with equality if and only if W and V have a common irreducible component of dimension
dim(V ); in particular, V contains only finitely many algebraic subvarieties of G of dimension dim(V ).

Proof. Since W ⊂ V , we have W ⊂ V , and the conclusion follows from the corresponding fact about algebraic
subsets of Kd, using Lemma 8.8.

Lemma 8.10. — Let V be a non-empty algebraic subset of G and let V1, . . . , Vr be its irreducible compo-
nents of dimension dim(V ). Then, for all (D0, D1) ∈ N2, we have

H(V ;D0, D1) =

r∑
i=1

H(Vi;D0, D1).

Proof. By Lemma 8.8, V 1, . . . , V r are the irreducible components of V of dimension dim(V ). Therefore,
the polynomial H(V ;D0, D1) associated to V is the sum of the corresponding polynomials associated to
V 1, . . . , V r. The equality of the lemma then follows from the fact that, for each subset E of Kd, the
polynomial H(E;D0, D1) associated to E is the same as the corresponding polynomial associated to E.

For each g ∈ G, we denote by τg:G→ G, the operator of translation by g in G:

τg(x) = g + x for all x ∈ G.

Looking at the addition law in G, we see that each τg is given in coordinates by polynomials of degree 1.
We will need these operators in the proofs of the next three lemmas.

Lemma 8.11. — Let V be a non-empty algebraic subset of G and let g ∈ G. Then, g + V is an algebraic
subset of G with the same dimension as V and we have

H(g + V ;D0, D1) = H(V ;D0, D1)

for all (D0, D1) ∈ N2; moreover, g + V is irreducible if V is irreducible.

Proof. By hypothesis, V is the set of common zeroes in G of a family of polynomials {Pα}α∈I . Therefore,
g + V = τg(V ) is the set of common zeroes in G of the polynomials Pα ◦ τ−g with α ∈ I. This proves that
g + V is an algebraic subset of G.

The vector space of mappings from g + V to K is isomorphic to the vector space of mappings from V
to K under the map which sends a function f : g + V → K to the composite f ◦ τg:V → K. If f is induced
by a polynomial of bidegree ≤ (D0, D1), then f ◦ τg is also induced by a polynomial of bidegree ≤ (D0, D1),
and conversely. We therefore have

H(g + V ;D0, D1) = H(V ;D0, D1)

for all (D0, D1) ∈ N2. This shows that V and g+V have the same Hilbert-Samuel polynomial. Consequently,
they have the same dimension, and the polynomials H(g + V ;D0, D1) and H(V ;D0, D1) coincide for all
(D0, D1) ∈ N2.

Finally, assume that V is irreducible. If g + V were not irreducible, it could be written as the union of
two algebraic subsets V1, V2 of G both distinct from g+V ; then V would be the union of −g+V1 and −g+V2,
and this is a contradiction since both are algebraic subsets of G which are distinct from V . Therefore g+ V
is irreducible.
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Lemma 8.12. — Let H be an algebraic subgroup of G, and let E be a finite and non-empty union of
translates of H in G. Then, E is an algebraic subset of G and, for all (D0, D1) ∈ N2, we have

H(E;D0, D1) = Card(E/H)H(H;D0, D1).

Proof. Let n be the dimension of H. Lemma 8.11 shows that each translate g + H of H is an algebraic
subset of G of dimension n and that the polynomials H(g + H;D0, D1) and H(H;D0, D1) are the same.
Since E is a disjoint union of translates of H, E is therefore an algebraic subset of G of dimension n, and
the conclusion follows by applying Lemma 8.10.

Lemma 8.13. — Let V and X be algebraic subsets of G. Define

E = {g ∈ G ; g + V ⊂ X}.

Then E is an algebraic subset of G. Moreover, if X is defined by polynomials of bidegree ≤ (D0, D1), then
E is also defined by polynomials of bidegree ≤ (D0, D1).

Proof. Let {Pα}α∈I be a family of polynomials whose set of common zeroes in G is X. We have

E = {g ∈ G ; g + v ∈ X for all v ∈ V }
= {g ∈ G ; Pα(g + v) = 0 for all α ∈ I, v ∈ V }.

This shows that E is the set of common zeroes in G of the polynomials Pα ◦ τv with α ∈ I and v ∈ V .
Therefore E is an algebraic subset of G. Furthermore, if the polynomials Pα are of bidegree ≤ (D0, D1),
then the same holds for the polynomials Pα ◦ τv. This proves the second part of the lemma.

We conclude this section with a proof of the following fundamental result due to P. Philippon (see
Proposition 3.3 of [P]):

Proposition 8.14. — Let D0, D1 be non-negative integers, and let V be a non-empty algebraic subset of
G which is defined by polynomials of bidegree ≤ (D0, D1). Then we have

H(V ;D0, D1) ≤ H(G;D0, D1).

For the proof of this proposition we shall say that an algebraic subset of G or of Kd is equidimensional
if all its irreducible components have the same dimension. We will need the following lemma:

Lemma 8.15. — Let W be an algebraic subvariety of G of dimension n ≥ 1 and let Z be the set of zeroes
in G of a polynomial P of bidegree ≤ (D0, D1). Assume that W ∩ Z is not empty and distinct from W .
Then, W ∩ Z is an equidimensional algebraic subset of G of dimension n− 1, and we have

H(W ∩ Z;D0, D1) ≤ H(W ;D0, D1).

Proof. Let W ′ = W . By Lemma 8.8, this is an algebraic subvariety of Kd, and its dimension is n. Let Z ′

be the set of zeroes of P in Kd. Since W 6⊂ Z ′, the polynomial P does not vanish identically on W ′; it then
follows from Theorem 1.11A and exercise 1.8 in chapter 1 of [H] that W ′∩Z ′ is an equidimensional algebraic
subset of Kd of dimension n− 1. Moreover, Lemma 3.1 of [P] gives

H(W ′ ∩ Z ′;D0, D1) ≤ H(W ′;D0, D1).

Since W ∩ Z is the intersection of W ′ ∩ Z ′ with G, this implies, by virtue of Lemmas 8.8 and 8.10, that
W ∩ Z is an equidimensional algebraic subset of G of dimension n− 1 and that we have

H(W ∩ Z;D0, D1) ≤ H(W ′ ∩ Z ′;D0, D1).

Since W ′ = W , we also have H(W ′;D0, D1) = H(W ;D0, D1). The inequality of the lemma follows.
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Remark. In particular, if we choose W = G, the preceding lemma shows that the set of zeroes in G of a
non-zero polynomial which vanishes at least at one point of G is equidimensional of dimension d− 1.

Proof of Proposition 8.14. Define r = d − dim(V ), and let S be a family of polynomials with bidegree
≤ (D0, D1) whose set of common zeroes in G is V . By induction on the integer i = 0, . . . , r, we shall
construct an equidimensional algebraic subset Vi of G of dimension d− i which contains V and satisfies

(8.16) H(Vi;D0, D1) ≤ H(G;D0, D1).

For i = 0, we set V0 = G. Assume that Vi is constructed for an integer i ≥ 0 with i < r, and let W1, . . . ,Ws

be the irreducible components of Vi. We have

V ⊂W1 ∪ · · · ∪Ws.

Since dim(Wj) = d − i > dim(V ), there exists for each j a polynomial Pj in S which does not vanish
everywhere on Wj ; let Zj be the set of zeroes of Pj in G. We define

Vi+1 = (W1 ∩ Z1) ∪ · · · ∪ (Ws ∩ Zs).

By construction, Vi+1 contains V , therefore Vi+1 6= ∅. Without loss of generality, we may assume that there
exists an integer t ≥ 1 such that Wj ∩ Zj 6= ∅ for j = 1, . . . , t, and Wj ∩ Zj = ∅ for j > t. Then, Lemma
8.15 shows that Wj ∩ Zj is an equidimensional algebraic subset of G of dimension d− i− 1 for j = 1, . . . , t.
Therefore, Vi+1 is also an equidimensional algebraic subset of G of dimension d − i − 1 and its irreducible
components are the union of those of Wj ∩ Zj for j = 1, . . . , t. By virtue of Lemma 8.10, this gives

H(Vi+1;D0, D1) ≤
t∑

j=1

H(Wj ∩ Zj ;D0, D1).

Since each Pj is of bidegree ≤ (D0, D1), we also have, by Lemma 8.15,

t∑
j=1

H(Wj ∩ Zj ;D0, D1) ≤
t∑

j=1

H(Wj ;D0, D1).

Since W1, . . . ,Wt are among the irreducible components of Vi of dimension d− i, Lemma 8.10 gives

t∑
j=1

H(Wj ;D0, D1) ≤ H(Vi;D0, D1).

Combining these inequalities with (8.16), we get H(Vi+1;D0, D1) ≤ H(G;D0, D1) as required. This shows
the existence of V0, . . . , Vr. Since V and Vr have the same dimension d − r, the inclusion V ⊂ Vr implies
that the irreducible components of V of dimension d− r are among those of Vr; therefore applying Lemma
8.10 and using the relation (8.16) with i = r, we get

H(V ;D0, D1) ≤ H(Vr;D0, D1) ≤ H(G;D0, D1).

The proof is complete.

1 The zero estimate The main result of Philippon in [P] has the following consequence:

Theorem 8.17. — Let Σ be a finite subset of G which contains 0 (the identity of G). Assume that there
exists a non-zero polynomial P of bidegree ≤ (D0, D1), which vanishes at each point of Σ[d]. Then there
exists an algebraic subgroup H of G, with H 6= G, such that

Card
(
(Σ +H)/H

)
H(H;D0, D1) ≤ H(G;D0, D1).
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Using Proposition 8.3 and the value of H(G;D0, D1) given by (8.4), we readily deduce Proposition 8.1
for an algebraically closed field K.

If we set D0 = D1 = D, we get a lower bound for the degree of polynomials which vanish on Σ[d]. The
zero estimate above is more general since it yields a constraint for the bidegree of such polynomials. In the
applications, it turns out to be essentially optimal (see exercise 3).

Proof of Theorem 8.17. Let us denote by X1 the set of zeroes of P in G. For each integer r ≥ 2, we define

Xr =
⋂

(σ1,...,σr−1)∈Σr−1

(
−σ1 − · · · − σr−1 +X1

)
.

We can also view Xr as the set of common zeroes in G of the polynomials P ◦τσ1+···+σr−1
with (σ1, . . . , σr−1) ∈

Σr−1. Therefore, for each integer r ≥ 1, Xr is an algebraic subset of G which is defined by polynomials of
bidegree ≤ (D0, D1).

The sets X1, X2, . . . are related by the formulas

(8.18) Xr+1 =
⋂
σ∈Σ

(
−σ +Xr

)
, (r ≥ 1).

Since 0 ∈ Σ, this implies
X1 ⊃ X2 ⊃ · · · ⊃ Xd+1 ⊃ · · ·

Since P vanishes on Σ[d], Xd+1 contains 0 ; therefore this set is not empty. On the other hand, since P 6= 0,
we have dim(X1) = d− 1. Consequently, there exists a positive integer r ≤ d such that

dim(Xr) = dim(Xr+1).

Let n be the common dimension of Xr and Xr+1, and let V be an irreducible component of dimension n of
Xr+1. Using (8.18), we get

V ⊂
⋂
σ∈Σ

(
−σ +Xr

)
;

hence for all σ ∈ Σ, σ + V is contained in Xr. We set

E = {g ∈ G ; g + V ⊂ Xr}.

We just showed Σ ⊂ E. We also set
H = {g ∈ G ; g + V = V }

and
R = {g + V ; g ∈ E}.

From lemma 8.11 we deduce that the elements in the set R are, like V , algebraic subvarieties of G of
dimension n. Since they are contained in Xr, and since Xr has dimension n, R is a finite set. We notice
also that H is a subgroup of G, that E is stable under translation by the elements of H, and that there is a
bijection

E/H −→ R.

Therefore E is a finite union of translates of H. Lemma 8.13, with X = V , shows that H is an algebraic
subset of G. Hence H is an algebraic subgroup of G. It is distinct from G because V is non-empty and
strictly contained in G. Applying again lemma 8.13, but with X = Xr, shows that E is an algebraic subset
of G, which is defined, like Xr, by polynomials of bidegree ≤ (D0, D1). Since E is a finite union of translates
of H, lemma 8.12 gives

H(E;D0, D1) = Card(E/H)H(H;D0, D1).

Since E is defined by polynomials of bidegree ≤ (D0, D1), Proposition 8.14 provides an upper bound for the
left hand side of the previous equality:

H(E;D0, D1) ≤ H(G;D0, D1).
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Finally, since Σ ⊂ E, we have
Card(E/H) ≥ Card

(
(Σ +H)/H

)
.

1Exercises 1. Prove Proposition 8.1 for any field K of characteristic zero on the basis that it is true when
K is algebraically closed.

Hint. For all fields K and all subgroups Φ of Zd1 , define G(K) = Kd0 × (K∗)d1 and

TΦ(K) =
{

(y1, . . . , yd1) ∈ (K∗)d1 ; yϕ1

1 · · · y
ϕd1
d1

= 1 for all ϕ = (ϕ1, . . . , ϕd1) ∈ Φ
}
.

Now, fix a field K of characteristic zero and denote by K̄ its algebraic closure. Assume that there exists a
non-zero polynomial P ∈ K[X,Y ] of bidegree ≤ (D0, D1) which vanishes at each point of Σ[d] where Σ is a
finite subset of G(K) containing 0. Since P belongs to K̄[X,Y ] and since Σ is contained in G(K̄), we know
that there exist a vector subspace V of K̄d0 of dimension δ0 ≥ 0 and a subgroup Φ of Zd1 of rank d1 − δ1
with δ = δ0 + δ1 < d such that the subgroup H = V × TΦ(K̄) of G(K̄) satisfies

δ!

δ0!δ1!
Card

(
(Σ +H)/H

)
≤ d!

d0!d1!
Dd0−δ0

0 Dd1−δ1
1 .

Show that
Card

(
(Σ +H)/H

)
= Card

(
(Σ +H ′)/H ′

)
where H ′ is the subgroup (V ∩Kd0)× TΦ(K) of G(K).

2. Let H be an algebraic subgroup of G. Show that exactly one of the irreducible components of H
is an algebraic subgroup H ′ of G and that the others are translates of H ′. Deduce from this that H is
equidimensional.

Hint. Let n be the dimension of H, and let V be an irreducible component of H of dimension n. Define

H ′ = {g ∈ G ; g + V = V } and R = {g + V ; g ∈ H}.

Show that H ′ is an algebraic subgroup of H, that R is the set of all irreducible components of H and that
the quotient H/H ′ is in bijection with R. Deduce from this that the dimension of H ′ is n. Moreover, choose
g ∈ V and show that H ′ is contained in −g+V . Since −g+ V is irreducible and has dimension n, conclude
that H ′ coincides with it.

3. (A converse to Theorem 8.17) Let Σ be a finite subset of G and let G′ be an algebraic subgroup of G
with G′ 6= G. Show that for any (D0, D1) ∈ N2 satisfying

(8.19) Card
(
(Σ +G′)/G′

)
H(G′;D0, D1) < H(G;D0, D1)

there exists a non-zero polynomial P of bidegree ≤ (D0, D1), which vanishes at each point of Σ.

Hint. Let E = ∪σ∈Σ(σ+G′). Show that the left hand side of (8.19) is ≥ H(E;D0, D1). Therefore, if (8.19)
holds, there exists a non-zero polynomial P of bidegree ≤ (D0, D1) which vanishes identically on E.

4. Use Proposition 8.14 with d0 = n and d1 = 0 to prove Lemma 5.6, namely that if F is a finite algebraic
subset of Kn defined by polynomials of K[X1, . . . , Xn] of degree ≤ D, then the cardinality of F is ≤ Dn.

Hint. Show that for a finite algebraic subset F of Kn, the polynomial H(F ;T ) ∈ K[T ] is constant, equal to
the cardinality of F .
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9.– INTERPOLATION DETERMINANTS (CONTINUED)

Our purpose in this Chapter is to introduce two refinements in the estimates of Chapter 7: in the upper
bound for |∆n|, we replace the function Φn(L) by a larger function Φ̃n(L0, L), which takes into account the

fact that the interpolation determinant
(
fλ(ζµ)

)
involves functions fλ of the form

zλ1
1 · · · zλnn ϕλn+1

(`1z1 + · · ·+ `nzn)

where 0 ≤ λi ≤ L0 for 1 ≤ i ≤ n, and ϕj are analytic functions of a single variable (see section 1). The
point is that, apart from monomials in z1, . . . , zn, the functions fλ depend only of one variable. There is
a connection (which is explained in [W]; see also Chapter 12) with the main idea of Baker’s extrapolation
argument, where derivatives are taken (in an n-dimensional space) of an auxiliary function, at several points
which all lie on a complex line (of dimension 1).

The second refinement is due to M. Laurent [L]: in the transcendence proof we gave in Chapter 7, the
upper bound for |∆r| came from the triangular inequality |∆r| ≤ |∆n −∆r|+ |∆n|. The last term is quite
small, but the difference |∆n − ∆r| was estimated very crudely: we said that it is at most the product of
Λ by some number which is not too large. Michel Laurent wrote the expansion of this difference in powers
of Λ and found that the first coefficients are pretty small, essentially as small as |∆n| (they are almost
interpolation polynomials, again). As a consequence, in the upper bound for |∆r|, it is possible to replace
the main term U/L by U (see section 2).

1 Improving the analytic upper bound for the interpolation determinant
Let n, L0 and L be positive integers, ϕ1, . . . , ϕL be analytic functions in C, `1, . . . , `n be complex

numbers, and aλi (for 1 ≤ i ≤ n, 1 ≤ λ ≤ L) be non-negative rational integers with aλ1 + · · · + aλn ≤ L0,
(1 ≤ λ ≤ L). We define, for 1 ≤ λ ≤ L,

fλ(z1, . . . , zn) = zaλ11 · · · zaλnn ϕλ(`1z1 + · · ·+ `nzn).

Further let ζ1, . . . , ζL be elements of Cn. We consider the determinant

∆ = det

(
fλ(ζµ)

)
1≤λ,µ≤L

,

The upper bound we shall produce depends on the following quantity:

Θ̃n(L0, L) = min {‖κ1‖+ · · ·+ ‖κL‖}

where the minimum runs over the L-tuples (κ1, . . . , κL) of elements of Nn which are pairwise distinct and
satisfy κλ2 + · · ·+ κλn ≤ L0 for 1 ≤ λ ≤ L.

Lemma 9.1. — The function of one complex variable z

Ψ(z) = det

(
fλ(zζµ)

)
1≤λ,µ≤L

has a zero at z = 0 of multiplicity ≥ Θ̃n(L0, L).

Proof. The multiplicity of the zero of Ψ at the origin is not affected by a change of variables in Cn; also such
a change of variables will not modify the degree of the monomials in z1, . . . , zn; therefore we may assume
`2 = · · · = `n = 0.

Since the determinant is multilinear, by expanding each ϕλ in Taylor series at the origin, we may assume
that each fλ is a monomial fλ(ζ) = ζκλ , with κλ = (κλ1, . . . , κλn) ∈ Nn and κλ2 + · · · + κλn ≤ L0. In this
case fλ(zζ) = ζκλz‖κλ‖. If the elements κ1, . . . , κL in Nn are not pairwise distinct, then Ψ = 0. If they are
pairwise distinct, then Ψ has a zero at 0 of multiplicity at least ‖κ1‖+ · · ·+‖κL‖, which proves our claim.

Here is a lower bound for the coefficient Θ̃n(L0, L):
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Lemma 9.2. — For L ≥ 2n
(
L0+n
n

)
and L0 ≥ 2 we have

Θ̃n(L0, L) >
L2

4
(
L0+n−1
n−1

) .
Notice that this estimate yields a stronger result than lemma 4.2 only if L0 is small compared with

L1/n; in our case we shall have L =
(
L0+n
n

)
(L1 + 1), and the main term in the final estimate involves

L(
L0+n−1
n−1

) =
(L0 + n)(L1 + 1)

n
in place of L1/n ≤ (L0 + n)(L1 + 1)1/n.

Proof. To begin with we assume only L ≥ 2 and L0 ≥ 1. The lower bound is true for n = 1 (see lemma 2.2);
hence we may assume n ≥ 2. The smallest value for the sum ‖κ1‖+ · · ·+ ‖κL‖ is reached when we choose
successively, for each integers a = 0, 1, . . ., all points in the domain

Da =
{

(x1, . . . , xn) ∈ Nn ; x2 + · · ·+ xn ≤ L0, x1 + · · ·+ xn = a
}
,

and we stop when the total number of points is L. For a ≥ L0 the number of points in Da is exactly
(
L0+n−1
n−1

)
(once (x2, . . . , xn) is chosen, there is exactly one value for x1); for a < L0 the number of points in Da is at
most

(
a+n−1
n−1

)
(we just forget the condition involving L0), hence the number of points we get by varying a

between 0 and, say, A− 1 (with A ≥ L0), is at most

(
A− L0

)(L0 + n− 1

n− 1

)
+

L0−1∑
a=0

(
a+ n− 1

n− 1

)
=
(
A− L0 + 1

)(L0 + n− 1

n− 1

)
.

Therefore, it A is such that the above quantity is at most L, then

Θ̃n(L0, L) ≥
A−1∑
a=L0

(
L0 + n− 1

n− 1

)
a =

1

2

(
L0 + n− 1

n− 1

)(
A− L0

)(
A+ L0 − 1

)
.

We now assume L ≥ 2n
(
L0+n
n

)
and L0 ≥ 2, and we choose

A =

[
L(

L0+n−1
n−1

)]+ 1.

From the inequality L0 ≥ 2 we deduce that the required condition

(
A− L0 + 1

)(L0 + n− 1

n− 1

)
≤ L

is satisfied. Since A+ L0 − 1 ≥ A+ 1 > L/
(
L0+n−1
n−1

)
we get

Θ̃n(L0, L) ≥ L

2

(
A− L0

)
.

Our assumption L ≥ 2n
(
L0+n
n

)
implies L ≥ 2(L0 + 1)

(
L0+n−1
n−1

)
, hence

A− L0 ≥
L

2
(
L0+n−1
n−1

) .
This completes the proof of lemma 9.2.

1 Improving the upper bound for the distance between the two determinants The refinements which we give
here rest on an idea due to M. Laurent [L].
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Lemma 9.3. – Let
A =

(
aλµ

)
1≤λ,µ≤L

and B =
(
bλµ

)
1≤λ,µ≤L

be two L× L matrices with complex coefficients, and let ε be a complex number. Then

det(A+ εB) =
∑

I⊂{1,...,L}

εL−|I|∆I ,

where I runs over the subsets of {1, . . . , L}, |I| is the number of elements in I, and

∆I = det
(
c
(I)
λµ

)
1≤λ,µ≤L

,

with

c
(I)
λµ =

{
aλµ if λ ∈ I
bλµ if λ 6∈ I.

Proof. This follows from the multilinearity of the determinant.
We shall apply this result when A in an interpolation matrix, with aλµ = fλ(ζµ), and ε has a small

absolute value (less than 1). When |I| is small, say ≤ L/2, then the coefficient εL−|I| is small, namely ≤ εL/2.
For these terms a trivial upper bound for |∆I | will be sufficient. On the other hand, if |I| is large, |I| > L/2,
then ∆I is almost an interpolation determinant, hence has a small absolute value. We give a more precise
result which takes into account the estimate of section 1 (corresponding to ε = 0).

Lemma 9.4. – Let n, L0, L and L′ be positive integers with L′ ≤ L, ϕ1, . . . , ϕL′ be analytic functions in
C, `1, . . . , `n be complex numbers, and aλi (for 1 ≤ i ≤ n, 1 ≤ λ ≤ L′) be non-negative rational integers
with aλ1 + · · ·+ aλn ≤ L0. We define, for 1 ≤ λ ≤ L′,

fλ(z1, . . . , zn) = zaλ11 · · · zaλnn ϕλ(`1z1 + · · ·+ `nzn).

Further let ζ1, . . . , ζL be elements of Cn. Furthermore, for L′ + 1 ≤ λ ≤ L and 1 ≤ µ ≤ L let δλµ be a
complex number. For 1 ≤ λ ≤ L′ and 1 ≤ µ ≤ L we define δλµ = fλ(ζµ). Finally, let E > 1 and M1, . . . ,ML

be positive real numbers satisfying

Mλ ≥ log sup
|z|=E

max
1≤µ≤L

|fλ(zζµ)|, 1 ≤ λ ≤ L′,

Mλ ≥ log max
1≤µ≤L

|δλ,µ| L′ + 1 ≤ λ ≤ L.

We consider the determinant

∆ = det

(
δλµ

)
1≤λ,µ≤L

.

Then we have
log |∆| ≤ −Θ̃n(L0, L

′) logE + log(L!) +M1 + · · ·+ML.

Proof. In the case L′ = L, the result follows from lemmas 4.1 and 9.1. The general case involves the same
arguments. For 1 ≤ µ ≤ L, we define functions d1µ(z), . . . , dLµ(z) of a single variable z ∈ C by

dλµ(z) =

{
fλ(ζµz) for 1 ≤ λ ≤ L′,
δλµ for L′ < λ ≤ L.

This means that for λ > L′ the function dλµ is constant. We claim that the function

D(z) = det

(
dλµ(z)

)
1≤λ,µ≤L

.
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has a zero at the origin of multiplicity ≥ Θn(L0, L
′). To prove this claim, we may assume `2 = · · · = `n = 0

and ϕλ(z1) = zbλ1 for some bλ ∈ N. In this case fλ(z1, . . . , zn) is of the form zκ1
1 · · · zκnn with κλi ∈ N and

κλ2 + · · ·+κλn ≤ L0, (1 ≤ λ ≤ L′). Therefore either two of the functions fλ are the same, and then D(z) = 0,
or else D has a zero of multiplicity ‖κ1‖+ · · ·+ ‖κL′‖ at the origin, where κλ = (κλ1, . . . , κλn). This proves
our claim.

We conclude the proof of lemma 9.4 by using Schwarz lemma like in the proof of lemma 4.1:

log |∆| = log |D(1)| ≤ −Θ̃n(L0, L
′) logE + log sup

|z|=E
|D(z)|;

for |z| = E, we plainly have
log |D(z)| ≤ log(L!) +M1 + · · ·+ML.

Here is a consequence of lemmas 9.3 and 9.4, which will give a much better upper bound for the
determinant ∆r in the transcendence proof.

Proposition 9.5. — Let L0 ≥ 2, L1 ≥ 4n be integers and E > 1 be a real number. Define L =
(
L0+n
n

)
(L1 +

1). Let ϕ1, . . . , ϕL1
be analytic functions of one variable, let `1, . . . , `n be complex numbers, and, for

λ = (λ1, . . . , λn+1) ∈ Nn+1 with λ1 + · · ·+ λn ≤ L0, λn+1 ≤ L1, define

fλ(z1, . . . , zn) = zλ1
1 · · · zλnn ϕλn+1(`1z1 + · · ·+ `nzn).

For the same λ, let bλ1, . . . , bλL be complex numbers. Further, let ζ1, . . . , ζL be elements in Cn. Define

V =
1

48n
(L0 + 1)(L1 + 1) logE.

Assume that, for each λ as above, we have a positive real number Mλ for which

Mλ ≥ log sup
|z|=E

max
1≤µ≤L

|fλ(zζµ)|, Mλ ≥ log max
1≤µ≤L

|bλ,µ|

and
logL+Mλ ≤ V

Finally, let ε be a complex number with
|ε| ≤ e−4V .

Then the determinant
∆ = det

(
fλ(ζµ) + εbλµ

)
λ,µ

has absolute value bounded by
|∆| ≤ 2Le−LV .

Proof. Consider the set of λ = (λ1, . . . , λn+1) ∈ Nn+1 satisfying λ1 + · · · + λn ≤ L0, λn+1 ≤ L1. This set

has L elements. For each subset I, we define ∆I = det
(
c
(I)
λµ

)
λ,µ

where

c
(I)
λµ =

{
fλ(ζµ) for λ ∈ I,
bλµ for λ 6∈ I.

Define L′ = bL/2c. When |I| ≥ L′, we use lemma 9.4:

log |∆I | ≤ −Θ̃n(L0, |I|) logE + logL! +
∑
λ

Mλ.
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The assumption L1 ≥ 4n implies |I| ≥ L′ ≥ L/2 ≥ 2n
(
L0+n
n

)
, hence by lemma 9.2 we have

Θ̃n(L0, |I|) ≥
|I|2

4
(
L0+n−1
n−1

) ≥ |I|
8n

(L0 + 1)(L1 + 1),

because

|I| ≥ 1

2
L ≥ 1

2

(
L0 + n

n

)
(L1 + 1) ≥ 1

2n

(
L0 + n− 1

n− 1

)
(L0 + 1)(L1 + 1).

Therefore

Θ̃n(L0, |I|) logE ≥ |I|
8n

(L0 + 1)(L1 + 1) logE ≥ 6V |I|.

Hence, for |I| ≥ L′, we have
log |∆I | ≤ −4V |I|;

from the hypothesis |ε| ≤ e−4V we deduce

|ε|L−|I||∆I | ≤ e−4(L−|I|)V e−4|I|V ≤ e−4LV ≤ e−LV .

For |I| < L′ we use the trivial estimate

log |∆I | ≤ logL! +
∑
λ

Mλ ≤ LV ;

from the inequalities L− |I| ≥ L− L′ + 1 ≥ (L+ 1)/2 we get

|ε|L−|I||∆I | ≤ e−2LV eLV ≤ e−LV .

The number of subsets I is 2L; the desired result follows now from lemma 9.3.

1Exercise

1. With the notations of lemma 9.2, show that for each ε > 0 there exists a number c = c(n, ε), which
depends only on n and ε, such that, for L ≥ cLn0 and L0 ≥ c,

Θ̃n(L0, L) ≥
(

1
2 − ε

)
L2(

L0+n−1
n−1

) .
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10.– A REFINED MEASURE

In this Chapter, we prove the following result, which improves Theorem 7.1.

Theorem 10.1. — Let `1, . . . , `m be logarithms of algebraic numbers, αi = exp(`i), (1 ≤ i ≤ m),
β1, . . . , βm be algebraic numbers, D be the degree of the number field Q(α1, . . . , αm, β1, . . . , βm) over Q
and let A1, . . . , Am and B be real numbers, which are ≥ e, and satisfy

logAi ≥ h(αi), D logAi ≥ e|`i|, (1 ≤ i ≤ m)

and

logB ≥ h(1 : β1 : · · · : βm), B ≥ (50mD logA)3m

with A = max{A1, . . . , Am}. If the number

Λ = β1`1 + · · ·+ βm`m

does not vanish, then

|Λ| > exp{−(50m)3mDm+2(logB)2 logA1 · · · logAm}.

The main new point in the proof is an argument which enables us to avoid any assumption of linear
dependence between the coefficients β1, . . . , βm. The proof given in Chapter 7 shows that if a linear form
β1`1 + · · ·+ βn`n− `n+1 assumes a sufficiently small absolute value, then a certain matrix is not of maximal
rank; we deduce from the zero estimate that there exists a vector subspace V of Cn+1, of codimension r ≥ 1,
which contains the point (β1, . . . , βn,−1), such that for some positive integer S the number of elements in(
Zn+1(S)+V

)
/V is relatively small; in particular we can make it smaller than (2S−1)r+1. As we know from

lemma 7.5, this implies that 1, β1, . . . , βn satisfy a linear dependence condition over Q with some explicit
bound for the coefficients.

However this is not very efficient. It is much better to use directly the information on the upper bound
for Card

(
Zn+1(S) + V

)
/V. Instead of constructing a determinant with analytic functions in Cn (which

we view as Cn+1/C(β1, . . . , βn,−1)), we take analytic functions in V/C(β1, . . . , βn,−1), which involve only
d = n− r complex variables. This is explained in section 1.

The transcendence argument is given in section 2, where a more precise result than Theorem 10.1 is
established. Finally in section 3 we deduce Theorem 10.1.

1 Construction of a non-zero determinant Let K be a field of zero characteristic, α1, . . . , αn+1 be non-zero
elements of K, β1, . . . , βn be elements of K, and L0, L1, S1, . . . , Sn+1 be positive integers. Like in Chapter
3 (§6), we denote by Zn+1(S) the set of s = (s1, . . . , sn+1) ∈ Zn+1 which satisfy |si| < Si, (1 ≤ i ≤ n+ 1).

Let V be a vector subspace of Kn+1 which contains the point (β1, . . . , βn,−1). We denote by d + 1
the dimension of V, by σV the canonical map from Kn+1 onto Kn+1/V, by (e1, . . . , en+1) the canonical
basis of Kn+1, and we assume that σV(e1), . . . , σV(en−d) is a basis of Kn+1/V. This means that if z =
(z1, . . . , zn+1) ∈ V satisfies zn−d+1 = · · · = zn+1 = 0, then z = 0.

We consider the following matrix

Ma∇ =

( n∏
j=n−d+1

(
sj + sn+1βj

)λj n+1∏
i=1

α
siλn+1

i

)
λ,s

,

where the index of rows is λ = (λn−d+1, . . . , λn+1) ∈ Nd+1 with λn−d+1 + · · · + λn ≤ L0 and λn+1 ≤ L1,
while the index of columns is s ∈ V ∩ Zn+1(S). The number of rows is L(d) =

(
L0+d
d

)
(L1 + 1).

We show that the zero estimate of Chapter 8 gives the following result:
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Proposition 10.2. – Assume that each Si is a multiple of 2(n+ 1), and define S′i = Si/2(n+ 1). Assume
also that the parameters L0, L1 and S′1, . . . , S

′
n+1 satisfy

2nS′1 · · ·S′n+1 ≥ (n+ 1)Ln0L1 and S′i ≥ n+ 1, L0 ≥ 4S′i, (1 ≤ i ≤ n+ 1).

Assume further that for all s ∈ Z with 0 < s < 4S′n+1 − 3, we have (sβ1, . . . , sβn,−s) 6∈ Zn+1(4S′ − 3).
Finally, assume that

Card
((

Zn+1(S′) + V
)
/V
)
≤ n+ 1

d+ 1
Ln−d0 ,

and that there is no subspace of smaller dimension satisfying this inequality. Then the matrix Ma∇ is of
rank L(d).

The proof of this Proposition requires some preparation.

Lemma 10.3. – Let C be a finite set and f : C −→ C′ be a mapping. Then

CardC =
∑

u∈f(C)

Cardf−1(u).

Proof. The map f induces on C an equivalence relation with Card f(C) classes, namely{
f−1(u) ; u ∈ f(C)

}
.

From lemma 10.3 one deduces

Cardf(C) min
u∈f(C)

Cardf−1(u) ≤ CardC ≤ Cardf(C) max
u∈f(C)

Cardf−1(u).

The lower bound was already used in the proof of lemma 7.5. We consider here the upper bound. When
ψ : G1 −→ G2 is a homomorphism of Z-modules and C a finite subset of G1, if we define C =

{
λ− λ′ ; λ ∈

C, λ′ ∈ C
}

, then

Card ψ(C) · Card
(
C ∩ kerψ

)
≥ Card C.

Indeed, one applies lemma 10.3 to the restriction f : C −→ ψ(C) of ψ to C; if λ(1), . . . , λ(t) are distinct
elements in the same class f−1(u), then 0, λ(2) − λ(1), . . . , λ(t) − λ(1) are distinct elements in C ∩ kerψ.

For instance take G1 = Zn+1, C = Zn+1(S′), and ψ is the restriction to Zn+1 of the canonical map
Cn+1 −→ Cn+1/V; since C is contained in Zn+1(2S′ − 1), we deduce

Card
((

Zn+1(S′) + V
)
/V
)

Card
(
V ∩ Zn+1(2S′ − 1)

)
≥ (2S′1 − 1) · · · (2S′n+1 − 1).

Here is another simple consequence of lemma 10.3.

Lemma 10.4. – Let G be a subgroup of Zn+1; for positive integers S1, . . . , Sn+1, define

G(S) = G ∩ Zn+1(S).

Let α1, . . . , αn+1 be elements in K∗ which generate a multiplicative subgroup of rank ≥ n. Then the number
of elements in the image in K∗/K∗tors of the set{

αs11 · · ·α
sn+1

n+1 ; s ∈ G(S)
}

is at least (
Card G(S)

)
2 max1≤i≤n+1 Si

.
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Proof. If α1, . . . , αn+1 are multiplicatively independent, then the number of elements in this image is just
Card G(S). Otherwise the map

ψ : Zn+1 −→ K∗/K∗tors

(s1, . . . , sn+1) 7−→ αs11 · · ·α
sn+1

n+1

has a kernel which is a subgroup of Zn+1 of rank 1; this kernel is of the form Za with a = (a1, . . . , an+1) ∈
Zn+1; we apply lemma 10.3 with C = G(S), C′ = K∗/K∗tors, and f is the restriction of ψ to C. Let
u = f(s0) ∈ f(C) be such that Cardf−1(u) is maximal :

CardC ≤ Cardf(C)Cardf−1(u).

For each s ∈ f−1(u), there exists λs ∈ Z with s − s0 = λsa. Let i ∈ {1, . . . , n + 1} be such that ai 6= 0;
then all the λs = (si − s0

i )/ai belong to an interval of length ≤ (2Si − 2)/|ai| ≤ 2Si − 2, and therefore
Cardf−1(u) ≤ 2Si − 1 < 2Si.

Proof of Proposition 10.2. Assume that the rank ofMa∇ is less than L(d): there exists a non-zero polynomial
in K[Xn−d+1, . . . , Xn, Y ], of total degree ≤ L0 in Xn−d+1, . . . , Xn and of degree ≤ L1 in Y which vanishes
on the set Σ[d+ 1], where

Σ =
{

(sn−d+1 + sn+1βn−d+1, . . . , sn + sn+1βn, α
s1
1 · · ·α

sn+1

n+1 ) ; s ∈ V ∩ Zn+1(2S′ − 1)
}
.

We use Proposition 8.1 with d0 replaced by d, d1 = 1 and D0 = L0, D1 = L1. We deduce the existence of
a vector subspace W1 of Kd, of dimension δ and of a subgroup Φ of Z such that W1 × TΦ 6= Kd ×K∗ and
either

(δ + 1)Card
((

Σ + (W1 ×K∗)
)
/(W1 ×K∗)

)
≤ (d+ 1)Ld−δ0 and Φ = 0

or
Card

((
Σ + (W1 × TΦ)

)
/(W1 × TΦ)

)
≤ (d+ 1)Ld−δ0 L1 and Φ 6= 0.

We are going to prove firstly W1 6= 0, secondly Φ = 0.
We claim that the elements{

(sn−d+1 + sn+1βn−d+1, . . . , sn + sn+1βn) ; s ∈ V ∩ Zn+1(2S′ − 1)
}

are pairwise distinct. Indeed, if this is not true, then there exists s ∈ V ∩Zn+1(4S′−3) with s 6= 0, sn+1 ≥ 0
and

si + sn+1βi = 0 for n− d+ 1 ≤ i ≤ n.

Therefore the point
(s1, . . . , sn+1) + (sn+1β1, . . . , sn+1βn,−sn+1)

belongs to V and has its d+ 1 last components which vanish; hence the first n− d components also vanish,
and (sn+1β1, . . . , sn+1βn,−sn+1) ∈ V ∩ Zn+1(4S′ − 3), contrary to our assumption. This proves our claim.

From this claim we deduce, for any subgroup Φ of Z (including Φ = 0)

Card
((

Σ + (0× TΦ)
)
/(0× TΦ)

)
= Card

(
V ∩ Zn+1(2S′ − 1)

)
.

The assumption S′i ≥ n+ 1 is used for the bound(
1− 1

2S′1

)
· · ·
(

1− 1

2S′n+1

)
≥
(

1− 1

2(n+ 1)

)n+1

>
1

2
,

which enables us to deduce from lemma 10.3

Card
((

Zn+1(S′) + V
)
/V
)

Card
(
V ∩ Zn+1(2S′ − 1)

)
> 2nS′1 · · ·S′n+1.
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From our choice of V and our hypothesis on S′1 · · ·S′n+1, we deduce

n+ 1

d+ 1
Ln−d0 Card

(
V ∩ Zn+1(2S′ − 1)

)
> 2nS′1 · · ·S′n+1 ≥ (n+ 1)Ln0L1,

hence
Card

(
V ∩ Zn+1(2S′ − 1)

)
> (d+ 1)Ld0L1.

Combining this with the previous inequality, we deduce

Card
((

Σ + (0× TΦ)
)
/(0× TΦ)

)
> (d+ 1)Ld0L1

which implies W1 6= 0.
Assume now Φ 6= 0; then TΦ is a finite group, hence is contained in K∗tors, and, according to lemma

10.4, the number of distinct points in{
αs11 · · ·α

sn+1

n+1 ; s ∈ V ∩ Zn+1(2S′ − 1)
}

modulo torsion is at least (4 max{S′i})−1Card
(
V ∩ Zn+1(2S′ − 1)

)
. The hypothesis L0 ≥ 4S′i together with

the previous lower bound, shows that this number is greater than

(d+ 1)Ld−1
0 L1.

We deduce that the number of elements in
(
Σ + (W1×TΦ)

)
/(W1×TΦ) is greater than (d+ 1)Ld−1

0 L1; since
we already know that δ is at least 1, we get a contradiction. From the condition W1 × TΦ 6= Kd ×K∗ we
conclude Φ = 0 and δ < d.

Let θ : V → Kd be the linear map which sends (z1, . . . , zn+1) onto the point (zn−d+1+zn+1βn−d+1, . . . , zn+
zn+1βn). Using once more the assumption that e1, . . . , en−d are linearly independent modulo V, we deduce
that θ is surjective with kernel K(β1, . . . , βn,−1). We define W = θ−1(W1). Hence W is a vector subspace
of V, of dimension δ + 1 < d+ 1, containing (β1, . . . , βn,−1), such that

Card

(((
V ∩ Zn+1(2S′ − 1)

)
+W

)
/W
)
≤ d+ 1

δ + 1
Ld−δ0 .

We apply lemma 10.3 to the canonical map

ψ : Kn+1/W −→ Kn+1/V

with
C = σW

(
Zn+1(S′)

)
=
(
Zn+1(S′) +W

)
/W,

ψ(C) = σV
(
Zn+1(S′)

)
=
(
Zn+1(S′) + V

)
/V

and
C ∩ kerψ = σW

(
Zn+1(2S′ − 1)

)
∩ kerψ =

(
V ∩ Zn+1(2S′ − 1) +W

)
/W

We get

Card
((

Zn+1(S′)+W
)
/W
)

≤ Card
((

Zn+1(S′) + V
)
/V
)
· Card

((
V ∩ Zn+1(2S′ − 1) +W

)
/W
)

≤ d+ 1

δ + 1
Ld−δ0 · n+ 1

d+ 1
Ln−d0

≤ n+ 1

δ + 1
Ln−δ0 .

Since dimW = δ + 1 < d+ 1, this contradicts the minimality of dimV.

1 The main proof In this section we prove the following result.
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Theorem 10.5. — Let `1, . . . , `n+1 be logarithms of algebraic numbers αi = exp(`i), (1 ≤ i ≤ n + 1) and
β1, . . . , βn be algebraic numbers with max{|β1|, . . . , |βn|} ≤ 1. Assume that the numbers `1, . . . , `n+1 are
Q-linearly independent. Let D be the degree of the number field Q(α1, . . . , αn+1, β1, . . . , βn) over Q and let
A1, . . . , An+1, B and E be real numbers, which are ≥ e, and satisfy

h(αi) ≤ logAi, E|`i| ≤ D logAi, (1 ≤ i ≤ n+ 1)

and
h(β1 : · · · : βn : 1) ≤ logB, E ≤ BD.

Assume that there exist n + 3 positive rational integers L0, L1 and S′1, . . . , S
′
n+1 satisfying the following

conditions:
L0 ≥ 4S′i, S′i ≥ n+ 1

and

(10.6) 2nS′1 · · ·S′n+1 ≥ (n+ 1)Ln0L1.

Define

V =
1

48n
(L0 + 1)(L1 + 1) logE,

and assume

(10.7) V ≥ DL0 log(2BS) +DL1

n+1∑
i=1

Si logAi +D logL+ log
(
2L1Sn+1

)
,

where L :=
(
L0+n
n

)
(L1 + 1), Si = 2(n+ 1)S′i and S = max1≤i≤n+1 Si. If

Λ = β1`1 + · · ·+ βn`n − `n+1

does not vanish, then we have |Λ| > e−4nV .

Proof.

Step one: Liouville inequality
We begin with an easy case, when there exists a rational integer s ∈ Z with 0 < s < 4S′n+1 − 3 such

that
(sβ1, . . . , sβn,−s) ∈ Zn+1(4S′ − 3).

In this case we write bi = sβi, (1 ≤ i ≤ n) and bn+1 = −s; hence sΛ = b1`1 + · · ·+ bn+1`n+1 and bi ∈ Z with
|bi| ≤ 4S′i − 4. We use Liouville’s estimate (exercise 6b of Chapter 3):

s|Λ| ≥ 2−D exp

{
−2D

n+1∑
i=1

(2S′i − 2)h(αi)

}
.

This gives the desired bound:

log |Λ| ≥ −D log 2− 4D

n+1∑
i=1

S′i logAi − log(4S′n+1)

≥ −4nV.

Therefore we shall now assume
(sβ1, . . . , sβn,−s) 6∈ Zn+1(4S′ − 3)

for 0 < s < 4S′n+1 − 3.
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Step two: Choice of V
We remark that there exist vector subspaces V of Cn+1, containing (β1, . . . , βn,−1), such that

Card

((
Zn+1(S′) + V

)
/V
)
≤ n+ 1

d+ 1
Ln−d0

with d = dimV − 1; indeed V = Cn+1 is such a space. Among them, we choose one (which we call V) which
is of minimal dimension d+ 1.

Let σV be the canonical map from Cn+1 onto Cn+1/V. Since V 3 (β1, . . . , βn,−1), we have

σV(en+1) = β1σV(e1) + · · ·+ βnσV(en),

hence there exists a basis of Cn+1/V of the form
(
σV(ei1), . . . , σV(ein−d)

)
, with 1 ≤ i1 < · · · < in−d ≤ n.

For ease of notation we shall assume that {i1, . . . , in−d} = {1, . . . , n − d}. Writing σV(ei) in terms of

σV(e1), . . . , σV(en−d), we see that there exist (n− d)(d+ 1) complex numbers u
(j)
i such that

ei +

n−d∑
j=1

u
(j)
i ej ∈ V, (n− d+ 1 ≤ i ≤ n+ 1);

these d+ 1 elements, which can be written(
u

(1)
i , . . . , u

(n−d)
i , 0, . . . , 0, 1, 0, . . . , 0), (n− d+ 1 ≤ i ≤ n+ 1)

form a basis of V; from this one deduces that V is intersection of n− d hyperplanes

zj =

n+1∑
i=n−d+1

u
(j)
i zi (1 ≤ j ≤ n− d).

We define

ϑi = `i +

n−d∑
j=1

u
(j)
i `j , (n− d+ 1 ≤ i ≤ n+ 1).

Then, for z ∈ V, we have
n+1∑

i=n−d+1

ziϑi =

n+1∑
j=1

zj`j .

In particular, since (β1, . . . , βn,−1) is in V,
n∑

i=n−d+1

βiϑi = ϑn+1 + Λ.

Step three: Lower bound for |∆r|
Thanks to Proposition 10.2, we know that the matrixMa∇ is of rank L(d) =

(
L0+d
d

)
(L1 + 1). Therefore

there exist L(d) elements s(1), . . . , s(L(d)) in V ∩ Zn+1(S) such that, if we define

a
(µ)
λ =

n∏
j=n−d+1

(
s

(µ)
j + s

(µ)
n+1βj

)λj n+1∏
i=1

α
s
(µ)
i
λn+1

i ,
(
(1 ≤ µ ≤ L(d)

)
,

then the L(d) × L(d) determinant

∆r = det

(
a

(µ)
λ

)
λ,µ

does not vanish. Of course, λ runs over the elements (λn−d+1, . . . , λn+1) as in §1 above, while µ runs over
{1, . . . , L(d)}.

We use again Liouville’s inequality, like in step one of the proof of Proposition 7.7 : we deduce from
Proposition 3.15

1

L(d)
log |∆r| ≥ −U1

with

U1 = (D − 1)
(
L0 log(2S) + logL(d)

)
+DL0 logB +DL1

n+1∑
i=1

Si logAi.
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Step four: Conclusion of the proof
For each λ as before, we define a function fλ of d complex variables:

fλ(zn−d+1, . . . , zn) =

n∏
i=n−d+1

(
zλii e

λn+1ϑizi
)
.

For s ∈ V ∩ Zn+1, if we set

(zn−d+1, . . . , zn) =
(
s

(µ)
n−d+1 + s

(µ)
n+1βn−d+1, . . . , s

(µ)
n + s

(µ)
n+1βn

)
,

we have
n∑

i=n−d+1

ϑizi =

n+1∑
j=1

s
(µ)
j `j + s

(µ)
n+1Λ.

Therefore the corresponding value of fλ is

fλ(zn−d+1, . . . , zn) = a
(µ)
λ eλn+1s

(µ)
n+1

Λ.

We define ζ1, . . . , ζL(d) in Cd by

ζµ =
(
s

(µ)
n−d+1 + s

(µ)
n+1βn−d+1, . . . , s

(µ)
n + s

(µ)
n+1βn

)
, (1 ≤ µ ≤ L(d)),

and we consider the interpolation determinant in d variables:

Ma\ =
(
fλ(ζµ)

)
λ,µ

(with the same indices as ∆r for rows and columns). We shall use Proposition 9.5 with ε = Λ and

bλ,µ = a
(µ)
λ

(
1− eλn+1Λs

(µ)
n+1

)
Λ−1.

Let us check that the hypotheses of Proposition 9.5 hold with

Mλ = L0 log(2ES) +DL1

n+1∑
i=1

Si logAi + log
(
2L1Sn+1

)
.

We first remark that there is no loss of generality to assume |Λ|L1Sn+1E < 1. Now on one hand, for z ∈ C
with |z| ≤ E, we have

log |fλ(zζµ)| ≤ L0 log(2ES) + L1E

(
n+1∑
i=1

Si|`i|+ Sn+1|Λ|

)
.

On the other hand, we have (using the estimate in exercise 1a of Chapter 1, with δ = 1)

|bλ,µ| ≤ 2
∣∣a(µ)
λ λn+1s

(µ)
n+1

∣∣;
since

∣∣log |αi|
∣∣ ≤ D logAi, we obtain

log |bλ,µ| ≤ L0 log(2S) +DL1

n+1∑
i=1

Si logAi + log(2L1Sn+1).
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Define Vd = (1/48d)(L0 + 1)(L1 + 1) logE; we obviously have, thanks to (10.7),

logL(d) +Mλ ≤ Vd

(because Vd ≥ V = Vn); using again (10.7), we obtain U1 + log 2 < Vd, which shows that the conclusion of
Proposition 9.5 is not satisfied; therefore

|Λ| ≥ e−4Vd ≥ e−4nV .

This completes the proof of Theorem 10.5.

1Proof of Theorem 10.1 There is no loss of generality to assume that the m numbers `1, . . . , `m are Q-linearly
independent (see exercise 1).

Under the assumptions of Theorem 10.1, we shall prove the estimate

|Λ| > exp{−
(
50(m− 1)

)3m
Dm+2(logB)2 logA1 · · · logAm}

in the special case where βm = −1 and |βi| ≤ 1 for 1 ≤ i ≤ m − 1; the general case follows easily from
Liouville’s inequality (cf. part a in the proof of Proposition 7.10).

We write n = m− 1 and
Λ = β1`1 + · · ·+ βn`n − `n+1.

We define a real number U by

U = (1/5n)(50n)3n+3Dn+3(logB)2 logA1 · · · logAn+1

and rational integers L0, L1, S′1, . . . , S
′
n+1 by

L0 =

[
U

5D logB

]
, L1 =

[
240nD logB

]
,

S′i =

[
U

4(n+ 1)2DL1 logAi

]
(1 ≤ i ≤ n+ 1).

Next we define a real number V and rational integers S1, . . . , Sn+1 by

V =
1

48n
(L0 + 1)(L1 + 1), Si = 2(n+ 1)S′i, (1 ≤ i ≤ n+ 1).

It is easy to check that V > U . We shall use Theorem 10.5 with E = e.
Our assumption B ≥ (50mD logA)3m enables us to check:

B ≥ 2

n+ 1
(50n)3n+1Dn+1(logA)n logB,

which implies B > 2S, where S = max{S1, . . . , Sn+1}. We now use the bounds

DL0 log(2BS) ≤ 2

5
U, DL1

n+1∑
i=1

Si logAi ≤
1

2
U, D logL+ log

(
2L1Sn+1

)
<

1

10
U,

from which we deduce (10.7). The main condition is (10.6); we use the lower bound (where the coefficient
1/2 takes care of the integral parts)

2nS′1 · · ·S′n+1 >
Un+1

2n+3(n+ 1)2n+2Dn+1Ln+1
1 logA1 · · · logAn+1
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and the upper bound

(n+ 1)Ln0L1 ≤
(n+ 1)UnL1

5nDn(logB)n
.

Therefore it is sufficient to check

U ≥ 2n+35−n(n+ 1)2n+3DLn+2
1 (logB)−n logA1 · · · logAn+1.

The constant 50 in the final estimate has been chosen because for n ≥ 1,

5n2n+35−n(n+ 1)2n+3(240n)n+2 < (50n)3n+3.

This proves (10.6). Theorem 10.1 is then a consequence of the estimate

4nV < (50n)3n+3Dn+3(logB)2 logA1 · · · logAn+1.

1Exercises 1. Let K be a field, m a positive integer, and V a vector subspace of Km of dimension d. The
following properties are equivalent:
(i) If σV : Km −→ Km/V is the canonical projection, then

(
σV(e1), . . . , σV(em−d)

)
is a basis of Km/V;

(ii) for z = (z1, . . . , zm) ∈ V, the conditions zm−d+1 = · · · = zm = 0 imply z = 0;
(iii) the restriction to V of the projection Km −→ Kd on the last d coordinates is injective;
(iv) V is intersection of m− d hyperplanes of equations

zj =

m∑
i=m−d+1

aijzi, (1 ≤ j ≤ m− d).

Hint. Compare with part b in the proof of lemma 5.7 and with step 2 in the proof of Theorem 10.5.

2. Let K be a field of characteristic zero, m and S positive integers, and V a vector subspace of Km.
a) Show that there exists x ∈ Zm(S) such that

Card
((

Zm(S) + V
)
/V
)

Card
(
(x+ V) ∩ Zm(S)

)
≥ (2S − 1)m.

Hint. Use lemma 10.3.
b) Let W be a vector subspace of Km of dimension d. Check the inequality

Card
(
(x+W) ∩ Zm(S)

)
≤ (2S − 1)d

for each x ∈ Km.
Hint. Show first that there is no loss of generality to assume x ∈ Zm. After a permutation of coordinates,
one may also assume that the projection Km −→ Kd on the first d coordinates maps W isomorphically onto
Kd. Then the image of (x+W) ∩ Zm(S) under this projection has at most (2S − 1)d elements.
c) Assume

Card
((

Zm(S) + V
)
/V
)
< (2S − 1)r+1

where r ≥ 1 is the codimension of V. Show that V ∩ Zm(2S − 1) contains more than (2S − 1)m−r−1 points,
and that these points span V as a vector space.

3. Show that for the proof of Theorem 10.1, there is no loss of generality to assume that the m numbers
`1, . . . , `m are Q-linearly independent.
Hint. Use either lemma 7.2 or lemma 7.3.

4. Reduce the constant 50 which occurs in the lower bound for |Λ| in Theorem 10.1.
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11.– NON HOMOGENEOUS LINEAR RELATIONS

A generalization of Theorem 1.1, once more due to A. Baker, is the following:

Theorem 11.1. – Let `1, . . . , `m be Q-linearly independent logarithms of algebraic numbers. Then the
numbers 1, `1, . . . , `m are linearly independent over Q.

For m = 1 this gives Hermite-Lindemann theorem: is ` is a non-zero complex number, then one at least
of the two numbers `, e` is transcendental. For instance

e, π, log 2, e
√

2,

are all transcendental numbers.
Another consequence of Theorem 11.1 is the transcendence of numbers like∫ 1

0

dt

1 + t3
=

1

3

(
log 2 +

π√
3

)
.

The measures of linear independence over Q of the m numbers `1, . . . , `m which we discussed earlier
have been extended to the m+ 1 numbers 1, `1, . . . , `m; however the consequences of such estimates concern
only transcendental number theory (so far) and have not the same importance as the homogeneous case (see
Chapter 12). This is why, in this Chapter, we speak only on the qualitative result.

We do not give here Baker’s proof of Theorem 11.1, but we show how the method of the previous
chapters extends to the non-homogeneous case.

1Sketch of proof According to lemma 1.3 (with k = Q, K = Q, E = C, while M is the Q-vector space
spanned by 1 and L), Theorem 11.1 means that if we have

β0 + β1`1 + · · ·+ βn`n − `n+1 = 0

with `1, . . . , `n+1 in L linearly independent over Q and with algebraic β’s, then the n+1 numbers 1, β1, . . . , βn
are Q-linearly dependent. From Theorem 1.1 (homogeneous case of Theorem 11.1) we get at once β0 6= 0.

To take care of the new constant coefficient β0, we introduce one more variable z0, and we consider n+2
functions of n+ 1 variables

z0, z1, . . . , zn, exp{z0 + `1z1 + · · ·+ `nzn};

we shall consider the values of these functions (and of monomials in these functions) at the n+ 1 points

(0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, . . . , 1) and (β0, β1, . . . , βn).

We shall also take linear combinations of these points: for s = (s1, . . . , sn+1) ∈ Zn+1 we denote by ξs the
point in Cn+1 of coordinates

(sn+1β0, s1 + sn+1β1, . . . , sn + sn+1βn).

It is necessary to use somewhere the fact that each function satisfies a partial differential equation with
algebraic coefficients by taking the derivative with respect to z0; if this information were not used, one could
multiply the variable z0 by a transcendental constant, and the assumption that β0 is algebraic would not be
used !

For λ = (λ0, . . . , λn+1) ∈ Nn+2 and z = (z0, . . . , zn) ∈ Cn+1, define

fλ(z) = zλ0
0 · · · zλnn exp

{
λn+1(z0 + `1z1 + · · ·+ `nzn)

}
;
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then(
∂

∂z0

)t
fλ(z) =

min{t,λ0}∑
τ=0

t!

τ !(t− τ)!

λ0!

(λ0 − τ)!
λt−τn+1z

λ0−τ
0 zλ1

1 · · · zλnn exp
{
λn+1(z0 + `1z1 + · · ·+ `nzn)

}
.

Hence, for s ∈ Zn+1, t ∈ N and λ ∈ Nn+2, we have(
∂

∂z0

)t
fλ(ξs) =

min{t,λ0}∑
τ=0

t!

τ !(t− τ)!

λ0!

(λ0 − τ)!
λt−τn+1(sn+1β0)λ0−τ

n∏
i=1

(si + sn+1βi)
λi

n+1∏
i=1

α
λn+1si
i .

These numbers are algebraic, by our assumptions (we have written αi for exp(`i), as usual). The sketch of
proof is now clear: we write a matrix whose entries are these algebraic numbers, we select any determinant
of maximal size, we estimate from above the absolute value of this interpolation determinant, and thanks
to Liouville’s inequality, we deduce that this determinant vanishes. This provides a non-trivial upper bound
for the rank of the matrix; a zero estimate implies the desired linear dependence condition on 1, β1, . . . , βn.

The new points in the proof are the following: first of all a new zero estimate is needed, involving
derivatives. We explain this result in section 2. We shall work on a field of zero characteristic; we need
to give an algebraic expression for the derivatives; this is done as follows: for P ∈ C[X0, . . . , Xn, Y ], the
function

F (z0, . . . , zn) = P
(
z0, . . . , zn, exp{z0 + `1z1 + · · ·+ `nzn}

)
has a partial derivative (∂/∂z0)F which is again a polynomial in the n+ 2 functions z0, . . . , zn and exp{z0 +
`1z1 + · · ·+ `nzn}. This means that there exists a polynomial DP such that(

∂

∂z0

)
F (z0, . . . , zn) = (DP )

(
z0, . . . , zn, exp{z0 + `1z1 + · · ·+ `nzn}

)
.

For P = X0 we have DP = 1, for P = Xi, (1 ≤ i ≤ n) we have DP = 0, and for P = Y we have DP = Y .
From this it follows easily that D is the derivative operator

∂

∂X0
+ Y

∂

∂Y
.

The only other minor point which has to be explained is the upper bound for the interpolation deter-
minant: we do not consider only values of functions, but also derivatives. The relevant estimate is explained
in section 3. The proof of Theorem 11.1 is given in section 4.

1 The zero estimate Let K be a field of characteristic zero and n ≥ 0 a non-negative integer. We denote by
D the derivative operator (∂/∂X0) + Y (∂/∂Y ) on the ring K[X0, . . . , Xn, Y ].

Proposition 11.2. – Let α1, . . . , αn+1 be non-zero elements of K which generate a multiplicative subgroup
of K∗ of rank ≥ n, and let β0, . . . , βn be elements of K. Assume that L0, L1, S and T are positive integers
satisfying the following conditions:

T ≥ 4(n+ 1), S ≥ 4n(n+ 1), TSn ≥ 2L1, T ≤ 2(n+ 1)L0L1,

and
TSn+1 > 2n+3(n+ 1)n+2(L0L1)n+1.

For t ∈ N, λ ∈ Nn+2 and s ∈ Zn+1, define a
(t,s)
λ as the value, at the point

ζs =
(
sn+1β0, s1 + sn+1β1, . . . , sn + sn+1βn, α

s1
1 · · ·α

sn+1

n+1

)
∈ Kn+1 ×K∗,



Non homogeneous linear relations 11-3

of the polynomial
Dt
(
Xλ0

0 · · ·Xλn
n Y λn+1

)
.

Consider the following matrix:

M =
(
a

(t,s)
λ

)
λ,(t,s)

where the index of rows λ runs over the elements of Nn+2 with λ0 + · · ·+λn ≤ L0 and λn+1 ≤ L1, while the
index of columns (t, s) runs over the elements of N× Zn+1(S) with t < T . If β0 6= 0 and if 1, β1, . . . , βn are
linearly independent over Q, then the matrix M is of rank

(
L0+n+1
n+1

)
(L1 + 1).

If the rank of M is not equal to the number of rows, then there is a non-zero polynomial P ∈
K[X0, . . . , Xn, Y ], of total degree at most L0 in X0, . . . , Xn and of degree at most L1 in Y , which van-
ishes, together with its T first derivatives Dt, (0 ≤ t < T ), at the points ζs. This enables one to check the
hypotheses of Philippon’s zero estimate [P] (see exercise 1). However we shall explain here how to deduce
Proposition 11.2 from a special case of [P] (Proposition 11.6 below): we shall eliminate the variable Y and
produce a non-zero polynomial Q ∈ K[X0, . . . , Xn] which vanishes, together with its T/2 first derivatives
(∂/∂X0)t, (0 ≤ t < T/2), at the points

ξs = (sn+1β0, s1 + sn+1β1, . . . , sn + sn+1βn) ∈ Kn+1

for all s ∈ Zn+1(S/2).
As in Chapter 5 we denote by σ the canonical surjection from K∗ onto the quotient group K∗/K∗tors.

Lemma 11.3. – Let α1, . . . , αn+1 be non-zero elements of K and let β0, . . . , βn be elements of K. Let L0,
L1, S′, S′′, T ′ and T ′′ be positive integers; we set S = S′ + S′′ − 1 and T = T ′ + T ′′ − 1. Assume

Card
{
σ
(
αs11 · · ·α

sn+1

n+1

)
; s ∈ Zn+1(S′)

}
> L1/T

′.

Assume further that there exists a non-zero polynomial P ∈ K[X0, . . . , Xn, Y ], of total degree ≤ L0 in
X0, . . . , Xn and of degree ≤ L1 in Y which satisfies

DtP (ζs) = 0 for all (t, s) ∈ N× Zn+1(S) with t < T.

Then there exists a non-zero polynomial Q ∈ K[X0, . . . , Xn] of total degree ≤ 2L0L1 for which(
∂

∂X0

)t
Q(ξs) = 0 for all (t, s) ∈ N× Zn+1(S′′) with t < T ′′.

The proof of lemma 11.3 is essentially the same as the proof of lemma 5.2. We need some variants of
lemmas 5.3 and 5.4.

Lemma 11.4. — Let F1, . . . , Fr be polynomials inK[X0, . . . , Xn, Y ], of total degree at most L0 inX0, . . . , Xn

and of degree at most L1 in Y ; we assume that they have no common irreducible factor, in the factorial
ring K[X0, . . . , Xn, Y ], of degree ≥ 1 with respect to Y . Let T be a positive integer and (ξj , ηj), (j ∈ J) be
elements of Kn+1 ×K such that

DtFi(ξj , ηj) = 0 for 1 ≤ i ≤ r, j ∈ J and 0 ≤ t < T.

Then there exists a non-zero polynomial in K[X0, . . . , Xn], of total degree ≤ 2L0L1, such that(
∂

∂X0

)t
Q(ξj) = 0 for j ∈ J and 0 ≤ t < T.

Proof. We just repeat the proof of lemma 5.3: the u-resultant R in the ring

K[U1, . . . , Ur, V1, . . . , Vr, X0, . . . , Xn]

is a linear combination of G and H; it follows that DtR = (∂/∂X0)tR is a linear combination of the DτG
and DτH with 0 ≤ τ ≤ t. The desired result easily follows.
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Lemma 11.5. – Let P be a polynomial in the ring K[X0, . . . , Xn, Y ]. We decompose P into a product
P = Q0Q

r1
1 · · ·Q

rk
k , where Q0 is a polynomial in K[X0, . . . , Xn] (independent of Y ), Q1, . . . , Qk are distinct

irreducible polynomials in the ring K[X0, . . . , Xn, Y ], of degree at least 1 in Y , and r1, . . . , rk are positive
integers. If Q1 divides Dr1P , then Y divides P .

Proof. Clearly, Q1 divides DtP for 0 ≤ t ≤ r1 − 1, and Dr1P is congruent to r1!(Dr1Q1)Q0Q
r2
2 · · ·Q

rk
k

modulo Q1. If Q1 also divides Dr1P , then Q1 divides Dr1Q1. Considering the degrees, we deduce that there
exists a constant λ 6= 0 in K such that Q1 = λDr1Q1. We write

Q1 =
∑
i≥0

ai(X0)Y i

where ai is a polynomial in X0 with coefficients in the ring K[X1, . . . , Xn]. We obtain

ai = λ

r1∑
j=0

(
r1

j

)
ija

(r1−j)
i

where a
(r1−j)
i = (d/dX0)r1−jai. If ai(X0) does not vanish, then, considering the term of highest degree (in

X0), we obtain λir1 = 1. This shows that there is a unique i with ai(X0) 6= 0, hence Y divides Q1.

Proof of lemma 11.3. We assume, as we may without loss of generality, that Y does not divide the given
polynomial P , and also that P has degree ≥ 1 with respect to Y . For s ∈ Zn+1 we define a linear map τs
from the ring K[X0, . . . , Xn, Y ] into itself by

τs(X0) = X0 + sn+1β0,

τs(Xi) = Xi + si + sn+1βi, (1 ≤ i ≤ n),

and

τsY = αs11 · · ·α
sn+1

n+1 Y.

These operators, which represent a translation by ζs, commute with D:

D ◦ τs = τs ◦D, (s ∈ Zn+1).

1) We prove that the polynomials Dt ◦ τsP for 0 ≤ t < T ′ and s ∈ Zn+1(S′) have no common irreducible
factor of degree ≥ 1 in Y .

For this we consider, as in lemma 11.5, a decomposition of P into a product

P = Q0

k∏
i=1

Qrii

where Q0 ∈ K[X] does not depend on Y , while for 1 ≤ i ≤ k, Qi is an irreducible polynomial in K[X,Y ]
of degree ≥ 1 in Y . Here, X stands for (X0, . . . , Xn). Assume that there is an irreducible polynomial Q
depending on Y which divides all Dt ◦ τsP . For each s ∈ Zn+1(S′), Q is an irreducible factor of τsP ; hence
there exists i = i(s) with 1 ≤ i(s) ≤ k and a non-zero element cs of K such that

Q = csτsQi(s).

Now Q divides also DtτsP for 0 ≤ t < T ′; from lemma 11.5 we deduce T ′ ≤ ri(s). Let I be the subset of
{1, . . . , k} which is constituted of the i(s), s ∈ Zn+1(S′). Consider the map

s 7−→
(
i(s), σ

(
αs11 · · ·α

sn+1

n+1

))
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from Zn+1(S′) into I ×
(
K∗/K∗tors

)
. For each i ∈ I we have ri ≥ T ′, hence

∑
i∈I ri ≥ T ′Card(I). On the

other hand
∑
i∈I ri ≤

∑k
i=1 ri ≤ L1. Hence Card(I) ≤ L1/T

′. Using our assumption on L1/T
′ together

with Dirichlet box principle, we see that there exists a non-zero element s in Zn+1 which has the property

τsQi0 = λQi0

for some λ ∈ K∗ and
αs11 · · ·α

sn+1

n+1 is not a root of unity.

Since Y does not divide P , lemma 5.4 with

u0 = sn+1β0, ui = si + sn+1βi, (1 ≤ i ≤ n), v = αs11 · · ·α
sn+1

n+1

and an obvious change of notations (with n replaced by n+ 1) gives the desired contradiction.
2) We now take into account our assumptions S = S′ + S′′ − 1 and T = T ′ + T ′′ − 1. We apply lemma 11.4
to the set of polynomials

{F1, . . . , Fr} =
{
Dt ◦ τs′P ; 0 ≤ t < T ′, s′ ∈ Zn+1(S′)

}
and to the set {(ξi, ηi) ; 1 ≤ i ≤ N} ⊂ Kn+1 ×K∗ defined by

{(
s′′n+1β0, s

′′
1 + s′′n+1β1, . . . , s

′′
n + s′′n+1βn, α

s′′1
1 · · ·α

s′′n+1

n+1

)
; s′′ ∈ Zn+1(S′′)

}
;

this gives the conclusion.
Thanks to lemma 11.3, to complete the proof of Proposition 11.2, it is now sufficient to deal with

polynomials in X0, . . . , Xn. Here is the corresponding zero estimate.

Proposition 11.6. – Let β0, . . . , βn be elements of K with β0 6= 0. Let D, S and T be three positive
integers. Assume either n = 0 and T (2S − 1) > D, or else n ≥ 1 and

S ≥ 2n(n+ 1), 2 ≤ T/(n+ 1) ≤ D, TSn+1 > 2−n(n+ 1)n+2Dn+1.

Assume that there is a non-zero polynomial Q ∈ K[X0, . . . , Xn] of total degree ≤ D for which(
∂

∂X0

)t
Q(ξs) = 0 for all (t, s) ∈ N× Zn+1(S) with t < T.

Then the numbers 1, β1, . . . , βn are linearly dependent over Q.

Proof. When n = 0, the result is straightforward. Assume n ≥ 1 and define S1 = bS/(n + 1)c. We claim
that our hypotheses imply

(2S1 − 1)δ+1 > Dδ for 1 ≤ δ ≤ n

and
T (2S1 − 1)δ > (n+ 1)Dδ for 1 ≤ δ ≤ n+ 1.

Indeed our assumption S ≥ 2n(n+ 1) gives

(2S1 − 1)ν >
1

2

(
2S

n+ 1

)ν
for 1 ≤ ν ≤ n+ 1,

because (
1− 1

4n

)n+1

>
1

2
for n ≥ 1.
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Since 2(n+ 1) ≤ T ≤ (n+ 1)D, we have

Dn+1 ≤ D

2

(
2S

n+ 1

)n+1

, hence

(
D

2

)n
≤
(

S

n+ 1

)n+1

.

It follows that, for 1 ≤ δ ≤ n, (
D

2

)δ
≤
(

S

n+ 1

)(n+1)δ/n

≤
(

S

n+ 1

)δ+1

,

hence

(2S1 − 1)δ+1 > 2δ
(

S

n+ 1

)δ+1

≥ Dδ.

Similarly, for 1 ≤ δ ≤ n+ 1,

Dδ ≤
(

T

2(n+ 1)

)δ/(n+1)(
2S

n+ 1

)δ
<

T

n+ 1
(2S1 − 1)δ

(this is the only place in the proof where the assumption T ≥ 2(n+ 1) is needed; see exercise 2). This proves
our initial claim.

Define
E = {ξs ; s ∈ Zn+1(S1)}.

We are going to use the main result in [P]; more precisely, we apply Proposition 5.1 of [W] with d0 = d = n+1,
d1 = 0, E1 = · · · = Ed = E and W = K × 0n. We deduce that there exists a vector subspace V of Kn+1, of
codimension δ ≥ 1, such that either(

T/(n+ 1)
)
Card

(
(E + V)/V

)
≤ Dδ and (1, 0, . . . , 0) 6∈ V,

or
Card

(
(E + V)/V

)
≤ Dδ and (1, 0, . . . , 0) ∈ V.

We consider two cases.

a) If (1, 0, . . . , 0) ∈ V, we take the quotient of V by K × 0n: let π : Kn+1 −→ Kn be the projection on the
last n components; the kernel of π is K × 0n, the image V1 = π(V) of V is of codimension δ in Kn, and
π(E) = Y (S1) where

Y (S1) =
{
s1 + sn+1β1, . . . , sn + sn+1βn) ; s = (s1, . . . , sn+1) ∈ Zn+1(S1)

}
⊂ Kn.

The restriction to E of the diagram

Kn+1 π−−−−−→ Kny
y

Kn+1/V ∼−−−−−→ Kn/V1

gives

E −−−−−→ Y (S1)y
y

(E + V)/V −−−−−→
(
Y (S1) + V1

)
/V1.

The estimates
Card

((
Y (S1) + V1

)
/V1

)
= Card

(
(E + V)/V

)
≤ Dδ < (2S1 − 1)δ+1

together with lemma 5.9 provide the desired linear dependence relation between the numbers 1, β1, . . . , βn.
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b) Assume (1, 0, . . . , 0) 6∈ V. From our assumption β0 6= 0, we deduce Card
(
(E+V)/V

)
≥ 2S1−1. Therefore

Dδ ≥
(
T/(n+ 1)

)
Card

(
(E + V)/V

)
≥ T (2S1 − 1)/(n+ 1) > D,

which shows that δ ≥ 2. Consequently the quotient V1 of V by V ∩K × 0n is of codimension δ − 1 ≥ 1 in
Kn, and again we can apply lemma 5.9 and conclude that 1, β1, . . . , βn are linearly dependent over Q.

Proof of Proposition 11.2. Define S′′ = bS/2c, T ′′ = bT/2c, S′ = S − S′′ + 1, T ′ = T − T ′′ + 1. Since
2S′− 1 ≥ S and T ′ > T/2, we have (2S′− 1)n > L1/T

′. This shows that the assumptions of lemma 11.3 are
satisfied. We deduce that the assumptions of Proposition 11.6 are also satisfied with D = 2L0L1 and (S, T )
replaced by (S′′, T ′′). Indeed, assuming n ≥ 1 (the case n = 0 is trivial), we have S′′ > S/2, T ′′ > T/2,
hence S′′ > 2n(n+ 1), T ′′ > 2(n+ 1); also T ′′ < (T/2) + 1 < T ≤ (n+ 1)D and

(2L0L1)n+1 ≤ T

4(n+ 1)

(
S

n+ 1

)n+1

<
T ′′

2(n+ 1)

(
2S′′

n+ 1

)n+1

.

1 Interpolation determinants with derivatives Here is a generalization of lemma 4.2.

Lemma 11.7. – Let f1, . . . , fL be entire functions in Cn+1, ζ1, . . . , ζL be elements of Cn+1 and τ1, . . . , τL
non-negative integers. The function of one variable

Ψ(z) = det

(
(∂/∂z0)τµfλ(zζµ)

)
1≤λ,µ≤L

has a zero at the origin of multiplicity

≥ Θn+1(L)− τ1 − · · · − τL.

Proof. By multilinearity we reduce the proof to the case fλ(ζ) = ζκλ for some κλ = (κλ0, . . . , κλn) ∈ Nn+1,
(1 ≤ λ ≤ L). In this case we have

ψ(z)zτ1+···+τL = z‖κ1‖+···+‖κL‖ det

((
κλ0

τµ

)
ζκλ−τµµ

)
1≤λ,µ≤L

where the binomial coefficient
(
κλ0
τµ

)
means 0 if τµ > κλ0. Lemma 11.7 easily follows.

1 Proof of Theorem 11.1 We use the notations of section 1: assume

β0 + β1`1 + · · ·+ βn`n − `n+1 = 0,

with β0 6= 0 and with `1, . . . , `n+1 linearly independent over Q. Define αi = exp(`i), (1 ≤ i ≤ n + 1). The
field Q(α1, . . . , αn+1, β1, . . . , βn) is a finite extension of Q, of degree say D.

We denote by c a positive constant which depends only on `1, . . . , `n+1, β1, . . . , βn. Next we introduce
parameters L0, L1, T and S, which are positive integers ≥ 2 satisfying

cL0 logS ≤ L1/(n+1), cT log(L0L1) ≤ L1/(n+1), cL1S ≤ L1/(n+1), cT ≤ L0L1

and
c(L0L1)n+1 ≤ TSn+1,

with L :=
(
L0+n+1
n+1

)
(L1 + 1). For instance we can take

T =
[
(logS)2(n+1)(n+2)

]
,

L1 =
[
(logS)n+2

]
,

L0 =
[
S(logS)n+1

]
,
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with S a sufficiently large positive integer. In any case the above conditions, for sufficiently large c, imply
that each of the four parameters L0, L1, T and S is sufficiently large (for instance > 8n2; also L > 2nen+1)
and moreover imply that

TSn ≥ 2L1 and T ≤ 2(n+ 1)L0L1.

Let
(
tµ, s

(µ)
)

be any elements in N × Zn+1(S) with tµ ≤ T , (1 ≤ µ ≤ L). Denote by ∆ the determinant of
the matrix ((

∂

∂z0

)tµ
fλ(ξs(µ))

)
λ,µ

Each entry of this matrix is the value of a polynomial in α1, . . . , αn+1, α−1
1 , . . . , α−1

n+1 and β0, β1, . . . , βn; this
polynomial has degree at most L1S in each of the first 2n + 2 variables and total degree at most L0 in the
last n+ 1 ones, its coefficients are rational integers, and the length is at most

2T (2S)L0LT1 L
T
0 ≤ (2L0L1)T (2S)L0 .

Liouville’s inequality (lemma 3.14) gives: either ∆ = 0 or else

1

DL
log |∆| ≥ −L0 log(2S)− T log(2L0L1)− logL− L0

n∑
i=1

h(βi)− 2L1S

n+1∑
i=1

h(αi).

According to lemmas 11.7 and 4.3, the function of a single variable z

Ψ(z) = det

(
(∂/∂z0)τµfλ(zξs(µ))

)
λ,µ

has a zero at the origin of multiplicity at least

Θn+1(L)− LT ≥ L
(

1

17
L1/(n+1) − T

)
.

We set
r = Smax

{
|β0|, 1 + |β1|, . . . , 1 + |βn|, |`1|+ · · ·+ |`n+1|

}
and R = e18r, and we use Schwarz lemma (lemma 4.1):

1

L
log |∆| = 1

L
log |Ψ(1)| ≤ −18

17
L1/(n+1) + 18T +

1

L
log |Ψ|e18 .

From the relation(
∂

∂z0

)t
fλ(zξs) =

min{t,λ0}∑
τ=0

t!

τ !(t− τ)!

λ0!

(λ0 − τ)!
λt−τn+1(sn+1β0)λ0−τ

zλ0+···+λn−τ
n∏
i=1

(si + sn+1βi)
λi

n+1∏
i=1

eλn+1`isiz

we deduce, for |z| ≤ e18 and all λ, µ,∣∣∣∣∣
(

∂

∂z0

)t
fλ(zξs(µ))

∣∣∣∣∣ ≤ (2L0L1)TRL0eL1R.

It plainly follows
1

L
log |Ψ|e18 ≤ L0 logR+ L1R+ T log(2L0L1) + logL.
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From our choice of the parameters we deduce

1

L
log |∆| ≤ −L1/(n+1).

A simple comparison with Liouville’s lower bound, using again our conditions on the parameters, gives ∆ = 0.
From Proposition 11.2 we obtain the desired conclusion: the numbers 1, β1, . . . , βn are linearly dependent
over Q.

1Exercises
1.
a) Deduce from the main result of [P] the following statement: with the notations of section 2, define
S1 = bS/(n+ 2)c,

Σ = {ζs ; s ∈ Zn+1(S1)} ⊂ Kn+1 ×K∗

and
E = {ξs ; s ∈ Zn+1(S1)} ⊂ Kn+1.

If the rank of the matrixM of Proposition 11.2 is not
(
L0+n+1
n+1

)
(L1 + 1), then there exists a vector subspace

V of Kn+1, of dimension ν, satisfying one at least of the following three conditions:
(i) one has

TCard
(

(Σ + V × 0)/V × 0
)
≤ (n+ 2)2Ln+1−ν

0 L1;

(ii) the space V does not contain (1, 0, . . . , 0), its dimension ν satisfies 0 ≤ ν ≤ n, and

TCard
(

(E + V)/V
)
≤ (n+ 2)2

ν + 1
Ln+1−ν

0 ;

(iii) the space V contains (1, 0, . . . , 0), its dimension ν satisfies 1 ≤ ν ≤ n, and

Card
(

(E + V)/V
)
≤ n+ 2

ν + 1
Ln+1−ν

0 .

Hint. Use corollary 5.3 from [W] with W = K(1, 0, . . . , 0, 1), d0 = n+ 1, aν = (S1 − 1)/(S − 1), (0 ≤ ν ≤
n+ 1), with S replaced by L0, H replaced by L1, and L1, . . . , Ln replaced by S − 1.
b) Deduce that the conditions on L0, L1, S and T in Proposition 11.2 can be replaced by the following ones:

S > max{6n(n+ 2), 3}, (n+ 2)L0 ≥ 2S, (2S)n+1 ≥ (n+ 2)n+2Ln0

and
TSn+1 ≥ 2−n(n+ 2)n+3Ln+1

0 L1.

Hint. Check, for S1 = bS/(n+ 2)c, the following estimates

(n+ 2)2Ln+1
0 L1 < T (2S1 − 1)n+1,

(n+ 2)2Ln0L1 < T (2S1 − 1)n,

(n+ 2)2

ν + 1
Ln+1−ν

0 < T (2S1 − 1)n+1−ν , (0 ≤ ν ≤ n),

and
n+ 2

ν + 1
Ln+1−ν

0 < (2S1 − 1)n+2−ν , (1 ≤ ν ≤ n).

2. Show that the conclusion of Proposition 11.6 still holds when the conditions on S, T and D are replaced
by

T < 2(n+ 1) and S ≥ (n+ 1)2D.
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3. For each k = (k1, . . . , kd) in Nd, we write ‖k‖ for k1 + · · · + kd. We introduce derivative operators: for
x = (x1, . . . , xd) ∈ Cd, we set Dx = x1(∂/∂z1) + · · ·+ xd(∂/∂zd). If f is an analytic function in Cd and ζ a
new variable in C, we have

DxF (z) =
∂

∂ζ
F (xζ + z)ζ=0.

When w1, . . . , wt are in Cd and τ in Nt, we write w = (w1, . . . , wt) and we set Dτ
w = Dτ1

w1
· · ·Dτt

wt . Therefore,
if ζ1, . . . , ζt are t new complex variables, then

Dτ
wF (z) =

t∏
j=1

(
∂

∂ζj

)τj (
F (ζ1w1 + · · ·+ ζtwt + z)

)
ζ=0

.

Prove the following extension of lemma 11.7:
Let f1, . . . , fL be entire functions in Cn, ζ1, . . . , ζL be elements of Cn, τ1, . . . , τL be elements of Nt and

w = (w1, . . . , wt) be an element in (Cn)t. The function of one variable

Ψ(z) = det

(
D
τµ
w fλ(zζµ)

)
1≤λ,µ≤L

has a zero at the origin of multiplicity

≥ Θn(L)−
L∑
µ=1

‖τµ‖.

4. Compute a suitable value for the constant c in §4.
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114 (1986), 355–383, et 115 (1987), 397–398.
[W] M. Waldschmidt. – Minorations de combinaisons linéaires de logarithmes de nombres algébriques;
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12.– FURTHER ESTIMATES (WITHOUT PROOF)

In this Chapter we first give some indications on possible refinements for the estimates from the preceding
Chapters, next we explain the connection between the method which has been developed in these lectures
and Baker’s method, finally we give a survey of the best known results so far.

1Refinements and variants It’s possible to improve the term (logB)2. By introducing (like in Chapter 11)
one more variable z0, and by taking derivatives with respect to this new variable, we can replace (logB)2 by
(logB)(log logB); if, moreover, we use the so-called Fel’dman polynomials (cf [F]), then we get only logB.

Further improvements are possible in the case where the coefficients βj are all rational integers (this is
the most important case for applications). Firstly the assumption logB ≥ logA is no more needed; secondly
the assumption B ≥ |βj | can be replaced by

B ≥ max
1≤j≤n

{
|βn|

logAj
+
|βj |

logAn

}
if βn 6= 0. Once more these refinements use Feldman’s polynomials.

It’s useful in certain applications to keep the dependence on E (see Proposition 7.7 and Theorem 10.5)
in the final estimate: when the numbers |`j | are small, then E can be chosen comparatively large, and the
final estimate is stronger. This improvement originates in a work by T.N. Shorey [S].

Better results can be achieved for simultaneous linear forms [R], [Lo], [Dpp4], [H3].
Better constants are known for n = 2 ([Mi-W1,2,3], [La], and, for the p-adic case, [Dpp1]; see also [D],

where a special attention is paid to the dependence on the degree D). The first estimate for measures of
linear independence of two logarithms which did not involve the construction of an auxiliary function is the
one of Laurent given in Appendix to these notes.

The proof yields a result like lemma 7.2: if |Λ| is small, then not only do we have Λ = 0 and the logαi
are Q-linearly independent, but also we produce a vanishing linear combination of the logαi with rather
small coefficients in Z. This is specially interesting for the analog of Baker’s theorem on algebraic groups
(see [Ma-W] and [L] pp.121–122 and 238–239; by the way, speaking of algebraic groups, see [H1,2,3]).

The method extends to non-homogeneous linear combinations of logarithms:

Λ = β0 + β1`1 + · · ·+ βm`m.

If β0 6= 0, then Λ 6= 0, and we can give an explicit lower bound. The main interest of such a result lies in
corollaries for measures of transcendence of various numbers [W2], [H2].

1Duality: connection with Baker’s method Our starting point, to estimate the difference between β1`1 +
· · ·+βn`n and `n+1 was to consider (generalizing Schneider’s idea) the values of the n+1 functions z1, . . . , zn
and exp{`1z1 + · · ·+ `nzn}, as well as the values of monomials in these functions, at the points

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and (β1, . . . , βn),

as well as at linear combinations of these points (with rational integer coefficients). Baker’s starting point is
quite different: he considers the n+ 1 functions exp(z1), . . . , exp(zn) and exp{β1z1 + · · ·+ βnzn}, as well as
their derivatives, at the point (`1, . . . , `n); once more one takes monomials in the functions, and multiples of
the considered point.

One can work out a proof along Baker’s approach without constructing an auxiliary function, but only
using Laurent’s interpolation determinants. The fact that derivatives are there means that the corresponding
zero estimate needs to involve multiplicities. The scheme of proof is just the same: using the multiplicity
estimate one constructs a non-zero determinant; Liouville’s inequality provides a lower bound; estimates of
interpolation determinants (involving derivatives) yield the conclusion. So far no complete proof has been
written along these lines, but there is no difficulty to do so.
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There is a very interesting connection between the two approaches: one shifts from one method to the
other just by transposing matrices. This is a consequence of the duality formula:(

d

dz

)s (
zteuz

)
z=v

=

(
d

dz

)t (
zsevz

)
z=u

for s and t non-negative integers and u and v complex numbers. This formula extends to exponentials in
several variables (exercise 3).

In Chapters 6 and 7, the proofs used a generalization of Schneider’s method in several variables; the
improved estimate in Chapter 10 involved the refinement of section 1 in Chapter 9, where the main point
is that we are working with a product of monomials by a function of a single variable. The method which
is dual (namely looking at a transposed matrix; see exercise 2) to the method in Chapters 6 and 7 is just a
generalization in several variables of Gel’fond’s solution to Hilbert’s seventh problem; the main new fact in
Baker’s method (compared with Gel’fond’s one) is that the values of the functions of several variables are
taken on a one dimensional complex vector space; this is just the dual of the argument in §9.1. Explicitly,
we have the dual correspondence:

– monomials zλ1
1 · · · zλnn in the previous chapters correspond (in the methods of Gel’fond and Baker) to

derivatives (∂/∂z1)λ1 · · · (∂/∂zn)λn ;
– an exponential of a linear form in several variables (in the previous chapters) corresponds (in Baker’s

method) to a product of exponential functions in one variable (which happends to be also an exponential
function in one variable).
This explains why it’s possible to give a proof of theorem 11.1 along Baker’s method by using only

functions of a single variable, while this is not possible with Schneider’s approach.
In Baker’s original proof, the fact that all points are on a complex line was used in an essential way

for an extrapolation formula (which is not available in higher dimension); with interpolation determinants,
extrapolation is no more needed.

There are now several ways for proving measures of linear independence of logarithms: one can construct
a non-zero determinant either by using Baker’s approach (with the multiplicity estimate) or by using the
generalization of Schneider’s approach (with a zero estimate without multiplicities). Once the determinant is
constructed, the lower bound is clear (Liouville). The analytic argument involving interpolation determinants
can be performed either by looking at the determinant or at its transpose; it would be interesting to compare
the estimates which can be obtained using these different approaches.

As far as the dependence in the number m of logarithms is concerned, the most precise known estimate

involves only mm, under the extra assumption that, for a given prime q, the q-th roots α
1/q
1 , . . . , α

1/q
m

generate an extension of the field Q(α1, . . . , αm) of maximal degree qm (see [BGMMS], [P-W1], [W1]). This
estimate has been reached so far only via Baker’s method, thanks to a double induction procedure involving
extrapolations with small steps. It seems that the simpler proof (allued to above) along Baker’s method
involving a determinant will yield a rather bad dependence in m, unless one knows better multiplicity
estimates (essentially, best possible estimates seem to be needed).

1The state of the art The reference [B] contains a historical survey of known estimates up to 1977. At that
time the best known lower bounds were the two main results of [B]. We describe here briefly more recent
results.

We first fix the notations (compare with Theorem 10.1: we only add a coefficient β0, like in Chapter 11).
Let `1, . . . , `m be logarithms of algebraic numbers, αi = exp(`i), (1 ≤ i ≤ m) and β0, . . . , βm be algebraic

numbers, such that the number
Λ = β0 + β1`1 + · · ·+ βm`m

does not vanish.
We denote byD be the degree over Q of the number field Q(α1, . . . , αm, β0, . . . , βm) and byA, A1, . . . , Am

and B real numbers, which are ≥ e, and satisfy

A ≥ Ai, logAi ≥ h(αi), D logAi ≥ e|`i|, (1 ≤ i ≤ m)

and
logB ≥ h(1 : β0 : β1 : · · · : βm).
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The best known estimates (see [P-W1], [Wü] and [W5]) state that there exist two positive numbers
C1(m) and C2(m), which depend only on the number m of logarithms, and which satisfy the following
property:
– General case: |Λ| ≥ e−U1 with

U1 = C1(m)Dm+2(logB + log logA) logA1 · · · logAm.

– Rational case: assume β0 = 0 and (β1, . . . , βm) ∈ Qm. Then |Λ| ≥ e−U2 with

U2 = C2(m)Dm+2 logB logA1 · · · logAm.

One essential feature of these estimates is that the numbers C1(m) and C2(m) can be explicitly com-
puted. For instance it follows from [P-W1] that one can take

C1(m) = 28m+53m2m

provided that one assumes Ai ≥ em, logAi ≥ | logαi| (1 ≤ i ≤ m) and A ≥ ee.
In [Wü], the dependence in m and D is not given explicitly, but Wüstholz announces that in a subse-

quent note he will determine an explicit value for the constant which is much better than Baker’s constant
(16mD)200m. According to [Ri] (Chap. C, §1.1 p.236), there is a forthcoming joint paper by Baker and
Wüstholz on this subject.

Some authors state their results in terms of the usual height of the algebraic numbers, in place of Weil’s
height; the exponent of D then looks smaller (m + 1 in place of m), but in fact the result is weaker (see
(3.12)).

The proofs in [P-W] as well as [Wü] use Baker’s method (see also [Ma]). The proof in [W5] involves
the generalization of Schneider’s method to several variables which has been discussed in these lectures. It’s
not clear which one should give the best estimates; in view of the duality between both approaches, one
might expect that the same result will arise in each case; but some minor differences seem to occur in the
estimates, and a combination of both arguments could be the best solution.

Here is an explicit result concerning the value of C2(m) (see [W5] Cor. 10.4). For simplicity we state it
in the form of a lower bound for

∣∣αb11 · · ·αbmm − 1
∣∣.

Let α1, . . . , αm be non-zero algebraic numbers and b1, . . . , bm be rational integers; assume

αb11 · · ·αbmm 6= 1.

We denote by D be the degree of the number field Q(α1, . . . , αm) over Q and by A1, . . . , Am real numbers,
which are ≥ e, and satisfy

logAi ≥ h(αi), (1 ≤ i ≤ m).

Further, let
B = max{2, |b1|, . . . , |bm|}.

Then ∣∣αb11 · · ·αbmm − 1| ≥ e−U

with
U = 26m+32m3m+6Dm+2(1 + logD)(logB + logD) logA1 · · · logAm.

The results in [P-W1] and [W5] include another parameter E (compare with Proposition 7.7 and The-
orem 10.5) which makes the result slightly more complicated, but which is important in many applications.
In the case m = 2, better constants have already been derived from Schneider’s method in [Mi-W1,2,3]. By
the way, A.W. Glass told me that Tahei Okada went through all details in [Mi-W2]; he pointed out a few
minor corrections which should be made in the arguments, but do not invalidate the final result. This result
is now superseded by [Mi-W3], and more seriously by [La].

There is an extensive literature on the so-called p-adic case; we refer to van der Poorten’s survey [vdP],
as well as Yu Kunrui’s papers [Yu]; these works deal with Baker’s method. Schneider’s method in the p-adic
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case has been worked out by Dong Pingping [Dpp1,2,3,4], who derives also estimates for simultaneous linear
relations. As suggested in §1 above, in the complex case also it is possible to derive stronger estimates for
several independent linear combinations of logarithms (see [P-W2] for Baker’s method).

Another quite different direction which leads very sharp estimates from below for linear combinations
of logarithms is related with Padé approximation and with Siegel’s G-functions. We quote only one such
example due to G. Rhin, involving numerical computations by E. Dubois and Ph. Toffin [Rh]: for rational
integers b0, b1, b2 with B = max{|b1|, |b2|} ≥ 2,

|b0 + b1 log 2 + b2 log 3| ≥ B−13.3.

The exponent 13.3 can be replaced by 7.616 for sufficiently large B.

1Open problems.
1. So far, only Baker’s method gives a sharp estimate in terms of the number m of logarithms, namely

m2m in the general case, and mm when, for instance, the numbers α
1/2
i generate a number field of maximal

degree 2m; it’s an interesting question to achieve such an estimate using the method which is described in
the present notes.

2. Does there exist an absolute constant C > 0 such that, for all rational p/q, |eπ − p/q| > q−C ?

1Exercises 1. Improve the estimate of Theorem 10.1: replace (logB)2 by logB.
Hint. See [W5], but replace the auxiliary function of [W5] by an interpolation determinant, like in Chapters
10 and 11.

2. Let `1, . . . , `n+1, β1, . . . , βn be complex numbers satisfying β1`1 + · · · + βn`n = `n+1. Define αi = e`i ,
(1 ≤ i ≤ n+ 1). For s = (s1, . . . , sn+1) ∈ Zn+1, define

fs(z1, . . . , zn) = es1z1 · · · esnzne(β1z1+···+βnzn)sn+1

= exp

{
n∑
i=1

(si + sn+1βi)zi

}
.

Define also ` = (`1, . . . , `n) ∈ Cn.
a) Compare the numbers (

∂

∂z1

)λ1

· · ·
(

∂

∂zn

)λn
fs(λn+1`),

for λ = (λ1, . . . , λn+1) ∈ Nn+1, with the entries of the matrix in Proposition 7.7.
b) Use exercise 2 of Chapter 11 to produce another upper bound for the determinant |∆r| in the proof of
Proposition 7.7 and also of Theorem 10.5.

3. Let n, s and t be positive integers; further let x, y, w1, . . . , wt, u1, . . . , us be elements of Cn; furthermore
let τ ∈ Nt and σ ∈ Ns. Define

w = (w1, . . . , wt) ∈
(
Cn
)t

and u = (u1, . . . , us) ∈
(
Cn
)s
.

For z ∈ Cn, define

(z · u)σ =

s∏
i=1

(z · ui)σi ,

where z · ui is the usual scalar product in Cn (see Chapter 2 exercise 3). Define also Dτ
w in the same way as

in exercise 2 of Chapter 11. Check

Dτ
w

(
(z · u)σexz

)
z=y

= Dσ
u

(
(z ·w)τeyz

)
z=x

Hint. See [W3].
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13.– GENERALIZATIONS OF THE SIX EXPONENTIALS THEOREM

Baker’s theorem on linear independence of logarithms over Q (Theorem 11.1) does not contain all known
informations concerning the transcendence of the values of the exponential function (not mentioning results
of algebraic independence); specifically, it does not contain the six exponentials theorem (Theorem 1.6). An
obvious way of giving a result containing both statements (Baker’s theorem and the six exponentials) would
be to prove the algebraic independence of logarithms of algebraic numbers (Conjecture 14.1); this would
imply the four exponentials conjecture (Conjecture 1.7). But this does look like a difficult problem, and our
goal will be more modest.

The six exponentials theorem can be stated in an equivalent way as follows ; like in Chapter 1, denote
by L the Q-vector space of logarithms of algebraic numbers; for 1 ≤ i ≤ d and 1 ≤ j ≤ `, let λij be an
element of L; assume that the ` columns of the matrix

(
λij

)
1≤i≤d,1≤j≤`

=

 λ11 . . . λ1`
...

. . .
...

λd1 . . . λd`


are linearly independent in Cd, that the d rows of the same matrix are linearly independent in C` and that
`d > `+ d; then the rank of the matrix is at least 2.

To check that this proposition is equivalent to the six exponentials theorem, it is sufficient to consider
the case d = 2 and ` = 3; the statement concerning the rank of the matrix implies the six exponentials
theorem: indeed, if the six numbers exiyj , (i = 1, 2, j = 1, 2, 3) are algebraic, then the matrix(

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

)
has entries in L, the two rows are linearly independent (since x1 and x2 are linearly independent), the three
columns also (since y1, y2 and y3 are linearly independent), and the rank is 1. Conversely, if the matrix(

λ11 λ12 λ13

λ21 λ22 λ23

)
is of rank 1, if we set

yj = λ1j , (j = 1, 2, 3), and x1 = 1, x2 = λ21/λ11,

then exp(xiyj) = λij for i = 1, 2 and j = 1, 2, 3; moreover, since the matrix is of rank 1, the assumption on the
linear independence of the rows (resp. of the columns) is sufficient to ensure that x1, x2 (resp. y1, y2, y3) are
linearly independent. This shows the equivalence between the six exponentials theorem and the statement
on the rank of the matrix.

When the rank of the 2× 3 matrix is < 2, then the three column vectors(
λ11

λ21

)
,

(
λ12

λ22

)
,

(
λ13

λ23

)
belong to a vector subspace of C2 of dimension 1; the six exponentials theorem says that this can happen
only when the quotients λ1j/λ2j are rational numbers, which means that the subspace containing the three
vectors is spanned by a rational vector (b1, b2) ∈ Q2.

Michel Emsalem has noticed that this result can be extended to higher dimension thanks to the so-called
theorem of the linear subgroup; we do not state this theorem in full generality (see [R1-4], [W1-2], [R-W]),
but only the simplest consequences. Let V be a hyperplane of Cd; the intersection V ∩ Ld is a vector space
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over Q; if V contains a non-zero rational point (b1, . . . , bd) ∈ Qd, then this Q-vector space V ∩ Ld contains
all the points (b1λ, . . . , bdλ), for λ ∈ L; therefore it is of infinite dimension. The result of M. Emsalem [E] is
that the converse is true: if V is a hyperplane of Cd for which V ∩Qd = 0, then V ∩ Ld is a Q-vector space
of finite dimension, and this dimension is ≤ d(d− 1). For d = 2 this is just the six exponentials theorem.

A connection with Baker’s theorem arises in two different ways, corresponding to the point of view
of either Gel’fond-Baker or Schneider. Let us start with Schneider’s approach: instead of working with
points whose coordinates are logarithms of algebraic numbers, we take points whose coordinates are either
algebraic numbers, or logarithms of algebraic numbers. When d0 and d1 are two non-negative integers with

d = d0 +d1 > 0, we denote by Λd0,d1 the product Q
d0×Ld1 . Emsalem’s result (which corresponds to d0 = 0,

d = d1) can be extended as follows: let V be a vector subspace of the product Cd = Cd0 × Cd1 , satisfying

V ∩
(
Q
d0 × 0

)
= 0 and V ∩

(
0×Qd1

)
= 0.

Then the Q-vector space V ∩ Λd0,d1 is of finite dimension ≤ d1(d− 1).
Here is how one deduces Baker’s Theorem 1.1: we consider a linear dependence relation

β1`1 + · · ·+ βn`n = `n+1,

with β1, . . . , βn algebraic and `1, . . . , `n+1 in L; we assume that `1, . . . , `n are Q-linearly independent; we
need only to prove that β1, . . . , βn are all rational numbers (see exercise 1). We choose d0 = n, d1 = 1 and
we take for V the hyperplane of equation zn+1 = `1z1 + · · · + `nzn in Cn+1; the assumption that `1, . . . , `n
linearly independent over Q implies V ∩

(
Q
n×0

)
= 0; moreover V contains the following points λ1, . . . , λn+1

of Q
n × L:

λi = (δi,1, . . . , δin, `i), (1 ≤ i ≤ n),

where δij is Kronecker’s symbol, and

λn+1 = (β1, . . . , βn, `n+1).

According to our result above, the vector space V ∩
(
Q
n×L

)
is of dimension ≤ d1(d− 1) < n+ 1, hence the

points λ1, . . . , λn+1 are linearly dependent over Q, which implies that β1, . . . , βn are all rational numbers.
Let us now take Gel’fond-Baker’s point of view: the second connection with Theorem 1.1 arises by

considering a hyperplane V which is rational over the field Q of algebraic numbers (see exercise 4 of Chapter
1). Theorem 1.1 can be stated in the following equivalent way:

If V is a hyperplane of Cd, which is rational over Q, and if V ∩Qd = 0, then V ∩ Ld = 0 (see exercise 5
of Chapter 1).

Here is another statement which contains at the same time the six exponentials theorem and Baker’s
Theorem 1.1:

If V is a hyperplane of Cd for which V ∩Qd = 0, if V contains a vector subspace W of Cd, of dimension
t ≥ 0, which is rational over Q, then dimQ

(
V ∩ Ld

)
≤ d(d− t− 1).

Emsalem’s result corresponds to W = 0, t = 0, Baker’s Theorem 1.1 to W = V, t = d− 1.
We have just seen two generalizations of Emsalem’s result, which both contain Baker’s Theorem 1.1.

We now combine them into a general result.

Theorem 13.1. – Let d0 and d1 be to non-negative integers with d = d0 +d1 > 0; let V be a vector subspace
of the product Cd = Cd0 × Cd1 , satisfying

V ∩
(
Q
d0 × 0

)
= 0 and V ∩

(
0×Qd1

)
= 0.

Let W be a subspace of of Cd, of dimension t ≥ 0, which is rational over Q and contained in V. Then the
Q-vector space V ∩ Λd0,d1 is of finite dimension ≤ d1(d− t− 1).

As we have seen, this result obviously contains Baker’s homogeneous Theorem 1.1 in two different ways,
with either d1 = 1 and t = 0 (method of Schneider), or else d0 = 0 and t = d−1 (method of Gel’fond-Baker).
It also contains the non-homogeneous result 11.1 in two different ways: if we have a relation

β0 + β1`1 + · · ·+ βn`n = `n+1,
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with algebraic β’s and with `i in L, then we can either
a) (Schneider’s method) choose d0 = n+ 1, d1 = 1, d = n+ 2, t = 1, V is the hyperplane of equation

z0 + z1`1 + · · ·+ zn`n = zn+1

and W = C(1, 0, . . . , 1). The intersection V ∩ Λn+1,1 = V ∩
(
Q
n+1 × L

)
contains n+ 1 points λ1, . . . , λn+1:

λi = (0, δi,1, . . . , δin, `i), (1 ≤ i ≤ n),

and
λn+1 = (β0, β1, . . . , βn, `n+1).

Since V ∩ (0 × Q) = 0, Theorem 13.1 implies either V ∩ (Q
n+1 × 0) 6= 0 (which means that 1, `1, . . . , `n

are Q-linearly dependent), or else λ1, . . . , λn+1 are Q-linearly dependent (which means that `1, . . . , `n+1 are
Q-linearly dependent). Thanks to exercise 1, this completes the proof of Proposition 11.1.
b) (Gel’fond-Baker method) or else take d0 = 1, d1 = t = n + 1, d = n + 2 and choose for V = W the
hyperplane

z0 + β1z1 + · · ·+ βnzn = zn+1.

We have
(β0, `1, . . . , `n+1) ∈ V ∩ Λ1,n+1 = V ∩

(
Q× Ln+1

)
;

we deduce from Theorem 13.1 that either (β0, `1, . . . , `n+1) = 0, or V ∩ (0×Qn+1) = 0. In the later case we
get a non-trivial dependence relation between β1, . . . , βn over Q. From lemma 1.3, we deduce Theorem 11.1.

The next step has been achieved by D. Roy: instead of taking some coordinates in Q, and some in L,
he takes coordinates in the Q-vector space spanned by 1 and L; let us denote by LQ this vector space:

LQ = {β0 + β1`1 + · · ·+ βn`n ; n ≥ 0, βi ∈ Q, `i ∈ L}.

We can ask the same questions on V ∩LQ as we asked before concerning V ∩L: when is the dimension of this

Q-vector space finite ? An obvious necessary condition is V ∩Qd = 0; as shown by D. Roy, this condition is
sufficient.

Theorem 13.2. – If V is vector subspace of the product Cd = Cd0 × Cd1 , satisfying

V ∩
(
Q
d0 × 0

)
= 0 and V ∩

(
0×Qd1

)
= 0,

then the Q-vector space V ∩
(
Q
d0 × Ld1

Q

)
is of finite dimension ≤ d1(d− t− 1), where t is the dimension of

the maximal vector subspace of V which is rational over Q.

Theorems 13.1 and 13.2 are both special cases ot the above mentioned theorem of the linear subgroup.

1Exercises

1. Show that the statements (i), (ii) and (iii) in lemma 1.3, as well as (iv) in exercise 3 of Chapter 1, are
also equivalent to:
(v) Let n be a non-negative integer, `1, . . . , `n+1 be elements of M, and β1, . . . , βn elements of K. Assume

`1, . . . , `n are K-linearly independent and

β1`1 + · · ·+ βn`n = `n+1.

Then β1, . . . , βn are all in k.

2. Deduce from Theorem 13.1 the five exponentials theorem: if x1, x2 (resp. y1, y2) are Q-linearly indepen-
dent complex numbers, then one at least of the five numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2 , ex1/x2 ,
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is transcendental.

3. Deduce from Theorem 13.2 the strong six exponentials theorem: if x1, x2 (resp. y1, y2, y3) are Q-linearly
independent complex numbers, then one at least of the six numbers

x1y1, x1y2, x1y3, x2y1, x2y2, x2y3,

does not belong to LQ.
Deduce also the five exponentials theorem from this statement.

4.
a) Let G be a subgroup of Rd. Show that the following properties are equivalent.
(i) There exists a finitely generated subgroup of G which is dense in Rd.

(ii) For each hyperplane V of Rd, the lower bound rkZ
(
(G+ V)/V

)
≥ 2 holds.

(iii) For each vector subspace V of Rd with V 6= Rd, the lower bound rkZ
(
(G+ V)/V

)
> dimR

(
Rd/V

)
holds.

b) Let ` and d be positive integers with ` > d2 − d + 1. Let αij , (1 ≤ i ≤ d, 1 ≤ j ≤ `) be multiplicatively
independent positive real algebraic numbers. Denote by R∗+ the multiplicative group of positive real numbers,
and by A the multiplicative subgroup of (R∗+)d which is spanned by α1, . . . , α`, with αj = (α1j , . . . , αdj):

A =


∏̀
j=1

α
sj
1j , . . . ,

∏̀
j=1

α
sj
dj

 ; s = (s1, . . . , s`) ∈ Z`
 .

Prove that A is dense in (R∗+)d.
Hint. Let G be the subgroup of Rd which is spanned by λ1, . . . , λ`, with

λj = (logα1j , . . . , logαdj), (1 ≤ j ≤ `).

Using Theorem 13.1, show that for each hyperplane V of Rd, rkZ
(
(G+V)/V

)
≥ `− d(d− 1); deduce from a)

that G is dense in Rd, and conclude.
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Paris (1987-88), Birkhäuser Verlag, Progress in Math. 81 (1990), 273–281.
[R3] D. Roy. – Matrices whose coefficients are linear forms in logarithms, J. Number Theory, 41 (1992),
22–47.
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14.– CONJECTURES

The main conjecture for this subject is:

Conjecture 14.1. – Let `1, . . . , `m be Q-linearly independent logarithms of algebraic numbers. Then
`1, . . . , `m are algebraically independent.

This means that a non-zero polynomial with rational (or even algebraic) coefficients in m unknowns
cannot vanish at the point (`1, . . . , `m). This conjecture has been stated explicitly by A.O. Gel’fond [G]. So
far, it is not yet known whether there exist two algebraically independent logarithms of algebraic numbers.
Only the case of linear polynomials (with algebraic coefficients) is solved, by Baker. For polynomials of
degree 2, very partial results are known (strong six exponentials theorem).

There are two extensions of Conjecture 14.1: the first one in the direction of transcendental number
theory [L1], the other for Diophantine approximations [L2]. Here is the first one, which is known for
containing any reasonable transcendence conjecture dealing with values of the exponential function.

Conjecture 14.2 (Schanuel). – Let x1, . . . , xm be Q-linearly independent complex numbers. Then m at
least of the 2m numbers x1, . . . , xm, e

x1 , . . . , exm are algebraically independent.

This means that the transcendence degree over Q of the field

Q
(
x1, . . . , xm, e

x1 , . . . , exm
)

should be at least m. Conjecture 14.1 is a special case of Schanuel’s conjecture (when the m numbers exp(xi)
are algebraic); another special case is Lindemann-Weierstrass theorem (which corresponds to the case where
x1, . . . , xm are algebraic).

Another kind of open problems deals with measures of linear independence; the strongest conjectures
are stated in [L2]. Here is one example (Conjecture 2 p.213 of [L2]).

Conjecture 14.3. – Let ε be a positive real number. There exists a constant C(ε) > 0 satisfying the
following property. Let a1, . . . , am be positive integers and b1, . . . , bm be non-zero rational integers. Define

B = max{|b1|, . . . , |bm|}.

Assume that the number Λ = b1 log a1 + · · ·+ bm log am does not vanish. Then

|Λ| ≥ C(ε)mB

(|b1| · · · |bm| a1 · · · am)1+ε
.

One can formulate an explicit version of Schanuel’s conjecture; it has been pointed out to me that the
suggestion in [W] is not the right one, in view of Bijlsma’s counterexamples [B]. The following might be
more reasonable: we add a hypothesis which is a measure of linear independence of the xi; it’s interesting to
notice that the known results of algebraic independence for large transcendence degrees involve so far such a
technical hypothesis.

Conjecture 14.4. – Let x1, . . . , xm be Q-linearly independent complex numbers. Assume that there exists
a constant κ > 0 such that, for all S ≥ 2 and all s = (s1, . . . , sm) ∈ Zm(S),

|s1x1 + · · ·+ smxm| > S−κ.

Let d be a positive integer. Then there exists a constant C > 0, depending on x1, . . . , xm and d (and also
on κ) such that, for all P1, . . . , Pm+1 polynomials in Z[X1, . . . , Xm, Y1, . . . , Ym] of degree ≤ d generating an
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ideal of rank m+1, if Hj ≥ e is an upper bound for the absolute values of the coefficients of Pj , (1 ≤ j ≤ m),
then

m+1∑
j=1

∣∣Pj(x1, . . . , xm, e
x1 , . . . , exm

)∣∣ ·HC
j ≥ 1/C.

Finally, in connection with Chapter 13, we mention some very interesting results by D. Roy [R1], [R2];
he shows in particular that Schanuel’s conjecture is equivalent to a conjecture on the rank of matrices whose
entries are logarithms of algebraic numbers.

1Exercises 1. Deduce the following consequences from Conjecture 14.1. Let V be a vector subspace of Cd.
a) Assume V ∩Qd = 0; then dimQ V ∩ Ld ≤ d(d− 1)/2.

b) Assume V ∩Qd = 0; then dimQ V ∩ L
d
Q
≤ d(d− 1)/2.

c) Strong four exponentials conjecture. Let x1, x2 be Q-linearly independent complex numbers, and let y1, y2

be also Q-linearly independent complex numbers. Then one at least of the four numbers

x1y1, x1y2, x2y1, x2y2

does not belong to LQ.

Hint. See [R2].

2. Deduce from Conjecture 14.3 an effective version of Pillai’s conjecture : For each ε > 0 there exists a
positive number C(ε) > 0 with the following property; let x, y, p and q be integers, all of which are ≥ 2,
such that xp 6= yq; then

|xp − yq| ≥ C(ε) max
{
xp, yq

}1−(1/p)−(1/q)−ε
.

Hint. See [L2] Introduction to Chapters 10 and 11.

3. Deduce from Conjecture 14.4 the following measure of algebraic independence for logarithms of algebraic
numbers. Let `1, . . . , `m be Q-linearly independent elements of L and let d be a positive integer. There
exists a positive number c such that for any non-zero polynomial P ∈ Z[X1, . . . , Xm] of degree at most d,
the lower bound

|P (`1, . . . , `m)| ≥ H−c

holds with H = max{H(P ), 2}.
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LINEAR FORMS IN TWO LOGARITHMS

AND INTERPOLATION DETERMINANTS

by Michel Laurent

1 Introduction This appendix is an expanded version of the manuscript quoted in the preceding chapters. Our
aim is to test numerically the new method of interpolation determinants in the context of linear forms in two
logarithms. In the recent past years, M. Mignotte and M. Waldschmidt have used Schneider’s construction,
in a serie of papers [2],[3],[4], to get lower bounds for such a linear form with rational integer coefficients.
They got relatively precise results with a numerical constant around a few hundreds. Here we shall take
again Schneider’s method in the frame of interpolation determinants. We shall decrease this constant to less
than one hundred, when the logarithms involved are real numbers. Theorems 1 and 2 are simple corollaries
of our main result which is Theorem 3. At first glance, the statement of Theorem 3 seems to be a bit
complicated, but it is much more precise than the above mentioned corollaries, which are only examples of
applications. Let us also mention that we have been lead in §3 to some technical lemmas which can reveal
useful in some other situations from transcendence number theory. I would like to thank Dong Ping Ping to
have detected some inaccuracies in a first writing of this text.

1 Statement of the results Let α1 and α2 be two real algebraic numbers which are supposed to be ≥ 1 and
multiplicatively independent. We shall give lower bounds for the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are rational integers which can be supposed to be ≥ 1 without loss of generality. Denote by
D the degree over Q of the number field Q(α1, α2), and let a1, a2 be two real numbers > 1 such that

h(αi) ≤ log ai, (i = 1, 2),

where h(α) means the logarithmic absolute height of the algebraic number α, as defined in Chapter 3.
For each couple of integers b1 ≥ 1, b2 ≥ 1, denote

b′ =
b1

D log a2
+

b2
D log a1

.

Our first result gives the asymptotical value of the constant when b′ tends to infinity.

Theorem 1. For each number c > 48, there exists a number b′(c) such that

log |Λ| ≥ −cD4
(
log b′

)2
log a1 log a2

for each couple of integers b1 ≥ 1, b2 ≥ 1 with b′ ≥ b′(c).

We can of course compute effectively such a constant b′(c) in term of c. Here is a concrete example.

Theorem 2. Suppose that log a1 ≥ 1, log a2 ≥ 1 and log b′ ≥ 25. Then

log |Λ| ≥ −87D4
(
0.5 + log b′

)2
log a1 log a2.

Our main result is the following
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Theorem 3. Let K be an integer ≥ 2, let L, R1, R2, S1, S2 be integers ≥ 1 and let ρ be a real number
≥ 1. Suppose that

(1) R1S1 ≥ max(K,L), R2S2 ≥ 2KL.

Denote
R = R1 +R2 − 1, S = S1 + S2 − 1, γ = RS/KL,

g =
1

4
− 1

12γ
+ max

(
1

4γL2
,

γ

4LR2
,

γ

4LS2

)
.

For integers b1 ≥ 1, b2 ≥ 1, call

b =
(
(R− 1)b2 + (S − 1)b1

)(K−1∏
k=1

k!

)−2/(K2−K)

.

Suppose now that α1 and α2 are multiplicatively independent, that the numbers rb2 + sb1, (0 ≤ r ≤ R− 1,
0 ≤ s ≤ S − 1), are pairwise distinct, and that we have

(2)

K(L− 1) log ρ+ (K − 3) log 2 > 2D log(KL) +D(K − 1) log b

+ gL

(
(ρ− 1)

(
R logα1 + S logα2

)
+ 2D

(
R log a1 + S log a2

))
.

Then we have the lower bound
|Λ′| ≥ ρ−KL+ (1/2),

where

Λ′ = Λ max

(
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

)
.

Theorems 1 and 2 will be deduced from Theorem 3 by plugging the inequalities:

αi ≤ aDi , (i = 1, 2),

in condition (2) for specific values of the parameters K, L, R1, R2, S1, S2 and ρ.

1 Technical lemmas We shall have to investigate the determinant of a matrix whose entries are monomials
in α1 and α2. It is crucial to know what sort of monomials appears in the expansion of this determinant. To
that purpose, we shall use some combinatorial results which have been gathered in this part because their
statements are independent from the original problem.

Lemma 1. Let K, S and N be integers ≥ 1. We have

N∑
ν=1

([
ν − 1

K

]
+ 1

)([
N − ν
S

]
+ 1

)
≥ N(2N2 + 3KN + 3SN + 3KS + 1)

12KS
.

Proof. Denote by E the sum appearing on the left hand side of the inequality. We shall decompose E into
subsums corresponding to the congruence classes for the summation index ν modulo K and S successively.

If ν is congruent to k modulo K, where 1 ≤ k ≤ K, then
[
(ν−1)/K

]
= (ν−k)/K, so that we can write

E =
1

K

(
N∑
ν=1

νaν

)
+

1

K

(
K∑
k=1

(K − k)Sk

)
,
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where we have denoted

aν =

[
N − ν
S

]
+ 1, Sk =

∑
ν

aν ,

and where the summation index ν is congruent to k modulo K in the sum Sk.
Let us now remark that the sequence

(
aν
)

1≤ν≤N is non-increasing, so that the sequence
(
Sk
)

1≤k≤K of the

partial sums is also non-increasing. By Abel’s summation, we get

K∑
k=1

(K − k)Sk =

K−1∑
k=1

k∑
j=1

Sj ≥
K−1∑
k=1

kSk,

from which it follows that
K∑
k=1

(K − k)Sk ≥
K

2

K−1∑
k=1

Sk ≥
K − 1

2

K∑
k=1

Sk

the last term being equal to
(
(K − 1)/2

) (∑N
ν=1 aν

)
. In this first step, we have got the lower bound

E ≥ 1

K

N∑
ν=1

(
ν +

K − 1

2

)([
N − ν
S

]
+ 1

)
=

1

K

N∑
ν=1

([
ν − 1

S

]
+ 1

)
bν ,

where we have denoted bν = N − ν +
(
(K + 1)/2

)
, (1 ≤ ν ≤ N). The sequence

(
bν
)

1≤ν≤N is also non-

increasing. The same argument, with K replaced by S and the sequence
(
aν
)

replaced by the sequence
(
bν
)
,

provides us the lower bound

N∑
ν=1

([
ν − 1

S

]
+ 1

)
bν ≥

1

S

N∑
ν=1

(
ν +

S − 1

2

)
bν ,

from which it follows that

E ≥ 1

KS

N∑
ν=1

(
ν +

S − 1

2

)(
N − ν + 1 +

K − 1

2

)
.

But the last sum is elementarily seen to be equal to

N
(
2N2 + 3KN + 3SN + 3KS + 1

)
12

,

and the lemma is proven.

The next lemma is also computational.

Lemma 2. Let N and S be natural integers. Then we have

N∑
ν=1

[
ν − 1

S

]
≤ (2N − S)2

8S
.

Proof. Denote by F the sum on the left hand side. If N ≤ S, the sum F is equal to zero while the right hand
side of the inequality is ≥ 0. Suppose now that N > S. By Euclidean division, we can write N = (a+1)S+b,
(1 ≤ b ≤ S, a ≥ 0). Then we have

F =

(a+1)S∑
ν=1

[
ν − 1

S

]
+

N∑
ν=(a+1)S+1

(a+ 1)

=
S(a2 + a)

2
+ (a+ 1)b =

N2 − SN + b(S − b)
2S

≤ N2

2S
− N

2
+
S

8
,
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because b is located between 1 and S.

Let K and L be integers ≥ 1, and let N = KL. Denote

`ν =

[
ν − 1

K

]
, (1 ≤ ν ≤ N),

so that the sequence
(
`
)

1≤ν≤N is nothing else that the sequence of integers (0, . . . , L− 1), repeated K times

and classified by increasing order. The next lemma will be directly used to estimate our determinants.

Lemma 3. Furthermore let R and S be integers ≥ 1. For each sequence (r1, . . . , rN ) of integers between 0
and R−1, and such that any given integer is repeated at most S times in the sequence, we have the estimate

M −G ≤
N∑
ν=1

`νrν ≤M +G,

where

M =
(L− 1)(r1 + · · ·+ rN )

2
,

G =
NLR

2

(
1

4
− 1

12γ
+ ε

)
,

γ =
RS

KL
, ε = max

(
1

4γL2
,

γ

4LR2

)
.

Proof. In other words, the problem is to estimate the oscillation of the sum

σ =

N∑
ν=1

(
`ν −

L− 1

2

)
rν ,

when (r1, . . . , rN ) runs over the set of sequences of N integers, with value between 0 and R− 1, such that a
given integer appears at most S times. Let us first remark that in the sum σ the terms whose index ν lies
between 1 and (N + 1)/2 are ≤ 0, while those with index (N + 1)/2 ≤ ν ≤ N are ≥ 0. The symmetry

`N−ν+1 + `ν = L− 1, (1 ≤ ν ≤ N),

allows us to write σ in the form:

σ = −
∑

(N+1)/2≤ν≤N

(
`ν −

L− 1

2

)
rN−ν+1 +

∑
(N+1)/2≤ν≤N

(
`ν −

L− 1

2

)
rν .

To precise the values of the above sums, we have to distinguish two cases, according to the parity of L.
i) Suppose that L is odd.
Denote N ′ = K(L− 1)/2. In this case we have

∑
(N+1)/2≤ν≤N

(
`ν −

L− 1

2

)
rν =

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
rN ′+K+ν ,

and σ is the difference of two numbers of the shape

β =

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
bν ,
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where (b1, . . . , bN ′) denotes a sequence of N ′ integers between 0 and R − 1 such that each value appears at
most S times. It follows that

−max(β) + min(β) ≤ σ ≤ max(β)−min(β).

The substitution bν 7→ R− 1− bν shows that

max(β) + min(β) = (R− 1)

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
=

1

8
(R− 1)K(L2 − 1),

from which follows the upper bound

|σ| ≤ (R− 1)K(L2 − 1)

8
− 2 min(β).

We have to find the value min(β). Let us show that

min(β) =

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)[
N ′ − ν
S

]
,

that is to say that the minimal value is reached for the sequence bν =
[
(N ′ − ν)/S

]
, (1 ≤ ν ≤ N ′). Let

us first remark that for each minimal sequence
(
bν
)
, we have bi ≥ bj whenever

[
(i − 1)/K

]
<
[
(j − 1)/K

]
.

Indeed, if we denote by (b′ν) the sequence deduced from
(
bν
)

by permuting bi and bj , we have

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
(b′ν − bν) =

([
j − 1

K

]
−
[
i− 1

K

])
(bi − bj)

which must be ≥ 0 by the minimal property of (bν). As the value of the sum

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
bν

is invariant by substitution in each block (b1, . . . , bK), (bK+1, . . . , b2K), . . ., we may suppose without re-
striction that the sequence

(
bν
)

is non-increasing. By minimality, it is then clear that the S last values
bN ′ , . . . , bN ′−S+1 are necessarily equal to zero, the S preceding ones are equal to one, and so on. In other
terms, we have bν =

[
(N ′ − ν)/S

]
for 1 ≤ ν ≤ N ′. We have proven the upper bound:

|σ| ≤ (R− 1)K(L2 − 1)

8

−2

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)([
N ′ − ν
S

]
+ 1

)
+ 2

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)
.

The second sum in the right hand side of the above inequality is equal to K(L2 − 1)/8, while lemma 1, with
N replaced by N ′, gives us the lower bound

K(L− 1)

24KS

(
K2(L− 1)2

2
+

3K2(L− 1)

2
+

3KS(L+ 1)

2
+ 1

)
≥

1

48S

(
K2(L3 − 3L+ 2) + 3KS(L2 − 1)

)
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for the sum in the mid term. Putting altogether and using the trivial estimate

(R− 1)K(L2 − 1)

8
≤ RKL2

8
− K(L2 − 1)

8
,

we finally get

|σ| ≤ RKL2

8
− K2L3

24S
+
K2L

8S
− K2

12S
.

Neglecting the last term, we can write

|σ| ≤ NLR

2

(
1

4
− 1

12γ
+

1

4γL2

)
≤ G.

ii) Suppose now that L is even.
Then we denote N ′ = KL/2 = N/2. In this case, we have

∑
(N+1)/2≤ν≤N

(
`ν −

L− 1

2

)
rν =

N ′∑
ν=1

([
ν − 1

K

]
+

1

2

)
rν+N ′ .

The proof runs along the same line, with sums of the shape

β =

N ′∑
ν=1

([
ν − 1

K

]
+

1

2

)
bν ,

for which, with corresponding notations, we obtain the upper bound

|σ| ≤ (R− 1)

 N ′∑
ν=1

([
ν − 1

K

]
+

1

2

)− 2

N ′∑
ν=1

([
ν − 1

K

]
+

1

2

)[
N ′ − ν
S

]
.

The right term of this inequality is better written as equal to

(R+ 1)KL2

8
− 2

N ′∑
ν=1

([
ν − 1

K

]
+ 1

)([
N ′ − ν
S

]
+ 1

)
+

N ′∑
ν=1

([
ν − 1

S

]
+ 1

)
.

In the same way, using lemma 1 and 2, we get finally

|σ| ≤ RKL2

8
− K2L3

24S
− L

12S
+
S

8
=
NLR

2

(
1

4
− 1

12γ
− 1

6γK2L2
+

γ

4LR2

)
.

Neglecting the third term, we obtain |σ| ≤ G.

Remark. The upper bound |σ| ≤ NLR/8 can be proven very easily in the following way. We write

σ =

N∑
ν=1

(
`ν −

L− 1

2

)
rν =

N∑
ν=1

(
`ν −

L− 1

2

)
(rν − η)

for each complex number η, because the average value of the sequence
(
`ν
)

1≤ν≤N is (L − 1)/2. Choosing

the center η = (R− 1)/2 and bounding |rν − η| ≤ (R− 1)/2, we get

|σ| ≤ R− 1

2

N∑
ν=1

∣∣∣∣`ν − L− 1

2

∣∣∣∣ .
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If we suppose for instance L odd, the last sum is easily seen to be K(L2 − 1)/4. We get

|σ| ≤ K(R− 1)(L2 − 1)

8
≤ NLR

8
.

Idem for L even. The lemmas 1 and 2 have the effect to substract 1/(24γ) to 1/8.

1 Zero estimate Let K,L,R1, R2, S1, S2 be integers ≥ 1. As in Theorem 3, put

R = R1 +R2 − 1, S = S1 + S2 − 1.

Let b1 and b2 be two complex numbers. For positive integers n and p, denote as usual
(
n
p

)
= n · · · (n− p+ 1)/p!

the binomial coefficient, and denote by A the KL×RS matrix whose entries are the numbers(
rb2 + sb1

k

)
α`r1 α

`s
2 ,

where (k, `), (0 ≤ k ≤ K − 1, 0 ≤ ` ≤ L− 1) is the index of row, while (r, s), (0 ≤ r ≤ R− 1, 0 ≤ s ≤ S − 1)
is the index of column. It will be convenient to number the lines by setting

ki =

[
i− 1

L

]
, `i =

[
i− 1

K

]
, (1 ≤ i ≤ KL).

The order of the columns is irrelevant. Various zero estimates can show us that under suitables conditions,
the matrix A is of maximal rank. Here is an example.

Lemma 4. Suppose that conditions

(1) R1S1 ≥ max(K,L), R2S2 ≥ 2KL,

hold. Suppose also that the numbers α1 and α2 are multiplicatively independent and that the RS numbers
rb2 + sb1, (0 ≤ r ≤ R− 1, 0 ≤ s ≤ S − 1), are all distinct. Then the rank of the matrix A is equal to KL.

Proof. We have to show that the KL lines of A are linearly independent. If not, there would exist a non-zero
polynomial P [X,Y ], with degree in X bounded by K − 1 and degree in Y bounded by L − 1, vanishing at
the points

(rb2 + sb1, α
r
1α

s
2) , (0 ≤ r ≤ R− 1, 0 ≤ s ≤ S − 1).

Now proposition 4.1 from [3] tells us that the assumptions of the lemma cannot be fulfilled. Notice that
our hypotheses are stronger than those of proposition 4.1, and that the strict inequalities (a), (b), (c) in
this proposition become the large inequalities (1), because of a shift by one for the degrees. Of course, a
suspicious reader could object that the set of points we consider, is not the same as in proposition 4.1. One
can answer that, first when R1, R2, S1, S2 are odd, the two sets of points differ by a translation in Ga×Gm,
and secondly that if one of the parameters is even, the proof runs along the same lines!

1 Arithmetical lower bounds for minors from A
From now on, we begin the proof of Theorem 3. So we have five parameters K, L, R1, R2, S1, S2

satisfying (1) and integers b1 ≥ 1, b2 ≥ 1 which are almost linearly independent in the sense that the
numbers rb2 + sb1, (0 ≤ r ≤ R − 1, 0 ≤ s ≤ S − 1) are pairwise distinct. By lemma 4, the matrix A
associated to this set of data, is of maximal rank N := KL. Let ∆ be a non-zero minor of order N ×N from
the matrix A. For a suitable ordering on the set of columns contained in ∆, we can write

∆ = det

((
rjb2 + sjb1

ki

)
α
`irj
1 α

`isj
2

)
1≤i,j≤N

.
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The aim of this section is to prove the following lower bound for |∆|.

Lemma 5. Denote

g =
1

4
− 1

12γ
+ max

(
1

4γL2
,

γ

4LR2
,

γ

4LS2

)
,

G1 = gLRN/2, G2 = gLSN/2,

M1 = (L− 1)(r1 + · · ·+ rN )/2, M2 = (L− 1)(s1 + · · ·+ sN )/2.

Then we have

log |∆| ≥ −(D − 1) log(N !) + (M1 +G1) logα1 + (M2 +G2) logα2

−2DG1 log a1 − 2DG2 log a2 −
1

2
(D − 1)(K − 1)N log b.

(Recall that we have defined

b =
(

(R− 1)b2 + (S − 1)b1

)(K−1∏
k=1

k!

)−2/(K2−K)

).

Proof. Let us consider the polynomial

P (X,Y ) =
∑
σ

sg(σ)

N∏
i=1

(
rσ(i)b2 + sσ(i)b1

ki

)
X
∑N

i=1
`irσ(i)Y

∑N

i=1
`isσ(i) ,

where σ runs over the symmetric group SN , and sg(σ) means the signature of the substitution σ. By
expanding the determinant ∆, we get ∆ = P (α1, α2). As

(
rjb2 + sjb1

ki

)
≤
(
(R− 1)b2 + (S − 1)b1

)ki
ki!

, (1 ≤ i ≤ N),

N∑
i=1

ki = (K − 1)N/2,

we easily see that the length L(P ) of the polynomial P is bounded by

N ! ((R− 1)b2 + (S − 1)b1)
(K−1)N/2∏N

i=1 ki!
= N !b(K−1)N/2.

To get a good lower bound for |∆|, we have to notice that P is divisible by a large power of X and Y . In a
precise way, lemma 3 gives us the estimates

M1 −G1 ≤
∑

`irσ(i) ≤M1 +G1,

M2 −G2 ≤
∑

`isσ(i) ≤M2 +G2.

Let us denote by V1 (resp. V2) the integer part of M1 +G1 (resp. M2 +G2), and by U1 (resp. U2) the least
integer ≥M1 −G1 (resp. M2 −G2). Then we can write

∆ = P (α1, α2) = αV1
1 αV2

2 P̃

(
1

α1
,

1

α2

)
,
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where P̃ (X,Y ) is a polynomial with integers coefficients, with the same length as P , and whose degree in
X (resp. Y ) is bounded by V1 − U1 (resp. V2 − U2). As h(1/α1) = h(α1) and h(1/α2) = h(α2), Liouville’s
inequality, in the shape of lemma 3.14 from the preceding Chapter 3, gives us the lower bound

log

∣∣∣∣P̃ ( 1

α1
,

1

α2

)∣∣∣∣ ≥ −(D − 1) logL(P̃ )−D(V1 − U1) log a1 −D(V2 − U2) log a2.

Taking into account the above upper bound for L(P ) = L(P̃ ), we get

log |∆| ≥ −(D − 1) log(N !) + V1 logα1 + V2 logα2

−D(V1 − U1) log a1 −D(V2 − U2) log a2 −
1

2
(D − 1)(K − 1)N log b.

Now, from the inequalities D log ai ≥ logαi ≥ 0, we get

Vi logαi −D(Vi − Ui) log ai ≥ (Mi +Gi) logαi − 2DGi log ai

for i = 1, 2, inequalities which imply lemma 5.

1 Analytic upper bound for |∆| Here is the crucial point where the smallness of |Λ| is to be used essentially.

Lemma 6. Let ρ be a real number ≥ 1. Suppose that

|Λ′| ≤ ρ−N+(1/2).

Then, we have the upper bound

|∆| ≤ ρ−(N2−N)/22N (N !)

(
ρb

2

)(K−1)N/2

αM1+ρG1

1 αM2+ρG2

2 .

Proof. Without loss of generality, we may assume that

b1 logα1 ≤ b2 logα2,

so that Λ is ≥ 0. Denote β = b1/b2. Then we have

logα2 = β logα1 +
Λ

b2
.

Let us first modify slightly the matrix whose ∆ is the determinant. For any complex number η, as(
rjb2 + sjb1

ki

)
=
bki2

ki!
(rj + sjβ − η)

ki + ( terms of degree < ki)

we have by multilinearity

∆ = det

(
bki2

ki!
(rj + sjβ − η)

ki α
`irj
1 α

`isj
2

)
.

Then it is convenient to center the exponents `i around their average value (L− 1)/2. We get in this way:

∆ = αM1
1 αM2

2 det

(
bki2

ki!
(rj + sjβ − η)

ki α
λirj
1 α

λisj
2

)
,
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where λi = `i − L−1
2 , (1 ≤ i ≤ N). We write now

α
λirj
1 α

λisj
2 = α

λi(rj+sjβ)
1 eλisjΛ/b2

= α
λi(rj+sjβ)
1 (1 + Λ′θi,j) ,

with

θi,j =
eλisjΛ/b2 − 1

Λ′

so that

|θi,j | ≤
2b2
(
e|λi|sjΛ/b2 − 1

)
LSΛeLSΛ/2b2

≤ 1

(here is the unique reason for which it is better to work with Λ′ instead of Λ). Plugging this expression in
the determinant ∆, we get the formula

(∗) ∆ = αM1
1 αM2

2

 ∑
I⊆{1,...,N}

(Λ′)N−CardI∆I

 ,

where

∆I = det

 ci,1 · · · ci,N

θi,1ci,1 · · · θi,Nci,N

 }
i ∈ I}
i /∈ I

and

ci,j =
bki2

ki!
(rj + sjβ − η)

ki α
λi(rj+sjβ)
1 .

As
∑N
i=1 λi = 0, it is licit to replace in ∆I the quantity ci,j by ci,jα

−λiη
1 , in such a way that our determinant

∆I takes now the form

∆I = det

 ϕi(z1) · · · ϕi(zN )

θi,1ϕi(z1) · · · θi,Nϕi(zN )

 }
i ∈ I}
i /∈ I

where we have set

ϕi(z) =
bki2

ki!
zkiαλiz1 , (1 ≤ i ≤ N),

zj = rj + sjβ − η, (1 ≤ j ≤ N).

Let us now choose η = (R−1)+β(S−1)
2 , in such a way that

|zj | ≤
(R− 1) + β(S − 1)

2
, (1 ≤ j ≤ N).

We shall next give an upper bound for |∆I |. Let us consider the entire function ΦI of the complex variable
x defined by

ΦI(x) = det

 ϕi(xz1) · · · ϕi(xzN )

θi,1ϕi(xz1) · · · θi,Nϕi(xzN )

 }
i ∈ I}
i /∈ I

so that ∆I = ΦI(1). Expanding in Taylor series the functions ϕi for index of lines i ∈ I, we see as usual in
the previous lectures, that the function ΦI has a zero of multiplicity ≥ (ν2 − ν)/2 for x = 0, where we have
set ν = Card(I). The usual Schwarz lemma then implies

|∆I | = |ΦI(1)| ≤ ρ−(ν2−ν)/2 max
|x|=ρ

|ΦI(x)|



Appendix, by Michel Laurent A-11

for any real number ρ ≥ 1. Using these inequalities for all subsets I ⊆ {1, . . . , N}, together with

|Λ′| ≤ ρ−N+(1/2)

and reporting in (∗), we get

|∆| ≤ αM1
1 αM2

2 2N max
0≤ν≤N

(
ρ−(N− 1

2 )(N−ν)− 1
2 (ν2−ν)

)
max
I

max
|x|=ρ

|ΦI(x)| .

As

min
0≤ν≤N

(
(N − 1

2
)(N − ν) +

ν2 − ν
2

)
=
N2 −N

2
,

we get

|∆| ≤ αM1
1 αM2

2 2Nρ−(N2−N)/2) max
I

max
|x|=ρ

|ΦI(x)| .

Then lemma 6 is an immediate consequence of the following upper bound

Lemma 7. For each subset I ⊆ {1, . . . , N} and each complex number x, we have

|ΦI(x)| ≤ N !

(
|x|b
2

)(K−1)N/2

α1
|x|G1α2

|x|G2 .

Proof. Since |θi,j | ≤ 1, expanding the determinant ΦI(x) shows that

|ΦI(x)| ≤ N ! max
σ

∣∣∣∣∣
N∏
i=1

ϕi(xzσ(i))

∣∣∣∣∣ ,
where σ runs over all substitutions σ ∈ SN . We have:

N∏
i=1

ϕi
(
xzσ(i)

)
=

N∏
i=1

(
b2xzσ(i)

)ki
ki!

α

(∑
λizσ(i)

)
x

1 ,

∑
λizσ(i) =

∑
λi
(
rσ(i) + βsσ(i) − η

)
=
∑

λi
(
rσ(i) + βsσ(i)

)
=
(∑

λirσ(i)

)
+ β

(∑
λisσ(i)

)
.

Now lemma 3 gives us respectively the upper bound G1 and G2 for the absolute value of the two last sums.
We get ∣∣∣∑λizσ(i)

∣∣∣ ≤ G1 + βG2.

By assumption αβ1 ≤ α2. Finally, the exponential term in the product
∏N
i=1 ϕi

(
xzσ(i)

)
is bounded by

α
|x|G1

1 α
|x|G2

2 , as was to be shown. For the monomial term, it is enough to use the simple bound

|zj | ≤
(R− 1) + β(S − 1)

2
, (1 ≤ j ≤ N),

so that

N∏
i=1

∣∣b2xzσ(i)

∣∣ki
ki!

≤

(
b2|x|

(
(R− 1) + β(S − 1)

)
2

)(K−1)N/2(K−1∏
k=1

k!

)−L

=

(
|x|b
2

)(K−1)N/2

.
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Remark. The determinant ∆ is nothing else that the interpolation determinant of the N functions in two
variables x, y

ϕi(x, y) =
bki2

ki!
xkiα`ix1 e`iy, (1 ≤ i ≤ N),

evaluated at the N points
(rj + βsj , sjΛ/b2) , (1 ≤ j ≤ N).

For bounding such a determinant, the general pattern consists to expand it in Taylor series (around
the origin or any other point) of the 2N variables xj , yj , (1 ≤ j ≤ N), determined by the coordinates of the
given N points.

In our special case, the second coordinate y is small, so it has been sufficient to expand the functions
ϕi(x, y) at the order 1 in y.

1 End of the proof of Theorem 3 On the opposite, suppose that the conditions of Theorem 3 are satisfied
and that

|Λ′| ≤ ρ−KL+(1/2).

Lemmas 5 and 6 allow us to precise the value of log |∆|:

−(D − 1) log(N !) + (M1 +G1) logα1 + (M2 +G2) logα2 − 2D(G1 log a1 +G2 log a2)

−1

2
(D − 1)(K − 1)N log b ≤ log |∆| ≤ N log(2N !) +

1

2
(K − 1)N log

(
ρb/2

)
+(M1 + ρG1) logα1 + (M2 + ρG2) logα2 −

1

2
(N2 −N) log ρ.

The quantities involving M1 and M2 cancel on both sides of the above inequalities. We finally get the
opposite of (2) by bounding log(N !) ≤ N logN and replacing N,G1, G2 by their values. This contradiction
proves the Theorem 3.

1 Proof of Theorems 1 and 2 As α1 ≤ aD1 and α2 ≤ aD2 , it is sufficient to check instead of (2) the stronger,
but simpler, inequality

(3) K(L− 1) log ρ+ (K − 3) log 2 >

2D log(KL) +D(K − 1) log b+ g(ρ+ 1)DL (R log a1 + S log a2) .

Now, we have to compare b and b′. This will be provided by

Lemma 8. For any integers R ≥ 1, S ≥ 1 and K ≥ 2, we have

b ≤
5
(
(R− 1)b2 + (S − 1)b1

)
K − 1

.

Proof. We are lead to give an uniform lower bound for(
K−1∏
k=1

k!

)2/(K2−K)

.

Let us show that this quantity is ≥ (K − 1)/5 for any K ≥ 2, which is the meaning of lemma 8. This is a
problem of standard calculus. One can proceed as follows. First notice that

K−1∏
k=1

k! =

K−1∏
k=1

(K − k)k =

K−1∏
k=1

kK−k

=
((K − 1)!)

K∏K−1
k=1 kk

.
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Now we are reduced to give an upper bound for
∏K−1
k=1 kk. Let us show that

K−1∑
k=1

k log k ≤ K2 −K
2

log(K − 1)− K2 −K
4

+
K

3
,

for K ≥ 2. We use Euler-Maclaurin’s summation formula, in the notations of formula (7.2.4.) p. 303 in [1]:

f(1) + · · ·+ f(n) =

∫ n

1

f(x)dx+
f(1) + f(n)

2
+
f ′(n)− f ′(1)

12
+R1

with r = 1 and

R1 ≤
1

2π2

∫ n

1

|f (3)(x)|dx.

We take f(x) = x log x and n = K − 1, and we get

K−1∑
k=1

k log k ≤ (K − 1)2

2
log(K − 1)− (K − 1)2

4
+

1

4
+

(K − 1) log(K − 1)

2

+
log(K − 1)

12
+

1

2π2
,

in which formula, it is enough to bound log(K − 1) ≤ K − 2 for any K ≥ 2. Now, we use the standard lower
bound

(K − 1)! ≥ (K − 1)K−1e−(K−1).

Putting altogether, we get(
K−1∏
k=1

k!

)2/(K2−K)

≥ (K − 1)e−(3/2)−(2/3(K−1)) ≥ K − 1

5
,

for K ≥ 8. If K = 2, . . . , 7, the inequality between the left hand side and the right hand side is obvious to
check.

The principle of the proofs of Theorems 1 and 2 is as follows. In each case, we shall define a system of
parameters K,L,R1, R2, S1, S2, ρ satisfying the conditions (1) and (3). Theorem 3 provides us a lower bound
for |Λ′|, and consequently for |Λ|, if we assume that the numbers rb1 + sb2, (0 ≤ r ≤ R − 1, 0 ≤ s ≤ S − 1)
are pairwise distinct. If this last condition is unsatisfied, Liouville’s inequality furnishes a much better lower
bound for |Λ| than the one which is required.

Let c1 > 0, c2 > 0, c3 > 0, c4 > 0 and f be constants (that is to say, numbers independent of b′, a1,
and a2) which shall be defined in each case. For simplicity, denote B = f + log b′. We set

K =
[
c1D

3B log a1 log a2

]
,

L = [c2DB] ,

R1 =
[
c3D

3/2B1/2 log a2

]
+ 1,

S1 =
[
c3D

3/2B1/2 log a1

]
+ 1,

R2 =
[
c4D

2B log a2

]
,

S2 =
[
c4D

2B log a1

]
.

Let us begin by Theorem 1 for which the computations are simpler because it suffices to compare the
leading terms for large B in the inequalities involved. First, thanks to lemma 8, we bound

b ≤ 5 ((R− 1)b2 + (S − 1)b1)

K − 1
≤ efb′ = eB ,
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if we have chosen f > log 5 + log c4− log c1. To satisfy (1) and (3) for large B, it is enough to choose positive
constants c1, . . . , c4 so that:

c4 >
√

2c1c2,

c1c2 log ρ > c1 + 2g(ρ+ 1)c2c4,(4)

c3 = max (
√
c1,
√
c2) .

Remark that the ratio γ = RS/KL is > 2 and then the quantity g is > (1/4) − (1/24) = 5/24. We easily
check that there exist positive solutions of the system (4) which are as close as we wish from the limit values:

c1 =
64g2(ρ+ 1)2

(log ρ)
3 , c2 =

2

log ρ
, c3 = max (

√
c1,
√
c2) , c4 =

√
2c1c2,

with g = 5/24. Strictly speaking, these values are not convenient because they lead to equalities in the first
two relations of (4). Now choose ρ = 5.8, so that

c1 = 23.64 · · · , c2 = 1.13 · · · , c3 = 4.86 · · · , c4 = 7.33 · · · .

From Theorem 3 follows the alternative: either

log |Λ′| ≥ −KL log ρ ≥ −c1c2 log ρD4B2 log a1 log a2,

or there exist two integers r and s, with |r| ≤ R− 1, |s| ≤ S − 1 such that rb2 + sb1 = 0. Obviously we may
suppose that r and s are relatively prime. Then from exercise 6.a in Chapter 3, we get

|Λ| ≥ |r logα1 + s logα2| ≥ exp
{
−D log 2−D

(
|r| log a1 + |s| log a2

)}
,

which implies
log |Λ| ≥ −D log 2− 2c3D

5/2B1/2 log a1 log a2 − 2c4D
3B log a1 log a2.

Here above, the main term is the third, which is better than required. To conclude, one has only to remark
that for the above limit values, we have c1c2 log ρ < 48 and that log |Λ′/Λ| = O(logB).

For Theorem 2, the preceding arguments have to be made effective. We choose our constants slightly
larger than the above limit values. Let us set

c1 = 36, c2 = 1.5, c3 = 6, c4 = 6
√

3 + 0.04 = 10.43 · · · , f = 0.49, ρ = 4.9.

Using systematically estimates of the type

(x− 0.04)y < [xy] ≤ xy,

which are true for any real numbers x ≥ 0 and y ≥ 25, we easily check that for B ≥ 25, we have

R ≤ 11.633D2B log a2

S ≤ 11.633D2B log a1

γ ≤ 2.578

g ≤ 0.218

(note that the third term from the definition of g in Theorem 3, is bounded by 10−4). The lemma 8 gives
us the upper bounds

b ≤
5
(
(R− 1)b2 + (S − 1)b1

)
K − 1

≤
5
(
Rb2 + Sb1

)
K

≤ 1.62b′
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from which follows log b ≤ B. Inequalities (1) are consequences of the lower bounds:

R1 ≥ 6D3/2B1/2 log a2,

S1 ≥ 6D3/2B1/2 log a1,

R2 ≥ 6
√

3D2B log a2,

S2 ≥ 6
√

3D2B log a1.

To check the main inequality (3), it is convenient to break it into two parts

(3.1) K(L− 1) log ρ > D(K − 1)B + g(ρ+ 1)DL (R log a1 + S log a2)

(3.2) (K − 3) log 2 > 2D log(KL).

The reader will easily check that the left hand side of (3.1) is ≥ 81.15D4B2 log a1 log a2, while the right hand
side is ≤ 80.89D4B2 log a1 log a2, for B ≥ 25. The condition (3.2) is quite largely fulfilled for B ≥ 25. By
Theorem 3, we know that either

log |Λ′| ≥ −KL log ρ ≥ −86D4B2 log a1 log a2,

or
log |Λ| ≥ −D log 2−DR log a1 −DS log a2 ≥ −24D3B log a1 log a2.

Finally, the bound (quite weak for B ≥ 25)

1 + logL+ logS + logR ≤ D4B2 log a1 log a2,

provides us the required lower bound

log |Λ| ≥ −87D4B2 log a1 log a2.
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Notations

N (set of non-negative rational integers)

Z (ring of rational integers)

Q (field of rational numbers)

R (field of real numbers)

Q (field of algebraic numbers)

C (field of complex numbers)

Qp (field of p-adic numbers; §3.2)

Cp (completion of an algebraic closure of Qp; §3.3)

K∗ (multiplicative group of non-zero elements of a field K)

dimK (dimension of a K-vector space)

rkZ (rank of finitely generated Z-module)

Card (number of elements of a set)

Ē (Zariski closure of a subset E in Kd; §8.1.a)

gcd (greatest common divisor)

(
n
k

)
(binomial coefficient)

[x] (integral part of a real number x)

bxc (smallest integer ≥ x; §5.3.f).
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