# Families of cubic Thue equations with effective bounds for the solutions 

Claude LEVESQUE and Michel WALDSCHMIDT


#### Abstract

To each non totally real cubic extension $K$ of $\mathbf{Q}$ and to each generator $\alpha$ of the cubic field $K$, we attach a family of cubic Thue equations, indexed by the units of $K$, and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.


## 1 Statements

Let us consider an irreductible binary cubic form having rational integers coefficients

$$
F(X, Y)=a_{0} X^{3}+a_{1} X^{2} Y+a_{2} X Y^{2}+a_{3} Y^{3} \in \mathbf{Z}[X, Y]
$$

with the property that the polynomial $F(X, 1)$ has exactly one real root $\alpha$ and two complex imaginary roots, namely $\alpha^{\prime}$ and $\overline{\alpha^{\prime}}$. Hence $\alpha \notin \mathbf{Q}, \alpha^{\prime} \neq \overline{\alpha^{\prime}}$ and

$$
F(X, Y)=a_{0}(X-\alpha Y)\left(X-\alpha^{\prime} Y\right)\left(X-\overline{\alpha^{\prime}} Y\right)
$$

Let $K$ be the cubic number field $\mathbf{Q}(\alpha)$ which we view as a subfield of $\mathbf{R}$. Define $\sigma$ : $K \rightarrow \mathbf{C}$ to be one of the two complex embeddings, the other one being the conjugate $\bar{\sigma}$. Hence $\alpha^{\prime}=\sigma(\alpha)$ and $\overline{\alpha^{\prime}}=\bar{\sigma}(\alpha)$. If $\tau$ is defined to be the complex conjugation, we have $\bar{\sigma}=\tau \circ \sigma$ and $\sigma \circ \tau=\sigma$.

[^0]Let $\varepsilon$ be a unit $>1$ of the ring $\mathbf{Z}_{K}$ of algebraic integers of $K$ and let $\varepsilon^{\prime}=\sigma(\varepsilon)$ and $\overline{\varepsilon^{\prime}}=\bar{\sigma}(\varepsilon)$ be the two other algebraic conjugates of $\varepsilon$. We have

$$
\left|\varepsilon^{\prime}\right|=\left|\overline{\varepsilon^{\prime}}\right|=\frac{1}{\sqrt{\varepsilon}}<1
$$

For $n \in \mathbf{Z}$, define

$$
F_{n}(X, Y)=a_{0}\left(X-\varepsilon^{n} \alpha Y\right)\left(X-\varepsilon^{\prime n} \alpha^{\prime} Y\right)\left(X-{\overline{\varepsilon^{\prime}}}^{n} \overline{\alpha^{\prime}} Y\right)
$$

Let $k \in \mathbf{N}$, where $\mathbf{N}=\{1,2, \ldots\}$. We plan to study the family of Thue inequations

$$
\begin{equation*}
0<\left|F_{n}(x, y)\right| \leq k \tag{1}
\end{equation*}
$$

where the unknowns $n, x, y$ take values in $\mathbf{Z}$.
Theorem 1. There exist effectively computable positive constants $\kappa_{1}$ and $\kappa_{2}$, depending only on $F$, such that, for all $k \in \mathbf{Z}$ with $k \geq 1$ and for all ( $n, x, y) \in \mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}$ satisfying $\varepsilon^{n} \alpha \notin \mathbf{Q}, x y \neq 0$ and $\left|F_{n}(x, y)\right| \leq k$, we have

$$
\max \left\{\varepsilon^{|n|},|x|,|y|\right\} \leq \kappa_{1} k^{\kappa_{2}}
$$

From this theorem, we deduce the following corollary.
Corollary 1 . For $k \in \mathbf{Z}, k>0$, the set

$$
\left\{(n, x, y) \in \mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}\left|\varepsilon^{n} \alpha \notin \mathbf{Q} ; x y \neq 0 ;\left|F_{n}(x, y)\right| \leq k\right\}\right.
$$

is finite.
This corollary is a particular case of the main result of [2], but the proof in [2] is based on the Schmidt subspace theorem which does not allow to give an effective upper bound for the solutions $(n, x, y)$.

Example. Let $D \in \mathbf{Z}, D \neq-1$. Let $\varepsilon:=\left(\sqrt[3]{D^{3}+1}-D\right)^{-1}$. There exist two positive effectively computable absolute constants $\kappa_{3}$ and $\kappa_{4}$ with the following property. Define a sequence $\left(F_{n}\right)_{n \in \mathbf{Z}}$ of cubic forms in $\mathbf{Z}[X, Y]$ by

$$
F_{n}(X, Y)=X^{3}+a_{n} X^{2} Y+b_{n} X Y^{2}-Y^{3}
$$

where $\left(a_{n}\right)_{n \in \mathbf{Z}}$ is defined by the recurrence relation

$$
a_{n+3}=3 D a_{n+2}+3 D^{2} a_{n+1}+a_{n}
$$

with the initial conditions $a_{0}=3 D^{2}, a_{-1}=3$ and $a_{-2}=-3 D$, and where $\left(b_{n}\right)_{n \in \mathbf{Z}}$ is defined by $b_{n}=-a_{-n-2}$. Then, for $x, y, n$ rational integers with $x y \neq 0$ and $n \neq-1$, we have

$$
\left|F_{n}(x, y)\right| \geq \kappa_{3} \max \left\{|x|,|y|, \varepsilon^{|n|}\right\}^{\kappa_{4}}
$$

This result follows from Theorem 1 with $\alpha=\varepsilon$ and

$$
F(X, Y)=X^{3}-3 D X^{2} Y-3 D^{2} X Y^{2}-Y^{3}
$$

Indeed, the irreducible polynomial of $\varepsilon^{-1}=\sqrt[3]{D^{3}+1}-D$ is

$$
F_{-2}(X, 1)=(X+D)^{3}-D^{3}-1=X^{3}+3 D X^{2}+3 D^{2} X-1
$$

the irreducible polynomial of $\alpha=\varepsilon$ is

$$
F(X, 1)=F_{0}(X, 1)=F_{-2}(1, X)=X^{3}-3 D^{2} X^{2}-3 D X-1,
$$

while

$$
F_{-1}(X, Y)=(X-Y)^{3}=X^{3}-3 X^{2} Y+3 X Y^{2}-Y^{3}
$$

For $n \in \mathbf{Z}, n \neq-1, F_{n}(X, 1)$ is the irreducible polynomial of $\alpha \varepsilon^{n}=\varepsilon^{n+1}$, while for any $n \in \mathbf{Z}, F_{n}(X, Y)=\mathrm{N}_{\mathbf{Q}(\varepsilon) / \mathbf{Q}}\left(X-\varepsilon^{n+1} Y\right)$. The recurrence relation for

$$
a_{n}=\varepsilon^{n+1}+\varepsilon^{\prime n+1}+{\overline{\varepsilon^{\prime}}}^{n+1}
$$

follows from

$$
\varepsilon^{n+3}=3 D \varepsilon^{n+2}+3 D^{2} \varepsilon^{n+1}+\varepsilon^{n}
$$

and for $b_{n}$, from $F_{-n}(X, Y)=-F_{n-2}(Y, X)$.

## 2 Elementary estimates

For a given integer $k>0$, we consider a solution $(n, x, y)$ in $\mathbf{Z}^{3}$ of the Thue inequation (1) with $\varepsilon^{n} \alpha$ irrational and $x y \neq 0$. We will use $\kappa_{5}, \kappa_{6}, \ldots, \kappa_{55}$ to designate some constants depending only on $\alpha$.

Let us firstly explain that in order to prove Theorem 1 , we can assume $n \geq 0$ by eventually permuting $x$ and $y$. Let us suppose that $n<0$ and write

$$
F(X, Y)=a_{3}\left(Y-\alpha^{-1} X\right)\left(Y-\alpha^{\prime-1} X\right)\left(Y-{\overline{\alpha^{\prime}}}^{-1} X\right)
$$

Then

$$
F_{n}(X, Y)=a_{3}\left(Y-\varepsilon^{|n|} \alpha^{-1} X\right)\left(Y-\varepsilon^{|n|} \alpha^{\prime-1} X\right)\left(Y-{\overline{\varepsilon^{\prime}}}^{|n|}{\overline{\alpha^{\prime}}}^{-1} X\right) .
$$

Now it is simply a matter of using the result for $|n|$ for the polynomial $G(X, Y)=$ $F(Y, X)$.

Let us now check that, in order to prove the statements of $\S 1$, there is no restriction in assuming that $\alpha$ is an algebraic integer and that $a_{0}=1$. To achieve this goal, we define

$$
\tilde{F}(T, Y)=T^{3}+a_{1} T^{2} Y+a_{0} a_{2} T Y^{2}+a_{0}^{2} a_{3} Y^{3} \in \mathbf{Z}[T, Y]
$$

so that $a_{0}^{2} F(X, Y)=\tilde{F}\left(a_{0} X, Y\right)$. If we define $\tilde{\alpha}=a_{0} \alpha$ and $\tilde{\alpha}^{\prime}=a_{0} \alpha^{\prime}$, then $\tilde{\alpha}$ is a nonzero algebraic integer, and we have

$$
\tilde{F}(T, Y)=(T-\tilde{\alpha} Y)\left(T-\tilde{\alpha}^{\prime} Y\right)\left(T-\overline{\tilde{\alpha}^{\prime}} Y\right)
$$

For $n \in \mathbf{Z}$, the binary form

$$
\tilde{F}_{n}(T, Y)=\left(T-\varepsilon^{n} \tilde{\alpha} Y\right)\left(T-\varepsilon^{\prime n} \tilde{\alpha}^{\prime} Y\right)\left(T-{\overline{\varepsilon^{\prime}}}^{n} \overline{\tilde{\alpha}^{\prime}} Y\right)
$$

satisfies

$$
a_{0}^{2} F_{n}(X, Y)=\tilde{F}_{n}\left(a_{0} X, Y\right)
$$

The condition (1) implies $0<\left|\tilde{F}_{n}\left(a_{0} x, y\right)\right| \leq a_{0}^{2} k$. Therefore it suffices to prove the statements for $\tilde{F}_{n}$ instead of $F_{n}$, with $\alpha$ and $\alpha^{\prime}$ replaced by $\tilde{\alpha}$ and $\tilde{\alpha}^{\prime}$. This allows us, from now on, to suppose $\alpha \in \mathbf{Z}_{K}$ and $a_{0}=1$.

As already explained, we can assume $n \geq 0$. There is no restriction in supposing $k \geq 2$; (if we prove the result for a value of $k \geq 2$, we deduce it right away for smaller values of $k$, since we consider Thue inequations and not Thue equations). If $k$ were asumed to be $\geq 2$, we would not need $\kappa_{1}$, as is easily seen, and the conclusion would read

$$
\max \left\{\varepsilon^{|n|},|x|,|y|\right\} \leq k^{\kappa_{2}}
$$

Without loss of generality we can assume that $n$ is sufficiently large. As a matter of fact, if $n$ is bounded, we are led to some given Thue equations, and Theorem 1 follows from Theorem 5.1 of [3].

Let us recall that for an algebraic number $\gamma$, the house of $\gamma$, denoted $\gamma\rangle$, is by definition the maximum of the absolute values of the conjugates of $\gamma$. Moreover, $d$ is the degree of the algebraic number field $K$ (namely $d=3$ here) and $R$ is the regulator of $K$ (viz. $R=\log \varepsilon$ ), where, from now on, $\varepsilon$ is the fundamental unit $>1$ of the non totally real cubic field $K$. The next statement is Lemma A. 6 of [3].

Lemma 1 Let $\gamma$ be a nonzero element of $\mathbf{Z}_{K}$ of norm $\leq M$. There exists a unit $\eta \in \mathbf{Z}_{K}^{\times}$such that the house $\overline{\eta \gamma}$ is bounded by an effectively computable constant which depends only on $d, R$ and $M$.

We need to make explicit the dependence upon $M$, and for this, it suffices to apply Lemma A. 15 of [3], which we want to state, under the asumption that the $d$ embeddings of the algebraic number field $K$ in $\mathbf{C}$ are noted $\sigma_{1}, \ldots, \sigma_{d}$.

Lemma 2 Let $K$ be an algebraic number field of degree $d$ and let $\gamma$ be a nonzero element of $\mathbf{Z}_{K}$ whose absolute value of the norm is $m$. Then there exists a unit $\eta \in \mathbf{Z}_{K}^{\times}$ such that

$$
\frac{1}{R} \max _{1 \leq j \leq d}\left|\log \left(m^{-1 / d}\left|\sigma_{j}(\eta \gamma)\right|\right)\right|
$$

is bounded by an effectively computable constant which depends only on $d$.

Since $d=3, K=\mathbf{Q}(\alpha)$ and the regulator $R$ of $K$ is an effectively computable constant (see for instance [1], §6.5), the conclusion of Lemma 2 is

$$
-\kappa_{5} \leq \log \left(\left|\sigma_{j}(\eta \gamma)\right| / \sqrt[3]{m}\right) \leq \kappa_{5}
$$

which can also be written as

$$
\kappa_{6} \sqrt[3]{m} \leq\left|\sigma_{j}(\eta \gamma)\right| \leq \kappa_{7} \sqrt[3]{m}
$$

with two effectively computable positive constants $\kappa_{6}$ and $\kappa_{7}$. We will use only the upper bound ${ }^{1}$ : under the hypotheses of Lemma 1 with $d=3$, when $\gamma$ is a nonzero element of $\mathbf{Z}_{K}$ of norm $\leq M$, there exists a unit $\eta$ of $\mathbf{Z}_{K}^{\times}$such that

$$
|\eta \gamma| \leq \kappa_{7} \sqrt[3]{M}
$$

Since ( $n, x, y$ ) satisfies (1), the element $\gamma=x-\varepsilon^{n} \alpha y$ of $\mathbf{Z}_{K}$ has a norm of absolute value $\leq k$. It follows from Lemma 2 that $\gamma$ can be written as

$$
\begin{equation*}
x-\varepsilon^{n} \alpha y=\varepsilon^{\ell} \xi_{1} \tag{2}
\end{equation*}
$$

with $\ell \in \mathbf{Z}, \xi_{1} \in \mathbf{Z}_{K}$ and the house of $\xi_{1},\left|\xi_{1}\right|=\max \left\{\left|\xi_{1}\right|,\left|\xi_{1}^{\prime}\right|\right\}$, satisfies

$$
\mid \xi_{1} \leq \kappa_{8} \sqrt[3]{k}
$$

We will not use the full force of this upper bound, but only the consequence

$$
\begin{equation*}
\max \left\{\left|\xi_{1}\right|^{-1},\left|\xi_{1}^{\prime}\right|^{-1},\left|\xi_{1}\right|\right\} \leq k^{\kappa_{9}} \tag{3}
\end{equation*}
$$

Taking the conjugate of (2) by $\sigma$, we have

$$
\begin{equation*}
x-\varepsilon^{\prime n} \alpha^{\prime} y=\varepsilon^{\prime \ell} \xi_{1}^{\prime} \tag{4}
\end{equation*}
$$

with $\xi_{1}^{\prime}=\sigma\left(\xi_{1}\right)$.
Our strategy is to prove that $|\ell|$ is bounded by a constant times $\log k$, and that $|n|$ is also bounded by a constant times $\log k$; then we will show that $|y|$ is bounded by a a constant power of $k$ and deduce that $|x|$ is also bounded by a constant power of $k$.

Let us eliminate $x$ in (2) and (4) to obtain

$$
\begin{equation*}
y=-\frac{\varepsilon^{\ell} \xi_{1}-\varepsilon^{\prime \ell} \xi_{1}^{\prime}}{\varepsilon^{n} \alpha-\varepsilon^{\prime n} \alpha^{\prime}} \tag{5}
\end{equation*}
$$

since we supposed $\varepsilon^{n} \alpha$ irrational, we did not divide by 0 . The complex conjugate of (4) is written as

$$
\begin{equation*}
x-{\overline{\varepsilon^{\prime}}}^{n} \overline{\alpha^{\prime}} y={\overline{\varepsilon^{\prime}}}^{\ell} \overline{\xi_{1}^{\prime}} \tag{6}
\end{equation*}
$$

[^1]We eliminate $x$ and $y$ in the three equations (2), (4) and (6) to obtain a unit equation à la Siegel:

$$
\begin{equation*}
\varepsilon^{\ell} \xi_{1}\left(\alpha^{\prime} \varepsilon^{\prime n}-\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}\right)+\varepsilon^{\prime \ell} \xi_{1}^{\prime}\left(\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}-\alpha \varepsilon^{n}\right)+\overline{\varepsilon^{\prime}} \overline{\xi_{1}^{\prime}}\left(\alpha \varepsilon^{n}-\alpha^{\prime} \varepsilon^{\prime n}\right)=0 \tag{7}
\end{equation*}
$$

In the remaining part of this section 2 , we suppose

$$
\begin{equation*}
\varepsilon^{n}|\alpha| \geq 2\left|\varepsilon^{\prime n} \alpha^{\prime}\right| \tag{8}
\end{equation*}
$$

Note that if this inequality is not satisfied, then we have

$$
\varepsilon^{3 n / 2}<\frac{2\left|\alpha^{\prime}\right|}{|\alpha|}<\kappa_{10}
$$

and this leads to the inequality (18), and to the rest of the proof of Theorem 1 by using the argument following the inequality (18).

For $\ell>0$, the absolute value of the numerator $\varepsilon^{\ell} \xi_{1}-\varepsilon^{\ell} \xi_{1}^{\prime}$ in (5) is increasing like $\varepsilon^{\ell}$ and for $\ell<0$ it is increasing like $\varepsilon^{|\ell| / 2}$; for $n>0$, the absolute value of the denominator $\varepsilon^{n} \alpha-\varepsilon^{\prime n} \alpha^{\prime}$ is increasing like $\varepsilon^{n}$ and for $n<0$ it is increasing like $\varepsilon^{|n| / 2}$. In order to extract some information from the equation (5), we write it in the form

$$
y= \pm \frac{A-a}{B-b}
$$

with

$$
B=\varepsilon^{n} \alpha, \quad b=\varepsilon^{\prime n} \alpha^{\prime}, \quad\{A, a\}=\left\{\varepsilon^{\ell} \xi_{1}, \varepsilon^{\ell \ell} \xi_{1}^{\prime}\right\}
$$

the choice of $A$ and $a$ being dictated by

$$
|A|=\max \left\{\varepsilon^{\ell}\left|\xi_{1}\right|,\left|\varepsilon^{\prime \ell} \xi_{1}^{\prime}\right|\right\}, \quad|a|=\min \left\{\varepsilon^{\ell}\left|\xi_{1}\right|,\left|\varepsilon^{\prime \ell} \xi_{1}^{\prime}\right|\right\}
$$

Since $|A-a| \leq 2|A|$ and since $|b| \leq|B| / 2$ because of (8), we have $|B-b| \geq|B| / 2$, so we get

$$
|y| \leq 4 \frac{|A|}{|B|}
$$

We will consider the two cases corresponding to the possible signs of $\ell$, (remember that $n$ is positive).

First case. Let $\ell \leq 0$. We have

$$
|A| \leq \kappa_{11} \varepsilon^{|\ell| / 2} k^{\kappa_{9}}
$$

We deduce from (5)

$$
\begin{equation*}
1 \leq|y| \leq 4\left|\frac{\xi_{1}^{\prime}}{\alpha}\right| \varepsilon^{(|\ell| / 2)-n} \leq \kappa_{12} \varepsilon^{(|\ell| / 2)-n} k^{\kappa_{9}} \tag{9}
\end{equation*}
$$

Hence there exists $\kappa_{13}$ such that

$$
0 \leq \log |y| \leq\left(\frac{|\ell|}{2}-n\right) \log \varepsilon+\kappa_{13} \log k
$$

from which we deduce the inequality

$$
\begin{equation*}
n \leq \frac{|\ell|}{2}+\kappa_{14} \log k \tag{10}
\end{equation*}
$$

which will prove useful: $n$ is roughly bounded by $|\ell|$. From (4) we deduce the existence of a constant $\kappa_{15}$ such that

$$
\begin{equation*}
|x| \leq \varepsilon^{-n / 2}\left|\alpha^{\prime} y\right|+\kappa_{15} k^{\kappa_{9}} \varepsilon^{|\ell| / 2} \tag{11}
\end{equation*}
$$

Second case. Let $\ell>0$. We have

$$
|A| \leq \kappa_{16} \varepsilon^{\ell} k^{\kappa_{9}}
$$

We deduce from (5) the upper bound

$$
\begin{equation*}
1 \leq|y| \leq 4\left|\frac{\xi_{1}}{\alpha}\right| \varepsilon^{\ell-n} \leq \kappa_{17} k^{\kappa_{9}} \varepsilon^{\ell-n} \tag{12}
\end{equation*}
$$

hence there exists $\kappa_{18}$ such that

$$
0 \leq \log |y| \leq(\ell-n) \log \varepsilon+\kappa_{18} \log k
$$

Consequently,

$$
\begin{equation*}
n \leq \ell+\kappa_{19} \log k \tag{13}
\end{equation*}
$$

From the relation (4) we deduce the existence of a constant $\kappa_{20}$ such that

$$
\begin{equation*}
1 \leq|x| \leq \varepsilon^{-n / 2}\left|\alpha^{\prime} y\right|+\kappa_{20} k^{\kappa_{9}} \varepsilon^{-\ell / 2} \tag{14}
\end{equation*}
$$

By taking into account the inequalities (9), (10) and (11) in the case $\ell \leq 0$, and the inequalities (12), (13) and (14) in the case $\ell>0$, let us show that the existence of a constant $\kappa_{21}$ satisfying $|\ell| \leq \kappa_{21} \log k$ allows to conclude the proof of Theorem 1. As a matter of fact, suppose

$$
\begin{equation*}
|\ell| \leq \kappa_{21} \log k \tag{15}
\end{equation*}
$$

Then (10) and (13) imply $n \leq \kappa_{22} \log k$, whereupon $|\ell|$ and $n$ are effectively bounded by a constant times $\log k$. This implies that the elements $\varepsilon^{t}$, with $t$ being $(|\ell| / 2)-$ $n, \ell-n,-n / 2,|\ell| / 2$ or $-\ell / 2$, appearing in (9), (12), (11) and (14) are bounded from above by $k^{\kappa_{23}}$ for some constant $\kappa_{23}$. Therefore the upper bound of $|y|$ in the conclusion of Theorem 1 follows from (9) and (12) and the upper bound of $|x|$ is a consequence of (11) and (14). Our goal is to show that sooner or later, we end up with the inequality (15).

In the case $\ell>0$, the lower bound $|x| \geq 1$ provides an extra piece of information. If the term $\varepsilon^{\prime \ell} \xi_{1}^{\prime}$ on the right hand side of (4) does not have an absolute value $<1 / 2$,
then the upper bound (15) holds true and this suffices to claim the proof of Theorem 1. Suppose now $\left|\varepsilon^{\prime \ell} \xi_{1}^{\prime}\right|<1 / 2$. Since the relation (12) implies

$$
\varepsilon^{-n / 2}\left|\alpha^{\prime} y\right| \leq 4\left|\frac{\xi_{1} \alpha^{\prime}}{\alpha}\right| \varepsilon^{\ell-(3 n / 2)}
$$

we have

$$
1 \leq|x| \leq 4\left|\frac{\xi_{1} \alpha^{\prime}}{\alpha}\right| \varepsilon^{\ell-(3 n / 2)}+\frac{1}{2}
$$

and

$$
1 \leq 8\left|\frac{\xi_{1} \alpha^{\prime}}{\alpha}\right| \varepsilon^{\ell-(3 n / 2)}
$$

We deduce

$$
\begin{equation*}
\frac{3}{2} n \leq \ell+\kappa_{24} \log k \tag{16}
\end{equation*}
$$

The upper bound in (16) is sharper than the one in (13), but, amazingly, we used (13) to establish (16).

When $\ell<0$, we have $|\ell-n|=n+|\ell| \geq|\ell|$, while in the case $\ell \geq 0$ we have

$$
|\ell-n| \geq \frac{1}{3} \ell+\frac{2}{3} \ell-n \geq \frac{1}{3}|\ell|-\kappa_{24} \log k
$$

because of (16). Therefore, if $\ell$ is positive (recall (16)), zero or negative (recall (10)), we always have

$$
\begin{equation*}
n \leq \frac{2}{3}|\ell|+\kappa_{25} \log k \quad \text { and } \quad|\ell-n| \geq \frac{1}{3}|\ell|-\kappa_{24} \log k \tag{17}
\end{equation*}
$$

with $\kappa_{24}>0$ and $\kappa_{25}>0$.

## 3 Diophantine tool

Let us remind what we mean by the absolute logarithmic height $h(\alpha)$ of an algebraic number $\alpha$ (cf. [4], Chap. 3). For $L$ a number field and for $\alpha \in L$, we define

$$
\mathrm{h}(\alpha)=\frac{1}{[L: Q]} \log H_{L}(\alpha)
$$

with

$$
H_{L}(\alpha)=\prod_{v} \max \left\{1,|\alpha|_{v}\right\}^{d_{v}}
$$

where $v$ runs over the set of places of $L$, with $d_{v}$ being the local degree of the place $v$ if $v$ is ultrametric, $d_{v}=1$ if $v$ is real, $d_{v}=2$ if $v$ is complex. When $f(X) \in \mathbf{Z}[X]$ is the minimal polynomial of $\alpha$ and $f(X)=a_{0} \prod_{1 \leq j \leq d}\left(X-\alpha_{j}\right)$, with $\alpha_{1}=\alpha$, it
happens that

$$
\mathrm{h}(\alpha)=\frac{1}{d} \log M(f) \quad \text { with } \quad M(f)=\left|a_{0}\right| \prod_{1 \leq j \leq d} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

We will use two particular cases of Theorem 9.1 of [4]. The first one is a lower bound for the linear form of logarithms $b_{0} \lambda_{0}+b_{1} \lambda_{1}+b_{2} \lambda_{2}$, and the second one is a lower bound for $\gamma_{1}^{h_{1}} \gamma_{2}^{h_{2}}-1$. Here is the first one.

Proposition 1. There exists an explicit absolute constant $c_{0}>0$ with the following property. Let $\lambda_{0}, \lambda_{1}, \lambda_{2}$ be three logarithms of algebraic numbers and let $b_{0}, b_{1}, b_{2}$ be three rational integers such that $\Lambda=b_{0} \lambda_{0}+b_{1} \lambda_{1}+b_{2} \lambda_{2}$ be nonzero. Write

$$
\gamma_{0}=e^{\lambda_{0}}, \quad \gamma_{1}=e^{\lambda_{1}}, \quad \gamma_{2}=e^{\lambda_{2}} \quad \text { and } \quad D=\left[\mathbf{Q}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}\right): \mathbf{Q}\right] .
$$

Let $A_{0}, A_{1}, A_{2}$ and $B$ be real positive numbers satisfying

$$
\log A_{i} \geq \max \left\{\mathrm{h}\left(\gamma_{i}\right), \frac{\left|\lambda_{i}\right|}{D}, \frac{1}{D}\right\} \quad(i=0,1,2)
$$

and

$$
B \geq \max \left\{e, D, \frac{\left|b_{2}\right|}{D \log A_{0}}+\frac{\left|b_{0}\right|}{D \log A_{2}}, \frac{\left|b_{2}\right|}{D \log A_{1}}+\frac{\left|b_{1}\right|}{D \log A_{2}}\right\} .
$$

Then

$$
|\Lambda| \geq \exp \left\{-c_{0} D^{5}(\log D)\left(\log A_{0}\right)\left(\log A_{1}\right)\left(\log A_{2}\right)(\log B)\right\} .
$$

The second particular case of Theorem 9.1 in [4] that we will use is the next Proposition 2. It also follows from Corollary 9.22 of [4]. We could as well deduce it from Proposition 1.

Proposition 2. Let $D$ be a positive integer. There exists an explicit constant $c_{1}>0$, depending only on $D$ with the following property. Let $K$ be a number field of degree $\leq D$. Let $\gamma_{1}, \gamma_{2}$ be nonzero elements in $K$ and let $b_{1}, b_{2}$ be rational integers. Assume $\gamma_{1}^{b_{1}} \gamma_{2}^{h_{2}} \neq 1$. Set

$$
B=\max \left\{2,\left|b_{1}\right|,\left|b_{2}\right|\right\} \quad \text { and, for } i=1,2, \quad A_{i}=\exp \left(\max \left\{e, \mathrm{~h}\left(\gamma_{i}\right)\right\}\right) .
$$

Then

$$
\left|\gamma_{1}^{h_{1}} \gamma_{2}^{h_{2}}-1\right| \geq \exp \left\{-c_{1}(\log B)\left(\log A_{1}\right)\left(\log A_{2}\right)\right\}
$$

Proposition 2 will come into play via its following consequence.
Corollary 2 Let $\delta_{1}$ and $\delta_{2}$ be two real numbers in the interval $[0,2 \pi)$. Suppose that the numbers $e^{i \delta_{1}}$ and $e^{i \delta_{2}}$ are algebraic. There exists an explicit constant $c_{2}>0$, depending only upon $\delta_{1}$ and $\delta_{2}$, with the following property: for each $n \in \mathbf{Z}$ such that $\delta_{1}+n \delta_{2} \notin \mathbf{Z} \pi$, we have

$$
\left|\sin \left(\delta_{1}+n \delta_{2}\right)\right| \geq(|n|+2)^{-c_{2}} .
$$

Proof. Write $\gamma_{1}=e^{i \delta_{1}}$ and $\gamma_{2}=e^{i \delta_{2}}$. By hypothesis, $\gamma_{1}$ and $\gamma_{2}$ are algebraic with $\gamma_{1} \gamma_{2}^{n} \neq 1$. Let us use Proposition 2 with $b_{1}=1, b_{2}=n$. The parameters $A_{1}$ and $A_{2}$ depend only upon $\delta_{1}$ and $\delta_{2}$ and the number $B=\max \{2,|n|\}$ is bounded from above by $|n|+2$. Hence

$$
\left|\gamma_{1} \gamma_{2}^{n}-1\right| \geq(|n|+2)^{-c_{3}}
$$

where $c_{3}$ depends only upon $\delta_{1}$ and $\delta_{2}$. Let $\ell$ be the nearest integer to $\left(\delta_{1}+n \delta_{2}\right) / \pi$ (take the floor if there are two possible values) and let $t=\delta_{1}+n \delta_{2}-\ell \pi$. This real number $t$ is in the interval $(-\pi / 2, \pi / 2]$. Now

$$
\left|e^{i t}+1\right|=|1+\cos (t)+i \sin (t)|=\sqrt{2(1+\cos (t))} \geq \sqrt{2}
$$

Since $e^{i t}=(-1)^{\ell} \gamma_{1} \gamma_{2}^{n}$, we deduce

$$
\begin{aligned}
\left|\sin \left(\delta_{1}+n \delta_{2}\right)\right| & =|\sin (t)|=\frac{1}{2}\left|(-1)^{2 \ell} e^{2 i t}-1\right| \\
& =\frac{1}{2}\left|(-1)^{\ell} e^{i t}+1\right| \cdot\left|(-1)^{\ell} e^{i t}-1\right| \geq \frac{\sqrt{2}}{2}\left|\gamma_{1} \gamma_{2}^{n}-1\right|
\end{aligned}
$$

This secures the proof of Corollary 2.
The following elementary lemma makes clear that $e^{t} \sim 1$ for $t \rightarrow 0$. The first (resp. second) part follows from Exercice 1.1.a (resp. 1.1.b or 1.1.c) of [4]. We will use only the second part; the first one shows that the number $t$ in the proof of Corollary 2 is close to 0 , but we did not need it.

Lemma 3 (a) For $t \in \mathbf{C}$, we have

$$
\left|e^{t}-1\right| \leq|t| \max \left\{1,\left|e^{t}\right|\right\}
$$

(b) If a complex number $z$ satisfies $|z-1|<1 / 2$, then there exists $t \in \mathbf{C}$ such that $e^{t}=z$ and $|t| \leq 2|z-1|$. This $t$ is unique and is the principal determination of the logarithm of $z$ :

$$
|\log z| \leq 2|z-1|
$$

## 4 Proof of Theorem 1

Let us define some real numbers $\theta, \delta$ and $v$ in the interval $[0,2 \pi)$ by

$$
\varepsilon^{\prime}=\frac{1}{\varepsilon^{1 / 2}} e^{i \theta}, \quad \alpha^{\prime}=\left|\alpha^{\prime}\right| e^{i \delta}, \quad \xi_{1}^{\prime}=\left|\xi_{1}^{\prime}\right| e^{i v}
$$

By ordering the terms of (7), we can write this relation as

$$
T_{1}+T_{2}+T_{3}=0
$$

and the three terms involved are

$$
\begin{cases}T_{1}:=\varepsilon^{\ell} \xi_{1}\left(\alpha^{\prime} \varepsilon^{\prime n}-\overline{\alpha^{\prime}} \overline{\varepsilon^{\prime}}\right) & =2 i \xi_{1}\left|\alpha^{\prime}\right| \varepsilon^{\ell-n / 2} \sin (\delta+n \theta) \\ T_{2}:=\alpha \varepsilon^{n}\left(\overline{\varepsilon^{\prime}} \ell \overline{\xi_{1}^{\prime}}-\varepsilon^{\prime \ell} \xi_{1}^{\prime}\right) & =-2 i\left|\xi_{1}^{\prime}\right| \alpha \varepsilon^{n-\ell / 2} \sin (v+\ell \theta) \\ T_{3}:=\xi_{1}^{\prime} \varepsilon^{\prime \ell} \overline{\alpha^{\prime}} \overline{\varepsilon^{\prime}} n-\overline{\xi_{1}^{\prime}} \overline{\bar{\varepsilon}^{\ell}} \alpha^{\prime} \varepsilon^{\prime n} & =2 i\left|\xi_{1}^{\prime} \alpha^{\prime}\right| \varepsilon^{-(n+\ell) / 2} \sin (v-\delta+(\ell-n) \theta)\end{cases}
$$

It turns out that these three terms are purely imaginary. We write this zero sum as

$$
a+b+c=0 \text { with }|a| \geq|b| \geq|c|
$$

and we use the fact that this implies that $|a| \leq 2|b|$. Thanks to (17), Corollary 2 shows that a lower bound of the sinus terms is $|\ell|^{-\kappa_{26}}$ (and an obvious upper bound is 1 !). Moreover,

- The $T_{1}$ term contains a constant factor and the factors:
- $\left|\xi_{1}\right|$ with $k^{-\kappa_{9}} \leq\left|\xi_{1}\right| \leq k^{\kappa_{9}}$,
- $\varepsilon^{\ell-(n / 2)}$ (which is the main term),
- a sinus with a parameter $n$ (a lower bound of the absolute value of that sinus being $n^{-\kappa_{27}}$ ).
- Similarly, $T_{2}$ contains a constant factor and the factors:
- $\left|\xi_{1}^{\prime}\right|$, with $k^{-\kappa_{9}} \leq\left|\xi_{1}^{\prime}\right| \leq k^{\kappa_{9}}$,
- $\varepsilon^{n-(\ell / 2)}$ (which the main term),
- a sinus with a parameter $\ell$ (a lower bound of the absolute value of that sinus being $|\ell|^{-\kappa_{28}}$ ).
- Similarly, $T_{3}$ contains a constant factor and the factors:
- $\left|\xi_{1}^{\prime}\right|$, with $k^{-\kappa_{9}} \leq\left|\xi_{1}^{\prime}\right| \leq k^{\kappa_{9}}$,
- $\varepsilon^{-(n+\ell) / 2}$ (which the main term),
- a sinus with a parameter $\ell-n$ (a lower bound of the absolute value of that sinus being $|\ell-n|^{-\kappa_{29}}$ ).

We will consider three cases, and we will use the inequalities (3) and (17). This will eventually allow us to conclude that there is an upper bound for $|\ell|$ and $n$ by an effective constant times $\log k$.

First case. If the two terms $a$ and $b$ with the largest absolute values are $T_{1}$ and $T_{2}$, from the inequalities $\left|T_{1}\right| \leq 2\left|T_{2}\right|$ and $\left|T_{2}\right| \leq 2\left|T_{1}\right|$ (which come from $|b| \leq|a| \leq$ $2|b|$ ), we deduce (thanks to (17))

$$
k^{-\kappa_{30}}|\ell|^{-\kappa_{31}} \leq \varepsilon^{\frac{3}{2}(\ell-n)} \leq k^{\kappa_{32}}|\ell|^{\kappa_{33}},
$$

whereupon, thanks again to (17), we have

$$
-\kappa_{34} \log k+\frac{|\ell|}{3} \leq|\ell-n| \leq \kappa_{35} \log |\ell|+\kappa_{36} \log k
$$

which leads to $|\ell| \leq \kappa_{37}(\log k+\log |\ell|)$. This secures the upper bound (15), and ends the proof of Theorem 1.

Second case. Suppose that the two terms $a$ and $b$ with the largest absolute values are $T_{1}$ and $T_{3}$. By writing $\left|T_{1}\right| \leq 2\left|T_{3}\right|$ and $\left|T_{3}\right| \leq 2\left|T_{1}\right|$, we obtain (thanks to (17))

$$
k^{-1 / 3}|\ell|^{-\kappa_{38}} \leq \varepsilon^{3 \ell / 2} \leq k^{1 / 3}|\ell|^{\kappa_{39}}
$$

hence

$$
|\ell| \leq \kappa_{40}(\log k+\log |\ell|)
$$

Once more, we have $\varepsilon^{|\ell|} \leq k^{\kappa_{41}}$, and we saw that the upper bound (17) allows to draw the conclusion.

Third case. Let us consider the remaining case, namely, the two terms $a$ and $b$ with the largest absolute values being $T_{2}$ and $T_{3}$. Consequently, in the relation $T_{1}+T_{2}+T_{3}=0$, written in the form $a+b+c=0$ with $|a| \geq|b| \geq|c|$, we have $c=T_{1}$. Writing $\left|T_{2}\right| \leq 2\left|T_{3}\right|$ and $\left|T_{3}\right| \leq 2\left|T_{2}\right|$, we obtain

$$
k^{-1 / 3}|\ell|^{-\kappa_{42}} \leq \varepsilon^{3 n / 2} \leq k^{1 / 3}|\ell|^{\kappa_{43}}
$$

From the second of these inequalities, we deduce the existence of $\kappa_{44}$ such that

$$
\begin{equation*}
n \leq \kappa_{44}(\log k+\log |\ell|) \tag{18}
\end{equation*}
$$

Remark. The upper bound (18) allows to proceed as in the usual proof of the Thue theorem where $n$ is fixed.

From the upper bound $\left|T_{1}\right| \leq\left|T_{2}\right|$, one deduces $n>\ell-\kappa_{45} \log k$, so that (18) leads right away to the conclusion if $\ell$ is positive.

Let us suppose now that $\ell$ is negative. Let us consider again the equation (7) that we write in the form

$$
\begin{equation*}
\rho_{n} \varepsilon^{\ell}+\mu_{n} \varepsilon^{\prime \ell}-\bar{\mu}_{n}{\overline{\varepsilon^{\prime}}}^{\ell}=0 \tag{19}
\end{equation*}
$$

with

$$
\rho_{n}=\xi_{1}\left(\alpha^{\prime} \varepsilon^{\prime n}-\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}\right) \quad \text { and } \quad \mu_{n}=\xi_{1}^{\prime}\left(\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}-\alpha \varepsilon^{n}\right)
$$

We check (cf. Property 3.3 of [4])

$$
\mathrm{h}\left(\mu_{n}\right) \leq \kappa_{46}(n+\log k)
$$

Let us divide each side of (19) by $-\mu_{n} \varepsilon^{\prime \ell}$ :

$$
\frac{\bar{\mu}_{n}{\overline{\varepsilon^{\prime}}}^{\ell}}{\mu_{n} \varepsilon^{\prime \ell}}-1=\frac{\rho_{n} \varepsilon^{\ell}}{\mu_{n} \varepsilon^{\prime \ell}}
$$

We have

$$
\left|\alpha^{\prime} \varepsilon^{\prime n}-\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}\right| \leq\left|\alpha^{\prime} \varepsilon^{\prime n}\right|+\left|\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}\right|=2\left|\varepsilon^{\prime n} \alpha^{\prime}\right|
$$

and, using (8),

$$
\left|\overline{\alpha^{\prime}}{\overline{\varepsilon^{\prime}}}^{n}-\alpha \varepsilon^{n}\right| \geq \frac{1}{2}|\alpha| \varepsilon^{n}
$$

Since

$$
\left|\xi_{1}\right| \leq k^{\kappa_{9}} \text { and }\left|\xi_{1}^{\prime}\right|>k^{-\kappa_{9}}
$$

by (3), we come up with

$$
\left|\rho_{n}\right| \leq \kappa_{47} k^{\kappa_{9}} \varepsilon^{n / 2}, \quad\left|\mu_{n}\right| \geq \kappa_{48} \varepsilon^{n} k^{-\kappa_{9}} .
$$

Therefore, since $\left|\varepsilon^{\prime}\right|^{-1}=\varepsilon^{1 / 2}$, we have

$$
\begin{equation*}
\left|\frac{\bar{\mu}_{n} \bar{\varepsilon}^{\ell}}{\mu_{n} \varepsilon^{\prime \ell}}-1\right|=\left|\frac{\rho_{n} \varepsilon^{\ell}}{\mu_{n} \varepsilon^{\prime \ell}}\right| \leq \kappa_{49} \varepsilon^{-(n+3|\ell|) / 2} k^{\kappa_{9}} \tag{20}
\end{equation*}
$$

We denote by log the principal value of the logarithm and we set

$$
\lambda_{1}=\log \left(\frac{\overline{\varepsilon^{\prime}}}{\overline{\varepsilon^{\prime}}}\right), \quad \lambda_{2}=\log \left(\frac{\bar{\mu}_{n}}{\mu_{n}}\right) \quad \text { and } \quad \Lambda=\log \left(\frac{\bar{\mu}_{n} \bar{\varepsilon}^{\ell}}{\mu_{n} \varepsilon^{\prime \ell}}\right)
$$

We have

$$
\lambda_{1}=2 i \pi v \quad \lambda_{2}=2 i \pi \theta_{n}
$$

where $v$ and $\theta_{n}$ are the real numbers in the interval $[0,1)$ defined by

$$
\frac{\overline{\varepsilon^{\prime}}}{\overline{\varepsilon^{\prime}}}=e^{2 i \pi v} \quad \text { and } \quad \frac{\bar{\mu}_{n}}{\mu_{n}}=e^{2 i \pi \theta_{n}}
$$

From $e^{\Lambda}=e^{\ell \lambda_{1}+\lambda_{2}}$ we deduce $\Lambda-\ell \lambda_{1}-\lambda_{2}=2 i \pi h$ with $h \in \mathbf{Z}$. From Lemma $3 b$ we deduce $|\Lambda| \leq 2\left|e^{\Lambda}-1\right|$. Using $|\Lambda|<2 \pi$ and writing

$$
2 i \pi h=\Lambda-2 i \pi \ell v-2 i \pi \theta_{n}
$$

we deduce $|h| \leq|\ell|+2$.
In Proposition 1, let us take

$$
\begin{gathered}
b_{0}=h, \quad b_{1}=\ell, \quad b_{2}=1, \quad \gamma_{0}=1, \quad \lambda_{0}=2 i \pi, \quad \gamma_{1}=\frac{\overline{\varepsilon^{\prime}}}{\varepsilon^{\prime}}, \quad \gamma_{2}=\frac{\bar{\mu}_{n}}{\mu_{n}} \\
A_{0}=A_{1}=\kappa_{50}, \quad A_{2}=\left(k \varepsilon^{n}\right)^{\kappa_{51}}, \quad B=e+\frac{|\ell|}{\log A_{2}}
\end{gathered}
$$

Notice that the degree $D$ of the field $\mathbf{Q}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}\right)$ is $\leq 6$. Then we obtain

$$
\left|\frac{\bar{\mu}_{n}}{\mu_{n}}\left(\frac{\overline{\varepsilon^{\prime}}}{\overline{\varepsilon^{\prime}}}\right)^{\ell}-1\right|=\left|e^{\Lambda}-1\right| \geq \frac{1}{2}|\Lambda| \geq \exp \left\{-\kappa_{52}\left(\log A_{2}\right)(\log B)\right\}
$$

By combining this estimate with (20), we deduce

$$
|\ell| \leq \kappa_{53}(n+\log k) \log B
$$

which can also be written as $B \leq \kappa_{54} \log B$, hence $B$ is bounded. This allows to obtain

$$
|\ell| \leq \kappa_{55}(n+\log k) .
$$

We use (18) to deduce $\boldsymbol{\varepsilon}^{|\ell|} \leq k^{\kappa_{41}}$ and we saw that the upper bound (15) leads to the conclusion of the main Theorem 1 .

## References

1. H. COHEN, Advanced topics in computational number theory Graduate Texts in Mathematics, 193. Springer-Verlag, New York, (2000).
2. C. Levesque et M. Waldschmidt, Familles d'équations de Thue-Mahler n'ayant que des solutions triviales, Acta Arith., 155 (2012), 117-138.
3. T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986.
4. M. Waldschmidt, Diophantine approximation on linear algebraic groups, vol. $\mathbf{3 2 6}$ of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2000.

[^0]:    Claude LEVESQUE
    Département de mathématiques et de statistique, Université Laval, Québec (Québec), CANADA G1V 0A6
    e-mail: Claude.Levesque@mat.ulaval.ca
    Michel WALDSCHMIDT
    Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, F - 75252 PARIS Cedex 05, FRANCE
    e-mail: miw@math.jussieu.fr

[^1]:    ${ }^{1}$ The lower bound follows from looking at the norm!

