
Families of cubic Thue equations
with effective bounds for the solutions

Claude LEVESQUE and Michel WALDSCHMIDT

Abstract . To each non totally real cubic extension K of Q and to each generator
α of the cubic field K, we attach a family of cubic Thue equations, indexed by the
units of K, and we prove that this family of cubic Thue equations has only a finite
number of integer solutions, by giving an effective upper bound for these solutions.

1 Statements

Let us consider an irreductible binary cubic form having rational integers coeffi-
cients

F(X ,Y ) = a0X3 +a1X2Y +a2XY 2 +a3Y 3 ∈ Z[X ,Y ]

with the property that the polynomial F(X ,1) has exactly one real root α and two
complex imaginary roots, namely α ′ and α ′. Hence α 6∈Q, α ′ 6= α ′ and

F(X ,Y ) = a0(X−αY )(X−α
′Y )(X−α ′Y ).

Let K be the cubic number field Q(α) which we view as a subfield of R. Define σ :
K→C to be one of the two complex embeddings, the other one being the conjugate
σ . Hence α ′ = σ(α) and α ′ = σ(α). If τ is defined to be the complex conjugation,
we have σ = τ ◦σ and σ ◦ τ = σ .
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Let ε be a unit > 1 of the ring ZK of algebraic integers of K and let ε ′ = σ(ε)
and ε ′ = σ(ε) be the two other algebraic conjugates of ε . We have

|ε ′| = |ε ′| = 1√
ε
< 1.

For n ∈ Z, define

Fn(X ,Y ) = a0
(
X− ε

n
αY
)(

X− ε
′n

α
′Y
)(

X− ε ′
n

α ′Y
)
.

Let k ∈ N, where N = {1,2, . . .}. We plan to study the family of Thue inequations

0 < |Fn(x,y)| ≤ k, (1)

where the unknowns n,x,y take values in Z.

Theorem 1. There exist effectively computable positive constants κ1 and κ2, de-
pending only on F, such that, for all k ∈Z with k≥ 1 and for all (n,x,y)∈Z×Z×Z
satisfying εnα 6∈Q, xy 6= 0 and |Fn(x,y)| ≤ k, we have

max
{

ε
|n|, |x|, |y|

}
≤ κ1kκ2 .

From this theorem, we deduce the following corollary.

Corollary 1 . For k ∈ Z, k > 0, the set{
(n,x,y) ∈ Z×Z×Z | ε

n
α 6∈Q ; xy 6= 0 ; |Fn(x,y)| ≤ k

}
is finite.

This corollary is a particular case of the main result of [2], but the proof in [2] is
based on the Schmidt subspace theorem which does not allow to give an effective
upper bound for the solutions (n,x,y).

Example. Let D∈Z, D 6=−1. Let ε : =
( 3√D3 +1−D

)−1. There exist two positive
effectively computable absolute constants κ3 and κ4 with the following property.
Define a sequence (Fn)n∈Z of cubic forms in Z[X ,Y ] by

Fn(X ,Y ) = X3 +anX2Y +bnXY 2−Y 3,

where (an)n∈Z is defined by the recurrence relation

an+3 = 3Dan+2 +3D2an+1 +an

with the initial conditions a0 = 3D2, a−1 = 3 and a−2 = −3D, and where (bn)n∈Z
is defined by bn = −a−n−2. Then, for x, y, n rational integers with xy 6= 0 and
n 6=−1, we have

|Fn(x,y)| ≥ κ3 max{|x|, |y|, ε
|n|}κ4 .
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This result follows from Theorem 1 with α = ε and

F(X ,Y ) = X3−3DX2Y −3D2XY 2−Y 3.

Indeed, the irreducible polynomial of ε−1 = 3√D3 +1−D is

F−2(X ,1) = (X +D)3−D3−1 = X3 +3DX2 +3D2X−1,

the irreducible polynomial of α = ε is

F(X ,1) = F0(X ,1) = F−2(1,X) = X3−3D2X2−3DX−1,

while
F−1(X ,Y ) = (X−Y )3 = X3−3X2Y +3XY 2−Y 3.

For n ∈ Z, n 6=−1, Fn(X ,1) is the irreducible polynomial of αεn = εn+1, while for
any n ∈ Z, Fn(X ,Y ) = NQ(ε)/Q(X− εn+1Y ). The recurrence relation for

an = ε
n+1 + ε

′n+1
+ ε ′

n+1

follows from
ε

n+3 = 3Dε
n+2 +3D2

ε
n+1 + ε

n

and for bn, from F−n(X ,Y ) = −Fn−2(Y,X).

2 Elementary estimates

For a given integer k > 0, we consider a solution (n,x,y) in Z3 of the Thue inequa-
tion (1) with εnα irrational and xy 6= 0. We will use κ5,κ6, . . . ,κ55 to designate some
constants depending only on α .

Let us firstly explain that in order to prove Theorem 1, we can assume n ≥ 0 by
eventually permuting x and y. Let us suppose that n < 0 and write

F(X ,Y ) = a3(Y −α
−1X)(Y −α

′−1X)(Y −α ′
−1

X).

Then

Fn(X ,Y ) = a3
(
Y − ε

|n|
α
−1X

)(
Y − ε

′|n|
α
′−1X

)(
Y − ε ′

|n|
α ′
−1

X
)
.

Now it is simply a matter of using the result for |n| for the polynomial G(X ,Y ) =
F(Y,X).

Let us now check that, in order to prove the statements of §1, there is no restric-
tion in assuming that α is an algebraic integer and that a0 = 1. To achieve this goal,
we define
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F̃(T,Y ) = T 3 +a1T 2Y +a0a2TY 2 +a2
0a3Y 3 ∈ Z[T,Y ],

so that a2
0F(X ,Y ) = F̃(a0X ,Y ). If we define α̃ = a0α and α̃ ′ = a0α ′, then α̃

is a nonzero algebraic integer, and we have

F̃(T,Y ) = (T − α̃Y )(T − α̃
′Y )(T − α̃ ′Y ).

For n ∈ Z, the binary form

F̃n(T,Y ) = (T − ε
n
α̃Y )(T − ε

′n
α̃
′Y )(T − ε ′

n
α̃ ′Y )

satisfies
a2

0Fn(X ,Y ) = F̃n(a0X ,Y ).

The condition (1) implies 0 < |F̃n(a0x,y)| ≤ a2
0k. Therefore it suffices to prove the

statements for F̃n instead of Fn, with α and α ′ replaced by α̃ and α̃ ′. This allows us,
from now on, to suppose α ∈ ZK and a0 = 1.

As already explained, we can assume n≥ 0. There is no restriction in supposing
k≥ 2; (if we prove the result for a value of k≥ 2, we deduce it right away for smaller
values of k, since we consider Thue inequations and not Thue equations). If k were
asumed to be≥ 2, we would not need κ1, as is easily seen, and the conclusion would
read

max{ε |n|, |x|, |y|} ≤ kκ2 .

Without loss of generality we can assume that n is sufficiently large. As a matter
of fact, if n is bounded, we are led to some given Thue equations, and Theorem 1
follows from Theorem 5.1 of [3].

Let us recall that for an algebraic number γ , the house of γ , denoted γ , is by
definition the maximum of the absolute values of the conjugates of γ . Moreover, d
is the degree of the algebraic number field K (namely d = 3 here) and R is the
regulator of K (viz. R = logε), where, from now on, ε is the fundamental unit > 1
of the non totally real cubic field K. The next statement is Lemma A.6 of [3].

Lemma 1 Let γ be a nonzero element of ZK of norm ≤ M. There exists a unit
η ∈ Z×K such that the house ηγ is bounded by an effectively computable constant
which depends only on d, R and M.

We need to make explicit the dependence upon M, and for this, it suffices to
apply Lemma A.15 of [3], which we want to state, under the asumption that the d
embeddings of the algebraic number field K in C are noted σ1, . . . ,σd .

Lemma 2 Let K be an algebraic number field of degree d and let γ be a nonzero
element of ZK whose absolute value of the norm is m. Then there exists a unit η ∈Z×K
such that

1
R

max
1≤ j≤d

∣∣∣log(m−1/d |σ j(ηγ)|)
∣∣∣

is bounded by an effectively computable constant which depends only on d.
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Since d = 3, K = Q(α) and the regulator R of K is an effectively computable
constant (see for instance [1], §6.5), the conclusion of Lemma 2 is

−κ5 ≤ log(|σ j(ηγ)|/ 3
√

m) ≤ κ5,

which can also be written as

κ6
3
√

m ≤ |σ j(ηγ)| ≤ κ7
3
√

m,

with two effectively computable positive constants κ6 and κ7. We will use only the
upper bound 1: under the hypotheses of Lemma 1 with d = 3, when γ is a nonzero
element of ZK of norm ≤M, there exists a unit η of Z×K such that

ηγ ≤ κ7
3√M.

Since (n,x,y) satisfies (1), the element γ = x− εnαy of ZK has a norm of abso-
lute value ≤ k. It follows from Lemma 2 that γ can be written as

x− ε
n
αy = ε

`
ξ1 (2)

with ` ∈ Z, ξ1 ∈ ZK and the house of ξ1, ξ1 = max{|ξ1|, |ξ ′1|}, satisfies

ξ1 ≤ κ8
3√k.

We will not use the full force of this upper bound, but only the consequence

max
{
|ξ1|−1, |ξ ′1|−1, ξ1

}
≤ kκ9 . (3)

Taking the conjugate of (2) by σ , we have

x− ε
′n

α
′y = ε

′`
ξ
′
1 (4)

with ξ ′1 = σ(ξ1).
Our strategy is to prove that |`| is bounded by a constant times logk, and that |n|

is also bounded by a constant times logk; then we will show that |y| is bounded by a
a constant power of k and deduce that |x| is also bounded by a constant power of k.

Let us eliminate x in (2) and (4) to obtain

y = −ε`ξ1− ε ′`ξ ′1
εnα− ε ′nα ′

; (5)

since we supposed εnα irrational, we did not divide by 0. The complex conjugate
of (4) is written as

x− ε ′
n

α ′y = ε ′
`
ξ ′1. (6)

1 The lower bound follows from looking at the norm!
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We eliminate x and y in the three equations (2), (4) and (6) to obtain a unit equation
à la Siegel:

ε
`
ξ1(α

′
ε
′n−α ′ ε ′

n
)+ ε

′`
ξ
′
1(α

′ ε ′
n−αε

n)+ ε ′
`
ξ ′1(αε

n−α
′
ε
′n) = 0. (7)

In the remaining part of this section 2, we suppose

ε
n|α| ≥ 2|ε ′nα

′|. (8)

Note that if this inequality is not satisfied, then we have

ε
3n/2 <

2|α ′|
|α|

< κ10,

and this leads to the inequality (18), and to the rest of the proof of Theorem 1 by
using the argument following the inequality (18).

For ` > 0, the absolute value of the numerator ε`ξ1− ε ′`ξ ′1 in (5) is increasing
like ε` and for ` < 0 it is increasing like ε |`|/2; for n > 0, the absolute value of the
denominator εnα − ε ′nα ′ is increasing like εn and for n < 0 it is increasing like
ε |n|/2. In order to extract some information from the equation (5), we write it in the
form

y = ±A−a
B−b

with
B = ε

n
α, b = ε

′n
α
′, {A,a} =

{
ε
`
ξ1 , ε

′`
ξ
′
1

}
,

the choice of A and a being dictated by

|A| = max{ε`|ξ1| , |ε ′`ξ ′1|}, |a| = min{ε`|ξ1| , |ε ′`ξ ′1|}.

Since |A−a| ≤ 2|A| and since |b| ≤ |B|/2 because of (8), we have |B−b| ≥ |B|/2,
so we get

|y| ≤ 4
|A|
|B|
·

We will consider the two cases corresponding to the possible signs of `, (remember
that n is positive).

First case. Let `≤ 0. We have

|A| ≤ κ11ε
|`|/2kκ9 .

We deduce from (5)

1 ≤ |y| ≤ 4
∣∣∣∣ξ ′1α

∣∣∣∣ε(|`|/2)−n ≤ κ12ε
(|`|/2)−nkκ9 . (9)

Hence there exists κ13 such that
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0 ≤ log |y| ≤
(
|`|
2
−n
)

logε +κ13 logk,

from which we deduce the inequality

n≤ |`|
2
+κ14 logk, (10)

which will prove useful: n is roughly bounded by |`|. From (4) we deduce the exis-
tence of a constant κ15 such that

|x| ≤ ε
−n/2|α ′y|+κ15kκ9ε

|`|/2. (11)

Second case. Let ` > 0. We have

|A| ≤ κ16ε
`kκ9 .

We deduce from (5) the upper bound

1 ≤ |y| ≤ 4
∣∣∣∣ξ1

α

∣∣∣∣ε`−n ≤ κ17kκ9ε
`−n; (12)

hence there exists κ18 such that

0 ≤ log |y| ≤ (`−n) logε +κ18 logk.

Consequently,
n ≤ `+κ19 logk. (13)

From the relation (4) we deduce the existence of a constant κ20 such that

1 ≤ |x| ≤ ε
−n/2|α ′y|+κ20kκ9ε

−`/2. (14)

By taking into account the inequalities (9), (10) and (11) in the case ` ≤ 0, and
the inequalities (12), (13) and (14) in the case ` > 0, let us show that the existence
of a constant κ21 satisfying |`| ≤ κ21 logk allows to conclude the proof of Theorem
1. As a matter of fact, suppose

|`| ≤ κ21 logk. (15)

Then (10) and (13) imply n≤ κ22 logk, whereupon |`| and n are effectively bounded
by a constant times logk. This implies that the elements ε t , with t being (|`|/2)−
n, `− n, −n/2, |`|/2 or −`/2, appearing in (9), (12), (11) and (14) are bounded
from above by kκ23 for some constant κ23. Therefore the upper bound of |y| in the
conclusion of Theorem 1 follows from (9) and (12) and the upper bound of |x| is a
consequence of (11) and (14). Our goal is to show that sooner or later, we end up
with the inequality (15).

In the case ` > 0, the lower bound |x| ≥ 1 provides an extra piece of information.
If the term ε ′`ξ ′1 on the right hand side of (4) does not have an absolute value < 1/2,
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then the upper bound (15) holds true and this suffices to claim the proof of Theorem
1. Suppose now |ε ′`ξ ′1|< 1/2. Since the relation (12) implies

ε
−n/2|α ′y| ≤ 4

∣∣∣∣ξ1α ′

α

∣∣∣∣ε`−(3n/2),

we have

1 ≤ |x| ≤ 4
∣∣∣∣ξ1α ′

α

∣∣∣∣ε`−(3n/2)+
1
2

and

1 ≤ 8
∣∣∣∣ξ1α ′

α

∣∣∣∣ε`−(3n/2).

We deduce
3
2

n ≤ `+κ24 logk. (16)

The upper bound in (16) is sharper than the one in (13), but, amazingly, we used
(13) to establish (16).

When ` < 0, we have |`−n| = n+ |`| ≥ |`|, while in the case `≥ 0 we have

|`−n| ≥ 1
3
`+

2
3
`−n ≥ 1

3
|`|−κ24 logk,

because of (16). Therefore, if ` is positive (recall (16)), zero or negative (recall (10)),
we always have

n ≤ 2
3
|`|+κ25 logk and |`−n| ≥ 1

3
|`|−κ24 logk (17)

with κ24 > 0 and κ25 > 0.

3 Diophantine tool

Let us remind what we mean by the absolute logarithmic height h(α) of an algebraic
number α (cf. [4], Chap. 3). For L a number field and for α ∈ L, we define

h(α) =
1

[L : Q]
log HL(α),

with
HL(α) = ∏

ν

max{1, |α|ν}dν

where ν runs over the set of places of L, with dν being the local degree of the place ν

if ν is ultrametric, dν = 1 if ν is real, dν = 2 if ν is complex. When f (X) ∈ Z[X ]
is the minimal polynomial of α and f (X) = a0 ∏

1≤ j≤d
(X −α j), with α1 = α , it
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happens that

h(α) =
1
d

log M( f ) with M( f ) = |a0| ∏
1≤ j≤d

max{1, |α j|}.

We will use two particular cases of Theorem 9.1 of [4]. The first one is a lower
bound for the linear form of logarithms b0λ0 +b1λ1 +b2λ2, and the second one is
a lower bound for γ

b1
1 γ

b2
2 −1. Here is the first one.

Proposition 1. There exists an explicit absolute constant c0 > 0 with the following
property. Let λ0,λ1,λ2 be three logarithms of algebraic numbers and let b0,b1,b2
be three rational integers such that Λ = b0λ0 +b1λ1 +b2λ2 be nonzero. Write

γ0 = eλ0 , γ1 = eλ1 , γ2 = eλ2 and D = [Q(γ0,γ1,γ2) : Q].

Let A0, A1, A2 and B be real positive numbers satisfying

logAi ≥ max
{

h(γi),
|λi|
D

,
1
D

}
(i = 0,1,2)

and

B ≥max
{

e, D,
|b2|

D logA0
+
|b0|

D logA2
,
|b2|

D logA1
+
|b1|

D logA2

}
.

Then
|Λ | ≥ exp

{
−c0D5(logD)(logA0)(logA1)(logA2)(logB)

}
.

The second particular case of Theorem 9.1 in [4] that we will use is the next
Proposition 2. It also follows from Corollary 9.22 of [4]. We could as well deduce
it from Proposition 1.

Proposition 2. Let D be a positive integer. There exists an explicit constant c1 > 0,
depending only on D with the following property. Let K be a number field of degree
≤ D. Let γ1,γ2 be nonzero elements in K and let b1,b2 be rational integers. Assume
γ

b1
1 γ

b2
2 6= 1. Set

B = max{2, |b1|, |b2|} and, for i = 1,2, Ai = exp
(
max{e, h(γi)}

)
.

Then
|γb1

1 γ
b2
2 −1| ≥ exp

{
−c1(logB)(logA1)(logA2)

}
.

Proposition 2 will come into play via its following consequence.

Corollary 2 Let δ1 and δ2 be two real numbers in the interval [0,2π). Suppose that
the numbers eiδ1 and eiδ2 are algebraic. There exists an explicit constant c2 > 0,
depending only upon δ1 and δ2, with the following property: for each n ∈ Z such
that δ1 +nδ2 6∈ Zπ , we have

|sin(δ1 +nδ2)| ≥ (|n|+2)−c2 .
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Proof. Write γ1 = eiδ1 and γ2 = eiδ2 . By hypothesis, γ1 and γ2 are algebraic with
γ1γn

2 6= 1. Let us use Proposition 2 with b1 = 1, b2 = n. The parameters A1 and
A2 depend only upon δ1 and δ2 and the number B = max{2, |n|} is bounded from
above by |n|+2. Hence

|γ1γ
n
2 −1| ≥ (|n|+2)−c3

where c3 depends only upon δ1 and δ2. Let ` be the nearest integer to (δ1 +nδ2)/π

(take the floor if there are two possible values) and let t = δ1 +nδ2− `π . This real
number t is in the interval (−π/2,π/2]. Now

|eit +1| = |1+ cos(t)+ i sin(t)| =
√

2(1+ cos(t))≥
√

2.

Since eit = (−1)`γ1γn
2 , we deduce

|sin(δ1 +nδ2)| = |sin(t)| = 1
2

∣∣∣(−1)2`e2it −1
∣∣∣

=
1
2

∣∣∣(−1)`eit +1
∣∣∣ · ∣∣∣(−1)`eit −1

∣∣∣ ≥ √2
2
|γ1γ

n
2 −1| .

This secures the proof of Corollary 2.

The following elementary lemma makes clear that et ∼ 1 for t → 0. The first
(resp. second) part follows from Exercice 1.1.a (resp. 1.1.b or 1.1.c) of [4]. We
will use only the second part; the first one shows that the number t in the proof of
Corollary 2 is close to 0, but we did not need it.

Lemma 3 (a) For t ∈ C, we have

|et −1| ≤ |t|max{1, |et |}.

(b) If a complex number z satisfies |z−1|< 1/2, then there exists t ∈C such that
et = z and |t| ≤ 2|z−1|. This t is unique and is the principal determination of the
logarithm of z:

| logz| ≤ 2|z−1|.

4 Proof of Theorem 1

Let us define some real numbers θ , δ and ν in the interval [0,2π) by

ε
′ =

1
ε1/2 eiθ , α

′ = |α ′|eiδ , ξ
′
1 = |ξ ′1|eiν .

By ordering the terms of (7), we can write this relation as

T1 +T2 +T3 = 0,
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and the three terms involved are
T1 : = ε`ξ1(α

′ε ′n−α ′ ε ′
n
) = 2iξ1|α ′|ε`−n/2 sin(δ +nθ),

T2 : = αεn(ε ′
`
ξ ′1− ε ′`ξ ′1) = −2i|ξ ′1|αεn−`/2 sin(ν + `θ),

T3 : = ξ ′1ε ′`α ′ ε ′
n−ξ ′1ε ′

`
α ′ε ′n = 2i|ξ ′1α ′|ε−(n+`)/2 sin(ν−δ +(`−n)θ).

It turns out that these three terms are purely imaginary. We write this zero sum as

a+b+ c = 0 with |a| ≥ |b| ≥ |c|,

and we use the fact that this implies that |a| ≤ 2|b|. Thanks to (17), Corollary 2
shows that a lower bound of the sinus terms is |`|−κ26 (and an obvious upper bound
is 1!). Moreover,
– The T1 term contains a constant factor and the factors:
• |ξ1| with k−κ9 ≤ |ξ1| ≤ kκ9 ,
• ε`−(n/2) (which is the main term),
• a sinus with a parameter n (a lower bound of the absolute value of that sinus

being n−κ27 ).
– Similarly, T2 contains a constant factor and the factors:
• |ξ ′1|, with k−κ9 ≤ |ξ ′1| ≤ kκ9 ,
• εn−(`/2) (which the main term),
• a sinus with a parameter ` (a lower bound of the absolute value of that sinus

being |`|−κ28 ).
– Similarly, T3 contains a constant factor and the factors:
• |ξ ′1|, with k−κ9 ≤ |ξ ′1| ≤ kκ9 ,
• ε−(n+`)/2 (which the main term),
• a sinus with a parameter `−n (a lower bound of the absolute value of that sinus

being |`−n|−κ29 ).
We will consider three cases, and we will use the inequalities (3) and (17). This

will eventually allow us to conclude that there is an upper bound for |`| and n by an
effective constant times logk.

First case. If the two terms a and b with the largest absolute values are T1 and
T2, from the inequalities |T1| ≤ 2|T2| and |T2| ≤ 2|T1| (which come from |b| ≤ |a| ≤
2|b|), we deduce (thanks to (17))

k−κ30 |`|−κ31 ≤ ε
3
2 (`−n) ≤ kκ32 |`|κ33 ,

whereupon, thanks again to (17), we have

−κ34 logk+
|`|
3
≤ |`−n| ≤ κ35 log |`|+κ36 logk,

which leads to |`| ≤ κ37(logk+ log |`|). This secures the upper bound (15), and ends
the proof of Theorem 1.
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Second case. Suppose that the two terms a and b with the largest absolute values
are T1 and T3. By writing |T1| ≤ 2|T3| and |T3| ≤ 2|T1|, we obtain (thanks to (17))

k−1/3|`|−κ38 ≤ ε
3`/2 ≤ k1/3|`|κ39 ,

hence
|`| ≤ κ40(logk+ log |`|).

Once more, we have ε |`| ≤ kκ41 , and we saw that the upper bound (17) allows to
draw the conclusion.

Third case. Let us consider the remaining case, namely, the two terms a and
b with the largest absolute values being T2 and T3. Consequently, in the relation
T1 +T2 +T3 = 0, written in the form a+ b+ c = 0 with |a| ≥ |b| ≥ |c|, we have
c = T1. Writing |T2| ≤ 2|T3| and |T3| ≤ 2|T2|, we obtain

k−1/3|`|−κ42 ≤ ε
3n/2 ≤ k1/3|`|κ43 .

From the second of these inequalities, we deduce the existence of κ44 such that

n ≤ κ44(logk+ log |`|). (18)

Remark. The upper bound (18) allows to proceed as in the usual proof of the
Thue theorem where n is fixed.

From the upper bound |T1| ≤ |T2|, one deduces n > `−κ45 logk, so that (18)
leads right away to the conclusion if ` is positive.

Let us suppose now that ` is negative. Let us consider again the equation (7) that
we write in the form

ρnε
`+µnε

′`−µnε ′
`
= 0 (19)

with
ρn = ξ1(α

′
ε
′n−α ′ ε ′

n
) and µn = ξ

′
1(α

′ ε ′
n−αε

n).

We check (cf. Property 3.3 of [4])

h(µn)≤ κ46(n+ logk).

Let us divide each side of (19) by −µnε ′`:

µnε ′
`

µnε ′`
−1 =

ρnε`

µnε ′`
·

We have
|α ′ε ′n−α ′ ε ′

n| ≤ |α ′ε ′n|+ |α ′ ε ′n| = 2
∣∣ε ′nα

′∣∣
and, using (8),

|α ′ ε ′n−αε
n| ≥ 1

2
|α|εn.
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Since
ξ1 ≤ kκ9 and |ξ ′1| > k−κ9

by (3), we come up with

|ρn| ≤ κ47kκ9ε
n/2, |µn| ≥ κ48ε

nk−κ9 .

Therefore, since |ε ′|−1 = ε1/2, we have∣∣∣∣∣µnε ′
`

µnε ′`
−1

∣∣∣∣∣ =
∣∣∣∣ ρnε`

µnε ′`

∣∣∣∣ ≤ κ49ε
−(n+3|`|)/2kκ9 . (20)

We denote by log the principal value of the logarithm and we set

λ1 = log
(

ε ′

ε ′

)
, λ2 = log

(
µn
µn

)
and Λ = log

(
µnε ′

`

µnε ′`

)
.

We have
λ1 = 2iπν λ2 = 2iπθn,

where ν and θn are the real numbers in the interval [0,1) defined by

ε ′

ε ′
= e2iπν and

µn
µn

= e2iπθn .

From eΛ = e`λ1+λ2 we deduce Λ − `λ1−λ2 = 2iπh with h ∈ Z. From Lemma 3b
we deduce |Λ | ≤ 2|eΛ −1|. Using |Λ |< 2π and writing

2iπh = Λ −2iπ`ν−2iπθn,

we deduce |h| ≤ |`|+2.
In Proposition 1, let us take

b0 = h, b1 = `, b2 = 1, γ0 = 1, λ0 = 2iπ, γ1 =
ε ′

ε ′
, γ2 =

µn
µn

,

A0 = A1 = κ50, A2 = (k ε
n)κ51 , B = e+

|`|
logA2

·

Notice that the degree D of the field Q(γ0,γ1,γ2) is ≤ 6. Then we obtain∣∣∣∣∣µn
µn

(
ε ′

ε ′

)`

−1

∣∣∣∣∣ = |eΛ −1| ≥ 1
2
|Λ | ≥ exp

{
−κ52(logA2)(logB)

}
.

By combining this estimate with (20), we deduce

|`| ≤ κ53(n+ logk) logB,
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which can also be written as B≤ κ54 logB, hence B is bounded. This allows to obtain

|`| ≤ κ55(n+ logk).

We use (18) to deduce ε |`| ≤ kκ41 and we saw that the upper bound (15) leads to the
conclusion of the main Theorem 1.
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