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Quotient of Rn by a discrete subgroup

Additive group : C

Multiplicative group : C×

R/Z ' U R −→ U t 7−→ e2iπt

C/Z ' C× C −→ C× z 7−→ e2iπz

Elliptic curve : C/L L = Zω1 + Zω2 lattice in C ' R2

Abelian variety : Cg/L L lattice in Cg ' R2g

Commutative algebraic groups over C.
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DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)
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An argument of Paul Turan

Theorem (Fermat). An odd prime p is the sum of two
squares if and only if p is congruent to 1 modulo 4.

Proof.

Step 1. For an odd prime p, the following conditions are
equivalent.
(i) p ≡ 1 (mod 4).
(ii) −1 is a square in the finite field Fp.
(iii) −1 is a quadratic residue modulo p
(iv) There exists an integer r such that p divides r2 + 1.
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An argument of Paul Turan

Step 2. If p is a sum of two squares, then p is congruent to 1
modulo 4.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

√
a2 + b2 ≤ R as

soon as πR2 > 4p. Take

R =
2
√
p

√
3

so that πR2 > 4p and R2 < 2p.

Hence there exists such a vector with a2 + b2 < 2p.

Since (a, b)T ∈ L, there exists c ∈ Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a2 + b2.



Minkowski’s first Theorem

Let K be a compact convex set in Rn symmetric about 0 such
that 0 lies in the interior of K. Let λ1 = λ1(K) be the infimum
of the real numbers λ such that λK contains an integer point
in Zn distinct from 0. Let V = V (K) be the volume of K. Set
λ̃ = 2V −1/n. Then λ̃K is a convex body with volume 2n. By
Minkowski’s convex body theorem λ̃K contains an integer
point 6= 0. Therefore λ1 ≤ 2V −1/n, which means

λn1V < 2n.

This is Minkowski’s first Theorem.



Minkowski’s second theorem

For each integer j with 1 ≤ j ≤ n, let λj = λj(K) be the
infimum of all λ > 0 such that λK contains j linearly
independent integer points. Then

0 < λ1 ≤ λ2 · · · ≤ λn <∞.

The numbers λ1, λ2, . . . , λn are the successive minima of K.

Theorem [Minkowski’s second convex body theorem, 1907].

2n

n!
≤ λ1 · · ·λnV ≤ 2n.
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Examples

Examples :
• for the cube |xi| ≤ 1, the volume V is 2n and the successive
minima are all 1.
• for the octahedron |x1|+ · · ·+ |xn| ≤ 1, the volume V is
2n/n! and the successive minima are all 1.

Remark : Minkowski’s Theorems extend to any full rank
lattice L ⊂ Rn : if b1, . . . , bn is a basis of L, taking b1, . . . , bn
as a basis of Rn over R amounts to replace L by Zn.

Reference :
W.M. Schmidt. Diophantine Approximation. Lecture Notes in
Mathematics 785, Chap. 4, Springer Verlag, 1980.
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Simultaneous approximation
Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982).
There exists a polynomial-time algorithm that, given a positive
integer n and rational numbers α1, . . . , αn, ε satisfying
0 < ε < 1, finds integers p1, . . . , pn, q for which

|pi − qαi| ≤ ε for 1 ≤ i ≤ n and 1 ≤ q ≤ 2n(n+1)/4ε−n.

Proof. Let L be the lattice of rank n+ 1 spanned by the
columns of the (n+ 1)× (n+ 1) matrix

1 · · · 0 −α1
...

. . .
...

...
0 · · · 1 −αn
0 · · · 0 η


with η = 2−n(n+1)/4εn+1. The inner product of any two
columns is rational. By the LLL algorithm, there is a
polynomial-time algorithm to find a reduced basis b1, . . . , bn+1

for L.
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Simultaneous approximation

Since det(L) = η, we have

2n/4 det(L)1/(n+1) = ε

and
|b1| ≤ ε.

Since b1 ∈ L, we can write

b1 = (p1 − qα1, p2 − qα2, . . . , pn − qαn, qη)T

with p1, . . . , pn, q ∈ Z. Hence

|pi − qαi| ≤ ε for 1 ≤ i ≤ n and |q| ≤ 2n(n+1)/4ε−n.

From ε < 1 and b1 6= 0 we deduce q 6= 0. Replacing b1 by −b1
if necessary we may assume q > 0.



Dirichlet’s theorems on simultaneous

approximation

Let α1, . . . , αn be real numbers and Q > 1 an integer.
(i) There exists integers p1, . . . , pn, q with

1 ≤ q < Q and |αiq − pi| ≤
1

Q1/n
·

(ii) There exists integers q1, . . . , qn, p with

1 ≤ max{|q1|, . . . , |qn|} < Q and |α1q1 + · · ·+ αnqn − p| ≤
1

Qn
·

The proofs are easy applications of Dirichlet Box Principle (see
Chap. II of Schmidt LN 785).



Connection with SVP - (i)
Let ε > 0. Define η = ε/Q. Consider the L be the lattice of
rank n+ 1 spanned by the columns vectors v1, . . . , vn+1 of the
(n+ 1)× (n+ 1) matrix

1 · · · 0 −α1
...

. . .
...

...
0 · · · 1 −αn
0 · · · 0 η

 .

If v = p1v1 + · · ·+ pnvn + qvn+1 is an element of L which
satisfies 0 < max{|v1|, . . . , |vn+1|} < ε, then we have

1 ≤ q < Q and |αiq − pi| ≤ ε·

The determinant of L is η. From Minkowski’s first Theorem,
we deduce that there exists such a vector with εn+1 = 2n+1η.
With η = ε/Q we obtain εn = 2n+1/Q



Connection with SVP - (ii)
Let ε > 0. Define η = ε/Q. Consider the L be the lattice of
rank n+ 1 spanned by the columns vectors v1, . . . , vn+1 of the
(n+ 1)× (n+ 1) matrix

η · · · 0 0
...

. . .
...

...
0 · · · η 0
α1 · · · αn −1

 .

If v = q1v1 + · · ·+ qnvn + pvn+1 is an element of L which
satisfies 0 < max{|v1|, . . . , |vn+1|} < ε, then we have

1 ≤ qi < ε/η = Q and |α1q1 + · · ·+ αnqn − p| < ε·

The determinant of L is −ηn. From Minkowski’s first
Theorem, we deduce that there exists such a vector with
εn+1 = 2n+1ηn. With η = ε/Q we obtain ε = 2n+1/Qn.


