September 14-20, 2015

Ulaanbaatar (Mongolia) School of Mathematic and Computer Science, National University of Mongolia.

Lattice Cryptography

Michel Waldschmidt

Institut de Mathématiques de Jussieu — Paris VI http://webusers.imj-prg.fr/~michel.waldschmidt/

SEAMS School 2015

"Number Theory and Applications in Cryptography and Coding Theory" University of Science, Ho Chi Minh, Vietnam August 31 - September 08, 2015

Course on Lattices and Applications by Dung Duong, University of Bielefeld, Khuong A. Nguyen, HCMUT, VNU-HCM Ha Tran, Aalto University Slides :

http://www.math.uni-bielefeld.de/~dhoang/seams15/

CIMPA-ICTP School 2016

Lattices and application to cryptography and coding theory CIMPA-ICTP-VIETNAM Research School co-sponsored with ICTP Ho Chi Minh, August 1-12, 2016

http://www.cimpa-icpam.org/
http://ricerca.mat.uniroma3.it/users/valerio/hochiminh16.html
Applications : http://students.cimpa.info/login

Main references

• Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman : An *introduction to mathematical cryptography.* Springer Undergraduate Texts in Mathematics, 2008. Second ed. 2014.

• Wade Trappe and Lawrence C. Washington : *Introduction to Cryptography with Coding Theory.* Pearson Prentice Hall, 2006.

http://en.bookfi.org/book/1470907

Further references

- A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovacz : Factoring Polynomials with Rational Coefficients. Math Annalen 261 (1982) 515–534.
- Daniele Micciancio & Oded Regev : Lattice-based Cryptography (2008). http://www.cims.nyu.edu/~regev/papers/pqc.pdf
- Joachim von zur Gathen & Jürgen Gerhard. *Modern Computer Algebra.* Cambridge University Press, Cambridge, UK, Third edition (2013).

https://cosec.bit.uni-bonn.de/science/mca/

• Abderrahmane Nitaj : *Applications de l'algorithme LLL en cryptographie* . Informal notes.

http://math.unicaen.fr/~nitaj/LLLapplic.pdf

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of ${f R}$

Classification of closed subgroups of ${f R}^2$, of ${f R}^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of ${f R}$

Classification of closed subgroups of ${f R}^2$, of ${f R}^n$

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of ${f R}$

Classification of closed subgroups of ${f R}^2$, of ${f R}^n$

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of ${\bf R}$

Classification of closed subgroups of ${f R}^2$, of ${f R}^n$

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of \mathbf{R}

Classification of closed subgroups of \mathbf{R}^2 , of \mathbf{R}^n

 $\mathsf{Additive\ group}: \mathbf{C}$

Additive group : \mathbf{C}

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z}\simeq\mathbf{U} & \mathbf{R}\longrightarrow\mathbf{U} & t\longmapsto e^{2i\pi t} \\ \mathbf{C}/\mathbf{Z}\simeq\mathbf{C}^{\times} & \mathbf{C}\longrightarrow\mathbf{C}^{\times} & z\longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L=\mathbf{Z}\omega_1+\mathbf{Z}\omega_2$ lattice in $\mathbf{C}\simeq\mathbf{R}$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g\simeq\mathbf{R}^{2g}$

Additive group : C

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2i\pi t} \\ \mathbf{C}/\mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L = \mathbf{Z}\omega_1 + \mathbf{Z}\omega_2$ lattice in $\mathbf{C} \simeq \mathbf{R}$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g \simeq \mathbf{R}^{2g}$

Additive group : C

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2i\pi t} \\ \mathbf{C}/\mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L = \mathbf{Z}\omega_1 + \mathbf{Z}\omega_2$ lattice in $\mathbf{C} \simeq \mathbf{R}^2$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g \simeq \mathbf{R}^{2g}$

Additive group : C

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2i\pi t} \\ \mathbf{C}/\mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L = \mathbf{Z}\omega_1 + \mathbf{Z}\omega_2$ lattice in $\mathbf{C} \simeq \mathbf{R}^2$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g \simeq \mathbf{R}^{2g}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Additive group : C

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z}\simeq\mathbf{U} & \mathbf{R}\longrightarrow\mathbf{U} & t\longmapsto e^{2i\pi t} \\ & \mathbf{C}/\mathbf{Z}\simeq\mathbf{C}^{\times} & \mathbf{C}\longrightarrow\mathbf{C}^{\times} & z\longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L=\mathbf{Z}\omega_1+\mathbf{Z}\omega_2$ lattice in $\mathbf{C}\simeq\mathbf{R}^2$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g\simeq\mathbf{R}^{2g}$

Additive group : C

Multiplicative group : \mathbf{C}^{\times}

 $\begin{array}{ll} \mathbf{R}/\mathbf{Z}\simeq\mathbf{U} & \mathbf{R}\longrightarrow\mathbf{U} & t\longmapsto e^{2i\pi t} \\ \mathbf{C}/\mathbf{Z}\simeq\mathbf{C}^{\times} & \mathbf{C}\longrightarrow\mathbf{C}^{\times} & z\longmapsto e^{2i\pi z} \end{array}$ Elliptic curve : $\mathbf{C}/L & L=\mathbf{Z}\omega_1+\mathbf{Z}\omega_2$ lattice in $\mathbf{C}\simeq\mathbf{R}^2$ Abelian variety : $\mathbf{C}^g/L & L$ lattice in $\mathbf{C}^g\simeq\mathbf{R}^{2g}$

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

Lattice based cryptosystems (\sim 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful) Hoffstein, Pipher and Silverman

Lattice based cryptosystems (\sim 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful) Hoffstein, Pipher and Silverman

Lattice based cryptosystems (~ 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful) Hoffstein, Pipher and Silverman

Theorem (Fermat). An odd prime p is the sum of two squares if and only if p is congruent to 1 modulo 4.

Proof.

Step 1. For an odd prime p, the following conditions are equivalent.

(i) $p \equiv 1 \pmod{4}$.

(ii) -1 is a square in the finite field ${f F}_p$,

(iii) -1 is a quadratic residue modulo p

(iv) There exists an integer r such that p divides $r^2 + 1$.

Theorem (Fermat). An odd prime p is the sum of two squares if and only if p is congruent to 1 modulo 4.

Proof.

Step 1. For an odd prime p, the following conditions are equivalent.

(i) p ≡ 1 (mod 4).
(ii) -1 is a square in the finite field F_p.
(iii) -1 is a quadratic residue modulo p
(iv) There exists an integer r such that p divides r² + 1.

Step 2. If p is a sum of two squares, then p is congruent to 1 modulo 4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

 $R = rac{2\sqrt{p}}{\sqrt{3}}$ so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = rac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = rac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = rac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = rac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = \frac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

An argument of Paul Turan

Step 3. Assume p divides $r^2 + 1$. Let \mathcal{L} be the lattice with basis $(1, r)^T$, $(0, p)^T$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^T$ of norm $\sqrt{a^2 + b^2} \leq R$ as soon as $\pi R^2 > 4p$. Take

$$R = \frac{2\sqrt{p}}{\sqrt{3}}$$
 so that $\pi R^2 > 4p$ and $R^2 < 2p$.

Hence there exists such a vector with $a^2 + b^2 < 2p$.

Since $(a, b)^T \in \mathcal{L}$, there exists $c \in \mathbb{Z}$ with b = ar + cp. Since p divides $r^2 + 1$, it follows that $a^2 + b^2$ is a multiple of p. The only nonzero multiple of p of absolute value less than 2p is p. Hence $p = a^2 + b^2$.

Minkowski's first Theorem

Let K be a compact convex set in \mathbb{R}^n symmetric about 0 such that 0 lies in the interior of K. Let $\lambda_1 = \lambda_1(K)$ be the infimum of the real numbers λ such that λK contains an integer point in \mathbb{Z}^n distinct from 0. Let V = V(K) be the volume of K. Set $\tilde{\lambda} = 2V^{-1/n}$. Then $\tilde{\lambda}K$ is a convex body with volume 2^n . By Minkowski's convex body theorem $\tilde{\lambda}K$ contains an integer point $\neq 0$. Therefore $\lambda_1 \leq 2V^{-1/n}$, which means

 $\lambda_1^n V < 2^n.$

(日) (同) (三) (三) (三) (○) (○)

This is Minkowski's first Theorem.

Minkowski's second theorem

For each integer j with $1 \le j \le n$, let $\lambda_j = \lambda_j(K)$ be the infimum of all $\lambda > 0$ such that λK contains j linearly independent integer points. Then

$0 < \lambda_1 \leq \lambda_2 \cdots \leq \lambda_n < \infty.$

The numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the *successive minima* of *K*.

Theorem [Minkowski's second convex body theorem, 1907].

$$\frac{2^n}{n!} \le \lambda_1 \cdots \lambda_n V \le 2^n.$$

Minkowski's second theorem

For each integer j with $1 \le j \le n$, let $\lambda_j = \lambda_j(K)$ be the infimum of all $\lambda > 0$ such that λK contains j linearly independent integer points. Then

$0 < \lambda_1 \leq \lambda_2 \cdots \leq \lambda_n < \infty.$

The numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the *successive minima* of K. **Theorem** [Minkowski's second convex body theorem, 1907].

$$\frac{2^n}{n!} \le \lambda_1 \cdots \lambda_n V \le 2^n.$$

Examples

Examples :

• for the cube $|x_i| \leq 1$, the volume V is 2^n and the successive minima are all 1.

• for the octahedron $|x_1| + \cdots + |x_n| \le 1$, the volume V is $2^n/n!$ and the successive minima are all 1.

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbb{R}^n$: if b_1, \ldots, b_n is a basis of \mathcal{L} , taking b_1, \ldots, b_n as a basis of \mathbb{R}^n over \mathbb{R} amounts to replace \mathcal{L} by \mathbb{Z}^n .

Reference : W.M. Schmidt. *Diophantine Approximation*. Lecture Notes in Mathematics **785**, Chap. 4, Springer Verlag, 1980.

Examples

Examples :

• for the cube $|x_i| \leq 1$, the volume V is 2^n and the successive minima are all 1.

• for the octahedron $|x_1| + \cdots + |x_n| \le 1$, the volume V is $2^n/n!$ and the successive minima are all 1.

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbb{R}^n$: if b_1, \ldots, b_n is a basis of \mathcal{L} , taking b_1, \ldots, b_n as a basis of \mathbb{R}^n over \mathbb{R} amounts to replace \mathcal{L} by \mathbb{Z}^n .

Reference : W.M. Schmidt. *Diophantine Approximation*. Lecture Notes in Mathematics **785**, Chap. 4, Springer Verlag, 1980.

Examples

Examples :

• for the cube $|x_i| \leq 1$, the volume V is 2^n and the successive minima are all 1.

• for the octahedron $|x_1| + \cdots + |x_n| \le 1$, the volume V is $2^n/n!$ and the successive minima are all 1.

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbb{R}^n$: if b_1, \ldots, b_n is a basis of \mathcal{L} , taking b_1, \ldots, b_n as a basis of \mathbb{R}^n over \mathbb{R} amounts to replace \mathcal{L} by \mathbb{Z}^n .

Reference :

W.M. Schmidt. *Diophantine Approximation*. Lecture Notes in Mathematics **785**, Chap. 4, Springer Verlag, 1980.

Simultaneous approximation

Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982). There exists a polynomial-time algorithm that, given a positive integer n and rational numbers $\alpha_1, \ldots, \alpha_n, \epsilon$ satisfying $0 < \epsilon < 1$, finds integers p_1, \ldots, p_n, q for which

 $|p_i - q\alpha_i| \le \epsilon$ for $1 \le i \le n$ and $1 \le q \le 2^{n(n+1)/4} \epsilon^{-n}$.

Proof. Let \mathcal{L} be the lattice of rank n + 1 spanned by the columns of the $(n + 1) \times (n + 1)$ matrix

$$egin{pmatrix} 1 & \cdots & 0 & -lpha_1 \ dots & \ddots & dots & dots \ 0 & \cdots & 1 & -lpha_n \ 0 & \cdots & 0 & \eta \end{pmatrix}$$

with $\eta = 2^{-n(n+1)/4} \epsilon^{n+1}$. The inner product of any two columns is rational. By the LLL algorithm, there is a polynomial-time algorithm to find a reduced basis b_1, \ldots, b_{n+1} for ℓ

Simultaneous approximation

Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982). There exists a polynomial-time algorithm that, given a positive integer n and rational numbers $\alpha_1, \ldots, \alpha_n, \epsilon$ satisfying $0 < \epsilon < 1$, finds integers p_1, \ldots, p_n, q for which

 $|p_i - q\alpha_i| \le \epsilon$ for $1 \le i \le n$ and $1 \le q \le 2^{n(n+1)/4} \epsilon^{-n}$.

Proof. Let \mathcal{L} be the lattice of rank n+1 spanned by the columns of the $(n+1) \times (n+1)$ matrix

(1)	• • •	0	$-\alpha_1$
÷	$\gamma_{i,j}$	÷	- E -
0	•••	1	$-\alpha_n$
0	•••	0	η]

with $\eta = 2^{-n(n+1)/4} \epsilon^{n+1}$. The inner product of any two columns is rational. By the LLL algorithm, there is a polynomial-time algorithm to find a reduced basis b_1, \ldots, b_{n+1} for ℓ

Simultaneous approximation

Since $det(L) = \eta$, we have

 $2^{n/4} \det(L)^{1/(n+1)} = \epsilon$

and

 $|b_1| \le \epsilon.$

Since $b_1 \in \mathcal{L}$, we can write

 $b_1 = (p_1 - q\alpha_1, p_2 - q\alpha_2, \dots, p_n - q\alpha_n, q\eta)^T$

with $p_1, \ldots, p_n, q \in \mathbb{Z}$. Hence

 $|p_i - q\alpha_i| \le \epsilon$ for $1 \le i \le n$ and $|q| \le 2^{n(n+1)/4} \epsilon^{-n}$.

From $\epsilon < 1$ and $b_1 \neq 0$ we deduce $q \neq 0$. Replacing b_1 by $-b_1$ if necessary we may assume q > 0.

Dirichlet's theorems on simultaneous approximation

Let $\alpha_1, \ldots, \alpha_n$ be real numbers and Q > 1 an integer. (i) There exists integers p_1, \ldots, p_n, q with

$$1 \leq q < Q \quad \textit{and} \quad |\alpha_i q - p_i| \leq \frac{1}{Q^{1/n}} \cdot$$

(ii) There exists integers q_1, \ldots, q_n, p with

 $1 \le \max\{|q_1|, \dots, |q_n|\} < Q$ and $|\alpha_1 q_1 + \dots + \alpha_n q_n - p| \le \frac{1}{Q^n}$.

The proofs are easy applications of Dirichlet Box Principle (see Chap. II of Schmidt LN 785).

Connection with SVP - (i)

Let $\epsilon > 0$. Define $\eta = \epsilon/Q$. Consider the \mathcal{L} be the lattice of rank n + 1 spanned by the columns vectors v_1, \ldots, v_{n+1} of the $(n+1) \times (n+1)$ matrix

$$\begin{pmatrix} 1 & \cdots & 0 & -\alpha_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -\alpha_n \\ 0 & \cdots & 0 & \eta \end{pmatrix}.$$

If $v = p_1v_1 + \cdots + p_nv_n + qv_{n+1}$ is an element of \mathcal{L} which satisfies $0 < \max\{|v_1|, \dots, |v_{n+1}|\} < \epsilon$, then we have

 $1 \leq q < Q$ and $|\alpha_i q - p_i| \leq \epsilon \cdot$

The determinant of \mathcal{L} is η . From Minkowski's first Theorem, we deduce that there exists such a vector with $\epsilon^{n+1} = 2^{n+1}\eta$. With $\eta = \epsilon/Q$ we obtain $\epsilon^n = 2^{n+1}/Q$ Connection with SVP - (ii)

Let $\epsilon > 0$. Define $\eta = \epsilon/Q$. Consider the \mathcal{L} be the lattice of rank n + 1 spanned by the columns vectors v_1, \ldots, v_{n+1} of the $(n + 1) \times (n + 1)$ matrix

$$\begin{pmatrix} \eta & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \eta & 0 \\ \alpha_1 & \cdots & \alpha_n & -1 \end{pmatrix}.$$

If $v = q_1v_1 + \cdots + q_nv_n + pv_{n+1}$ is an element of \mathcal{L} which satisfies $0 < \max\{|v_1|, \dots, |v_{n+1}|\} < \epsilon$, then we have

 $1 \leq q_i < \epsilon/\eta = Q$ and $|\alpha_1 q_1 + \dots + \alpha_n q_n - p| < \epsilon$.

The determinant of \mathcal{L} is $-\eta^n$. From Minkowski's first Theorem, we deduce that there exists such a vector with $\epsilon^{n+1} = 2^{n+1}\eta^n$. With $\eta = \epsilon/Q$ we obtain $\epsilon = 2^{n+1}/Q^n$.