Ulaanbaatar (Mongolia)

School of Mathematic and Computer Science, National University of Mongolia.

Lattice Cryptography

Michel Waldschmidt

Institut de Mathématiques de Jussieu - Paris VI http://webusers.imj-prg.fr/~michel.waldschmidt/

SEAMS School 2015

"Number Theory and Applications in Cryptography and Coding Theory"

 University of Science, Ho Chi Minh, Vietnam August 31 - September 08, 2015Course on Lattices and Applications by
Dung Duong, University of Bielefeld, Khuong A. Nguyen, HCMUT, VNU-HCM Ha Tran, Aalto University
Slides:
http://www.math.uni-bielefeld.de/~dhoang/seams15/

CIMPA-ICTP School 2016

Lattices and application to cryptography and coding theory

 CIMPA-ICTP-VIETNAMResearch School co-sponsored with ICTP
Ho Chi Minh, August 1-12, 2016
http://www.cimpa-icpam.org/
http://ricerca.mat.uniroma3.it/users/valerio/hochiminh16.html
Applications: http://students.cimpa.info/login

Main references

- Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman : An introduction to mathematical cryptography. Springer Undergraduate Texts in Mathematics, 2008. Second ed. 2014.
- Wade Trappe and Lawrence C. Washington : Introduction to Cryptography with Coding Theory. Pearson Prentice Hall, 2006.
http://en.bookfi.org/book/1470907

Further references

- A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovacz : Factoring Polynomials with Rational Coefficients. Math Annalen 261 (1982) 515-534.
- Daniele Micciancio \& Oded Regev : Lattice-based Cryptography (2008). http://www.cims.nyu.edu/~regev/papers/pqc.pdf
- Joachim von zur Gathen \& Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, UK, Third edition (2013).
https://cosec.bit.uni-bonn.de/science/mca/
- Abderrahmane Nitaj : Applications de l'algorithme LLL en cryptographie . Informal notes.
http://math.unicaen.fr/~nitaj/LLLapplic.pdf

Subgroups of \mathbf{R}^{n}

Examples

Finitely generated or not, finite rank or not
discrete or not, dense or not, closed or not

Classification of closed subgroups of R

Classification of closed subgroups of \mathbf{R}^{2}, of \mathbf{R}^{n}

Subgroups of \mathbf{R}^{n}

Examples

Finitely generated or not, finite rank or not
discrete or not, dense or not, closed or not

Classification of closed subgroups of R

Classification of closed subgroups of \mathbf{R}^{2}, of \mathbf{R}^{n}

Subgroups of \mathbf{R}^{n}

Examples

Finitely generated or not, finite rank or not
discrete or not, dense or not, closed or not

Classification of closed subgroups of \mathbf{R}

Classification of closed subgroups of \mathbf{R}^{2}, of \mathbf{R}^{n}

Subgroups of \mathbf{R}^{n}

Examples

Finitely generated or not, finite rank or not
discrete or not, dense or not, closed or not

Classification of closed subgroups of \mathbf{R}

Classification of closed subgroups of \mathbf{R}^{2}, of \mathbf{R}^{n}

Subgroups of \mathbf{R}^{n}

Examples

Finitely generated or not, finite rank or not
discrete or not, dense or not, closed or not

Classification of closed subgroups of \mathbf{R}

Classification of closed subgroups of \mathbf{R}^{2}, of \mathbf{R}^{n}

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C

Multiplicative group : C^{\times}

Elliptic curve: $\mathbf{C} / L \quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$

Abelian variety: $\mathbf{C}^{g} / L \quad L$ lattice in $\mathbf{C}^{g} \simeq \mathbf{R}^{2 g}$

Commutative algebraic groups over C .

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}

Abelian variety : $\mathrm{C}^{g} / L \quad L$ lattice in $\mathbf{C}^{g} \simeq \mathbf{R}^{2 g}$

Commutative algebraic groups over C .

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}

$$
\mathbf{R} / \mathbf{Z} \simeq \mathbf{U} \quad \mathbf{R} \longrightarrow \mathbf{U} \quad t \longmapsto e^{2 i \pi t}
$$

Elliptic curve: $\mathbf{C} / L \quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$
Abelian variety: $\mathbb{C}^{0} / L \quad L$ lattice in $\mathrm{C}^{?} \simeq \mathrm{R}^{2 g}$
Commutative algebraic groups over C.

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}
$\mathrm{R} / \mathrm{Z} \simeq \mathrm{U}$
$\mathbf{R} \longrightarrow \mathbf{U}$
$t \longmapsto e^{2 i \pi t}$
$\mathrm{C} / \mathrm{Z} \simeq \mathrm{C}^{\times}$
$\mathrm{C} \longrightarrow \mathrm{C}^{\times}$
$z \longmapsto e^{2 i \pi z}$

Elliptic curve: $\mathbf{C} / L \quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$

Abelian variety \square L lattice in $\mathbf{C}^{g} \simeq \mathbf{R}^{2 g}$

Commutative algebraic groups over C .

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}

$$
\begin{array}{lrrl}
\mathbf{R} / \mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2 i \pi t} \\
\mathbf{C} / \mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2 i \pi z}
\end{array}
$$

Elliptic curve : C/L $\quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$
Abelian variety: $\mathrm{C}^{g} / L \quad L$ lattice in $\mathrm{C}^{g} \simeq \mathrm{R}^{2 g}$
Commutative algebraic groups over C.

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}

$$
\begin{array}{lrrl}
\mathbf{R} / \mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2 i \pi t} \\
\mathbf{C} / \mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2 i \pi z}
\end{array}
$$

Elliptic curve: $\mathbf{C} / L \quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$
Abelian variety : $\mathbf{C}^{g} / L \quad L$ lattice in $\mathbf{C}^{g} \simeq \mathbf{R}^{2 g}$
Commutative algebraic groups over C .

Quotient of \mathbf{R}^{n} by a discrete subgroup

Additive group : C
Multiplicative group : \mathbf{C}^{\times}

$$
\begin{array}{lrrl}
\mathbf{R} / \mathbf{Z} \simeq \mathbf{U} & \mathbf{R} \longrightarrow \mathbf{U} & t \longmapsto e^{2 i \pi t} \\
\mathbf{C} / \mathbf{Z} \simeq \mathbf{C}^{\times} & \mathbf{C} \longrightarrow \mathbf{C}^{\times} & z \longmapsto e^{2 i \pi z}
\end{array}
$$

Elliptic curve : $\mathbf{C} / L \quad L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ lattice in $\mathbf{C} \simeq \mathbf{R}^{2}$
Abelian variety : $\mathbf{C}^{g} / L \quad L$ lattice in $\mathbf{C}^{g} \simeq \mathbf{R}^{2 g}$
Commutative algebraic groups over C.

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)
SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)
SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)
SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Some acronymes

DES : Data Encryption Standard (1977)
AES : Advanced Encryption Standard (2000)
RSA : Rivest, Shamir, Adelman (1978)
LLL : Lenstra, Lenstra, Lovacz (1982)
SVP : Shortest Vector Problem (and approximate versions)
CVP : Closest Vector Problem (and approximate versions)
SBP : Shortest Basis Problem (and approximate versions)

Lattice based cryptosystems (~ 1995)

Ajtai - Dwork

GGH: Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful) Hoffstein, Pipher and Silverman

Lattice based cryptosystems (~ 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful) Hoffstein, Pipher and Silverman

Lattice based cryptosystems (~ 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful)
Hoffstein, Pipher and Silverman

An argument of Paul Turan

Theorem (Fermat). An odd prime p is the sum of two squares if and only if p is congruent to 1 modulo 4.

An argument of Paul Turan

Theorem (Fermat). An odd prime p is the sum of two squares if and only if p is congruent to 1 modulo 4.

Proof.

Step 1. For an odd prime p, the following conditions are equivalent.
(i) $p \equiv 1(\bmod 4)$.
(ii) -1 is a square in the finite field \mathbf{F}_{p}.
(iii) -1 is a quadratic residue modulo p
(iv) There exists an integer r such that p divides $r^{2}+1$.

An argument of Paul Turan

Step 2. If p is a sum of two squares, then p is congruent to 1 modulo 4.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.

Since $(a, b)^{T} \in \mathcal{L}$, there exists $c \in \mathbb{Z}$ with $b=a r+c p$. Since p divides $r^{2}+1$, it follows that $a^{2}+b^{2}$ is a multiple of p. The only nonzero multiple of p of absolute value less than $2 p$ is p. Hence $p=a^{2}+b^{2}$.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.
Since $(a, b)^{T} \in \mathcal{L}$, there exists $c \in \mathbf{Z}$ with $b=a r+c p$.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.
Since $(a, b)^{T} \in \mathcal{L}$, there exists $c \in \mathbf{Z}$ with $b=a r+c p$. Since p divides $r^{2}+1$, it follows that $a^{2}+b^{2}$ is a multiple of p.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.
Since $(a, b)^{T} \in \mathcal{L}$, there exists $c \in \mathbf{Z}$ with $b=a r+c p$. Since p divides $r^{2}+1$, it follows that $a^{2}+b^{2}$ is a multiple of p. The only nonzero multiple of p of absolute value less than $2 p$ is p.

An argument of Paul Turan

Step 3. Assume p divides $r^{2}+1$. Let \mathcal{L} be the lattice with basis $(1, r)^{T},(0, p)^{T}$. The determinant of \mathcal{L} is p. Using Minkowski's Theorem with the disk of radius R, we deduce that \mathcal{L} contains a vector $(a, b)^{T}$ of norm $\sqrt{a^{2}+b^{2}} \leq R$ as soon as $\pi R^{2}>4 p$. Take

$$
R=\frac{2 \sqrt{p}}{\sqrt{3}} \quad \text { so that } \quad \pi R^{2}>4 p \quad \text { and } \quad R^{2}<2 p
$$

Hence there exists such a vector with $a^{2}+b^{2}<2 p$.
Since $(a, b)^{T} \in \mathcal{L}$, there exists $c \in \mathbf{Z}$ with $b=a r+c p$. Since p divides $r^{2}+1$, it follows that $a^{2}+b^{2}$ is a multiple of p. The only nonzero multiple of p of absolute value less than $2 p$ is p. Hence $p=a^{2}+b^{2}$.

Minkowski's first Theorem

Let K be a compact convex set in \mathbf{R}^{n} symmetric about 0 such that 0 lies in the interior of K. Let $\lambda_{1}=\lambda_{1}(K)$ be the infimum of the real numbers λ such that λK contains an integer point in \mathbf{Z}^{n} distinct from 0 . Let $V=V(K)$ be the volume of K. Set $\tilde{\lambda}=2 V^{-1 / n}$. Then $\tilde{\lambda} K$ is a convex body with volume 2^{n}. By Minkowski's convex body theorem $\tilde{\lambda} K$ contains an integer point $\neq 0$. Therefore $\lambda_{1} \leq 2 V^{-1 / n}$, which means

$$
\lambda_{1}^{n} V<2^{n}
$$

This is Minkowski's first Theorem.

Minkowski's second theorem

For each integer j with $1 \leq j \leq n$, let $\lambda_{j}=\lambda_{j}(K)$ be the infimum of all $\lambda>0$ such that λK contains j linearly independent integer points. Then

$$
0<\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}<\infty .
$$

The numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the successive minima of K.
Theorem [Minkowski's second convex body theorem, 1907].

Minkowski's second theorem

For each integer j with $1 \leq j \leq n$, let $\lambda_{j}=\lambda_{j}(K)$ be the infimum of all $\lambda>0$ such that λK contains j linearly independent integer points. Then

$$
0<\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}<\infty .
$$

The numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the successive minima of K.
Theorem [Minkowski's second convex body theorem, 1907].

$$
\frac{2^{n}}{n!} \leq \lambda_{1} \cdots \lambda_{n} V \leq 2^{n}
$$

Examples

Examples:

- for the cube $\left|x_{i}\right| \leq 1$, the volume V is 2^{n} and the successive minima are all 1.
- for the octahedron $\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1$, the volume V is $2^{n} / n$! and the successive minima are all 1 .

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbf{R}^{n}:$ if b_{1}, \ldots, b_{n} is a basis of \mathcal{L}, taking b_{1}, \ldots, b_{n} as a basis of \mathbb{R}^{n} over \mathbf{R} amounts to replace \mathcal{L} by \mathbb{Z}^{n}

Reference:
 W.M. Schmidt. Diophantine Approximation. Lecture Notes in Mathematics 785, Chap. 4, Springer Verlag, 1980.

Examples

Examples:

- for the cube $\left|x_{i}\right| \leq 1$, the volume V is 2^{n} and the successive minima are all 1.
- for the octahedron $\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1$, the volume V is $2^{n} / n$! and the successive minima are all 1.

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbf{R}^{n}:$ if b_{1}, \ldots, b_{n} is a basis of \mathcal{L}, taking b_{1}, \ldots, b_{n} as a basis of \mathbf{R}^{n} over \mathbf{R} amounts to replace \mathcal{L} by \mathbf{Z}^{n}.

Reference:
W.M. Schmidt. Diophantine Approximation. Lecture Notes in Mathematics 785, Chap. 4, Springer Verlag, 1980.

Examples

Examples:

- for the cube $\left|x_{i}\right| \leq 1$, the volume V is 2^{n} and the successive minima are all 1.
- for the octahedron $\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1$, the volume V is $2^{n} / n$! and the successive minima are all 1 .

Remark : Minkowski's Theorems extend to any full rank lattice $\mathcal{L} \subset \mathbf{R}^{n}:$ if b_{1}, \ldots, b_{n} is a basis of \mathcal{L}, taking b_{1}, \ldots, b_{n} as a basis of \mathbf{R}^{n} over \mathbf{R} amounts to replace \mathcal{L} by \mathbf{Z}^{n}.

Reference :
W.M. Schmidt. Diophantine Approximation. Lecture Notes in Mathematics 785, Chap. 4, Springer Verlag, 1980.

Simultaneous approximation

Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982).
There exists a polynomial-time algorithm that, given a positive integer n and rational numbers $\alpha_{1}, \ldots, \alpha_{n}, \epsilon$ satisfying $0<\epsilon<1$, finds integers p_{1}, \ldots, p_{n}, q for which

$$
\left|p_{i}-q \alpha_{i}\right| \leq \epsilon \quad \text { for } \quad 1 \leq i \leq n \quad \text { and } \quad 1 \leq q \leq 2^{n(n+1) / 4} \epsilon^{-n}
$$

Proof. Let \mathcal{L} be the lattice of rank $n+1$ spanned by the
columns of the $(n+1) \times(n+1)$ matrix

Simultaneous approximation

Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982).
There exists a polynomial-time algorithm that, given a positive integer n and rational numbers $\alpha_{1}, \ldots, \alpha_{n}, \epsilon$ satisfying $0<\epsilon<1$, finds integers p_{1}, \ldots, p_{n}, q for which

$$
\left|p_{i}-q \alpha_{i}\right| \leq \epsilon \quad \text { for } \quad 1 \leq i \leq n \quad \text { and } \quad 1 \leq q \leq 2^{n(n+1) / 4} \epsilon^{-n}
$$

Proof. Let \mathcal{L} be the lattice of rank $n+1$ spanned by the columns of the $(n+1) \times(n+1)$ matrix

$$
\left(\begin{array}{cccc}
1 & \cdots & 0 & -\alpha_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & -\alpha_{n} \\
0 & \cdots & 0 & \eta
\end{array}\right)
$$

with $\eta=2^{-n(n+1) / 4} \epsilon^{n+1}$. The inner product of any two columns is rational. By the LLL algorithm, there is a polynomial-time algorithm to find a reduced basis b_{1}, \ldots, b_{n+1} for \mathcal{C}

Simultaneous approximation

Since $\operatorname{det}(L)=\eta$, we have

$$
2^{n / 4} \operatorname{det}(L)^{1 /(n+1)}=\epsilon
$$

and

$$
\left|b_{1}\right| \leq \epsilon
$$

Since $b_{1} \in \mathcal{L}$, we can write

$$
b_{1}=\left(p_{1}-q \alpha_{1}, p_{2}-q \alpha_{2}, \ldots, p_{n}-q \alpha_{n}, q \eta\right)^{T}
$$

with $p_{1}, \ldots, p_{n}, q \in \mathbf{Z}$. Hence

$$
\left|p_{i}-q \alpha_{i}\right| \leq \epsilon \quad \text { for } \quad 1 \leq i \leq n \quad \text { and } \quad|q| \leq 2^{n(n+1) / 4} \epsilon^{-n}
$$

From $\epsilon<1$ and $b_{1} \neq 0$ we deduce $q \neq 0$. Replacing b_{1} by $-b_{1}$ if necessary we may assume $q>0$.

Dirichlet's theorems on simultaneous approximation

Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers and $Q>1$ an integer.
(i) There exists integers p_{1}, \ldots, p_{n}, q with

$$
1 \leq q<Q \quad \text { and } \quad\left|\alpha_{i} q-p_{i}\right| \leq \frac{1}{Q^{1 / n}}
$$

(ii) There exists integers q_{1}, \ldots, q_{n}, p with
$1 \leq \max \left\{\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right\}<Q \quad$ and $\quad\left|\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}-p\right| \leq \frac{1}{Q^{n}}$.

The proofs are easy applications of Dirichlet Box Principle (see Chap. II of Schmidt LN 785).

Connection with SVP - (i)

Let $\epsilon>0$. Define $\eta=\epsilon / Q$. Consider the \mathcal{L} be the lattice of rank $n+1$ spanned by the columns vectors v_{1}, \ldots, v_{n+1} of the $(n+1) \times(n+1)$ matrix

$$
\left(\begin{array}{cccc}
1 & \cdots & 0 & -\alpha_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & -\alpha_{n} \\
0 & \cdots & 0 & \eta
\end{array}\right) .
$$

If $v=p_{1} v_{1}+\cdots+p_{n} v_{n}+q v_{n+1}$ is an element of \mathcal{L} which satisfies $0<\max \left\{\left|v_{1}\right|, \ldots,\left|v_{n+1}\right|\right\}<\epsilon$, then we have

$$
1 \leq q<Q \quad \text { and } \quad\left|\alpha_{i} q-p_{i}\right| \leq \epsilon .
$$

The determinant of \mathcal{L} is η. From Minkowski's first Theorem, we deduce that there exists such a vector with $\epsilon^{n+1}=2^{n+1} \eta$. With $\eta=\epsilon / Q$ we obtain $\epsilon^{n}=2^{n+1} / Q$

Connection with SVP - (ii)

Let $\epsilon>0$. Define $\eta=\epsilon / Q$. Consider the \mathcal{L} be the lattice of rank $n+1$ spanned by the columns vectors v_{1}, \ldots, v_{n+1} of the $(n+1) \times(n+1)$ matrix

$$
\left(\begin{array}{cccc}
\eta & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \eta & 0 \\
\alpha_{1} & \cdots & \alpha_{n} & -1
\end{array}\right) .
$$

If $v=q_{1} v_{1}+\cdots+q_{n} v_{n}+p v_{n+1}$ is an element of \mathcal{L} which satisfies $0<\max \left\{\left|v_{1}\right|, \ldots,\left|v_{n+1}\right|\right\}<\epsilon$, then we have

$$
1 \leq q_{i}<\epsilon / \eta=Q \quad \text { and } \quad\left|\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}-p\right|<\epsilon .
$$

The determinant of \mathcal{L} is $-\eta^{n}$. From Minkowski's first Theorem, we deduce that there exists such a vector with $\epsilon^{n+1}=2^{n+1} \eta^{n}$. With $\eta=\epsilon / Q$ we obtain $\epsilon=2^{n+1} / Q^{n}$.

