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Subgroups of Rn

Examples

Finitely generated or not, finite rank or not

discrete or not, dense or not, closed or not

Classification of closed subgroups of R

Classification of closed subgroups of R2, of Rn
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Quotient of Rn

by a discrete subgroup

Additive group : C

Multiplicative group : C⇥

R/Z ' U R �! U t 7�! e

2i⇡t

C/Z ' C⇥ C �! C⇥
z 7�! e

2i⇡z

Elliptic curve : C/L L = Z!1 + Z!2 lattice in C ' R2

Abelian variety : Cg
/L L lattice in Cg ' R2g

Commutative algebraic groups over C.
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Some acronymes

DES : Data Encryption Standard (1977)

AES : Advanced Encryption Standard (2000)

RSA : Rivest, Shamir, Adelman (1978)

LLL : Lenstra, Lenstra, Lovacz (1982)

SVP : Shortest Vector Problem (and approximate versions)

CVP : Closest Vector Problem (and approximate versions)

SBP : Shortest Basis Problem (and approximate versions)
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Lattice based cryptosystems (⇠ 1995)

Ajtai - Dwork

GGH : Goldreich, Goldwasser, Halevi

NTRU : Number Theorists Are Us (Are Useful)
Ho↵stein, Pipher and Silverman
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An argument of Paul Turan

Theorem (Fermat). An odd prime p is the sum of two
squares if and only if p is congruent to 1 modulo 4.

Proof.

Step 1. For an odd prime p, the following conditions are
equivalent.
(i) p ⌘ 1 (mod 4).
(ii) �1 is a square in the finite field Fp.
(iii) �1 is a quadratic residue modulo p

(iv) There exists an integer r such that p divides r2 + 1.
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An argument of Paul Turan

Step 2. If p is a sum of two squares, then p is congruent to 1

modulo 4.
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An argument of Paul Turan

Step 3. Assume p divides r2 + 1. Let L be the lattice with
basis (1, r)T , (0, p)T . The determinant of L is p. Using
Minkowski’s Theorem with the disk of radius R, we deduce
that L contains a vector (a, b)T of norm

p
a

2
+ b

2  R as
soon as ⇡R2

> 4p. Take

R =

2

p
p

p
3

so that ⇡R

2
> 4p and R

2
< 2p.

Hence there exists such a vector with a

2
+ b

2
< 2p.

Since (a, b)T 2 L, there exists c 2 Z with b = ar + cp. Since p
divides r2 + 1, it follows that a2 + b

2 is a multiple of p. The
only nonzero multiple of p of absolute value less than 2p is p.
Hence p = a

2
+ b

2.
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Minkowski’s first Theorem

Let K be a compact convex set in Rn symmetric about 0 such
that 0 lies in the interior of K. Let �1 = �1(K) be the infimum
of the real numbers � such that �K contains an integer point
in Zn distinct from 0. Let V = V (K) be the volume of K. Set
˜

� = 2V

�1/n. Then ˜

�K is a convex body with volume 2

n. By
Minkowski’s convex body theorem ˜

�K contains an integer
point 6= 0. Therefore �1  2V

�1/n, which means

�

n
1V < 2

n
.

This is Minkowski’s first Theorem.
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Minkowski’s second theorem

For each integer j with 1  j  n, let �j = �j(K) be the
infimum of all � > 0 such that �K contains j linearly
independent integer points. Then

0 < �1  �2 · · ·  �n < 1.

The numbers �1,�2, . . . ,�n are the successive minima of K.

Theorem [Minkowski’s second convex body theorem, 1907].

2

n

n!

 �1 · · ·�nV  2

n
.
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Examples

Examples :
• for the cube |xi|  1, the volume V is 2n and the successive
minima are all 1.
• for the octahedron |x1|+ · · ·+ |xn|  1, the volume V is
2

n
/n! and the successive minima are all 1.

Remark : Minkowski’s Theorems extend to any full rank
lattice L ⇢ Rn : if b1, . . . , bn is a basis of L, taking b1, . . . , bn

as a basis of Rn over R amounts to replace L by Zn.

Reference :
W.M. Schmidt. Diophantine Approximation. Lecture Notes in
Mathematics 785, Chap. 4, Springer Verlag, 1980.
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Simultaneous approximation

Proposition (A.K. Lenstra, H.W. Lenstra, L. Lovasz, 1982).
There exists a polynomial-time algorithm that, given a positive
integer n and rational numbers ↵1, . . . ,↵n, ✏ satisfying
0 < ✏ < 1, finds integers p1, . . . , pn, q for which

|pi � q↵i|  ✏ for 1  i  n and 1  q  2

n(n+1)/4
✏

�n
.

Proof. Let L be the lattice of rank n+ 1 spanned by the
columns of the (n+ 1)⇥ (n+ 1) matrix

0

BBB@

1 · · · 0 �↵1
...

. . .
...

...
0 · · · 1 �↵n

0 · · · 0 ⌘

1

CCCA

with ⌘ = 2

�n(n+1)/4
✏

n+1. The inner product of any two
columns is rational. By the LLL algorithm, there is a
polynomial-time algorithm to find a reduced basis b1, . . . , bn+1

for L. 16 / 20



Simultaneous approximation

Since det(L) = ⌘, we have

2

n/4
det(L)

1/(n+1)
= ✏

and
|b1|  ✏.

Since b1 2 L, we can write

b1 = (p1 � q↵1, p2 � q↵2, . . . , pn � q↵n, q⌘)
T

with p1, . . . , pn, q 2 Z. Hence

|pi � q↵i|  ✏ for 1  i  n and |q|  2

n(n+1)/4
✏

�n
.

From ✏ < 1 and b1 6= 0 we deduce q 6= 0. Replacing b1 by �b1

if necessary we may assume q > 0.
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Dirichlet’s theorems on simultaneous

approximation

Let ↵1, . . . ,↵n be real numbers and Q > 1 an integer.
(i) There exists integers p1, . . . , pn, q with

1  q < Q and |↵iq � pi| 
1

Q

1/n
·

(ii) There exists integers q1, . . . , qn, p with

1  max{|q1|, . . . , |qn|} < Q and |↵1q1 + · · ·+ ↵nqn � p|  1

Q

n
·

The proofs are easy applications of Dirichlet Box Principle (see
Chap. II of Schmidt LN 785).
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Connection with SVP - (i)

Let ✏ > 0. Define ⌘ = ✏/Q. Consider the L be the lattice of
rank n+ 1 spanned by the columns vectors v1, . . . , vn+1 of the
(n+ 1)⇥ (n+ 1) matrix

0

BBB@

1 · · · 0 �↵1
...

. . .
...

...
0 · · · 1 �↵n

0 · · · 0 ⌘

1

CCCA
.

If v = p1v1 + · · ·+ pnvn + qvn+1 is an element of L which
satisfies 0 < max{|v1|, . . . , |vn+1|} < ✏, then we have

1  q < Q and |↵iq � pi|  ✏·

The determinant of L is ⌘. From Minkowski’s first Theorem,
we deduce that there exists such a vector with ✏

n+1
= 2

n+1
⌘.

With ⌘ = ✏/Q we obtain ✏

n
= 2

n+1
/Q
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Connection with SVP - (ii)

Let ✏ > 0. Define ⌘ = ✏/Q. Consider the L be the lattice of
rank n+ 1 spanned by the columns vectors v1, . . . , vn+1 of the
(n+ 1)⇥ (n+ 1) matrix

0

BBB@

⌘ · · · 0 0

...
. . .

...
...

0 · · · ⌘ 0

↵1 · · · ↵n �1

1

CCCA
.

If v = q1v1 + · · ·+ qnvn + pvn+1 is an element of L which
satisfies 0 < max{|v1|, . . . , |vn+1|} < ✏, then we have

1  qi < ✏/⌘ = Q and |↵1q1 + · · ·+ ↵nqn � p| < ✏·

The determinant of L is �⌘

n. From Minkowski’s first
Theorem, we deduce that there exists such a vector with
✏

n+1
= 2

n+1
⌘

n. With ⌘ = ✏/Q we obtain ✏ = 2

n+1
/Q

n.
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