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Résumé. E. Thomas fut l’un des premiers à résoudre une fa-
mille infinie d’équations de Thue, lorsqu’il a considéré les formes
Fn(X,Y ) = X3 − (n − 1)X2Y − (n + 2)XY 2 − Y 3 et la famille
d’équations Fn(X,Y ) = ±1, n ∈ N. Cette famille est associée à la
famille des corps cubiques les plus simples Q(λ) de D. Shanks, λ
étant une racine de Fn(X, 1). Nous introduisons dans cette famille
un second paramètre en remplaçant les racines du polynôme mi-
nimal Fn(X, 1) de λ par les puissances a-ièmes des racines et nous
résolvons de façon effective la famille d’équations de Thue que
nous obtenons et qui dépend maintenant des deux paramètres n
et a.

Abstract. A family of Thue equations involving powers of units
of the simplest cubic fields

E. Thomas was one of the first to solve an infinite family of Thue
equations, when he considered the forms Fn(X,Y ) = X3 − (n −
1)X2Y −(n+2)XY 2−Y 3 and the family of equations Fn(X,Y ) =
±1, n ∈ N. This family is associated to the family of the simplest
cubic fields Q(λ) of D. Shanks, λ being a root of Fn(X, 1). We
introduce in this family a second parameter by replacing the roots
of the minimal polynomial Fn(X, 1) of λ by the a-th powers of the
roots and we effectively solve the family of Thue equations that
we obtain and which depends now on the two parameters n and
a.
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1. Introduction

In 1990, E. Thomas [10] considered the family (Fn)n≥0 of binary cubic
irreducible forms Fn(X,Y ) ∈ Z[X,Y ] associated to the simplest cubic cyclic
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fields of D. Shanks, namely

Fn(X,Y ) = X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3.

In particular, Thomas proved in some effective way that the set of (n, x, y) ∈
Z3 with

n ≥ 0, max{|x|, |y|} ≥ 2 and Fn(x, y) = ±1

is finite. In his paper, he completely solved the case n ≥ 1.365 ·107. In 1993,
M. Mignotte [7] completed the work of Thomas by solving the problem for
each n (see §15). In 1996, M. Mignotte, A. Pethő and F. Lemmermeyer [8]
gave, for m ≥ 1 and n ≥ 1650, an explicit upper bound of |y| when x, y are
rational integers verifying

0 < |Fn(x, y)| ≤ m.
Theorem 1 of [8] implies, for n ≥ 2,

log |y| ≤ κ1(log n)(log n+ logm)

with an absolute constant κ1 > 0.
Following [10] (compare with [2]), let us note

λ0, λ1 = − 1

λ0 + 1
and λ2 = −λ0 + 1

λ0
·

the real roots of the polynomial fn(X) = Fn(X, 1) ∈ Z[X] with the conven-
tion

λ0 > 0 > λ1 > −1 > λ2.

These numbers depend on n, but no index n appears to avoid a heavy
notation.

When a is a nonzero rational integer, the binary cubic form

Fn,a(X,Y ) = (X − λa0Y )(X − λa1Y )(X − λa2Y )

is irreducible in Z[X,Y ], the minimal (irreducible) polynomial of λa0 being
Fn,a(X, 1).

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let m ∈ N = {1, 2, . . .}. There exist some absolute ef-
fectively computable constants κ2, κ3, κ4 and κ5 such that if there exists
(n, a,m, x, y) ∈ Z5 with a 6= 0 verifying

0 < |Fn,a(x, y)| ≤ m,
then the following properties hold true :

(i) When m = 1 and max{|x|, |y|} ≥ 2, we have

max{|n|, |a|, |x|, |y|} ≤ κ2.
(ii) We have

log max{|x|, |y|} ≤ κ3µ
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with

µ =

{
(logm+ |a| log |n|)(log |n|)2 log log |n| for |n| ≥ 3,

logm+ |a| for n = 0,±1,±2.

(iii) When n ≥ 0, a ≥ 1 and |y| ≥ 2 3
√
m, we have

a ≤ κ4µ′

with

µ′ =

(logm+ log n)(log n) log log n for n ≥ 3,

1 + logm for n = 0, 1, 2.

(iv) When xy 6= 0, n ≥ 0 and a ≥ 1, we have

a ≤ κ5 max

{
1, (1 + log |x|) log log(n+ 3), log |y|, logm

log(n+ 2)

}
.

Part (i) of Theorem 1.1 extends the result of Thomas to the family of
Thue equations Fn,a(X,Y ) = ±1. Part (ii) generalizes the result of Mi-
gnotte, Pethő and Lemmermeyer to the family of Thue inequations |Fn,a(X,Y )| ≤
m (though in the case a = 1 our bound for |y| in (ii) is not as sharp as the
one of [8]). Moreover, the part (iii) of our theorem takes care of the family
of all Thue inequations |Fn,a(X,Y )| ≤ m in the case where |a| is sufficiently
large with respect to n.

Since

Fn,1(X,Y ) = Fn(X,Y ) and Fn,−1(X,Y ) = −Fn(Y,X),

when a = ±1, the part (i) of Theorem 1.1 boils down to the theorem of [10]
quoted above.

The result of Thomas [10] shows that there is only a finite set of triples
(n, x, y) such that max{|x|, |y|} ≥ 2 and x − λ0y is a unit. The part (i) of
Theorem 1.1 shows that there is only a finite set of quadruples (n, a, x, y)
with max{|x|, |y|} ≥ 2 and a 6= 0 such that x − λa0y is a unit and our
method provides an algorithm for exhibiting them all. The assumption
max{|x|, |y|} ≥ 2 in (i) cannot be omitted, since Fn,1(1,−1) = 1 for all
n ≥ 0.

When a = ±1, the part (ii) of Theorem 1.1 is a consequence of the
Theorem 1 of [8] quoted above.

The proof of the part (i) of Theorem 1, in the case

2 ≤ |a| ≤ |n|
(log |n|)4

,

will be done in parallel with the proof of the part (ii), while in the case
where |a| is sufficiently large with respect to |n|, namely

|a| > κ4(log |n|)2 log log |n| for |n| ≥ 3 and |a| > κ4 for n = 0,±1,±2,
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the parts (i) and (ii) of Theorem 1 are consequences of the part (iii).
The proof of the part (iv) of Theorem 1.1 also involves a Diophantine

argument which will be given in §14.
Under the hypotheses of Theorem 1.1, assuming xy 6= 0 and |a| ≥ 2, we

conjecture the upper bound

max{log |n|, |a|, log |x|, log |y|} ≤ κ6(1 + logm),

though for m > 1 we cannot give an upper bound for |n|. Since the rank of
the units of Q(λ0) is 2, one may expect a more general result as follows :

Conjecture 1.1. For s, t and n in Z, define
Fn,s,t(X,Y ) = (X − λs0λt1Y )(X − λs1λt2Y )(X − λs2λt0Y ).

There exists a positive absolute constant κ7 with the following property : If
n, s, t, x, y,m are integers satisfying

max{|x|, |y|} ≥ 2, (s, t) 6= (0, 0) and 0 < |Fn,s,t(x, y)| ≤ m,
then

max{log |n|, |s|, |t|, log |x|, log |y|} ≤ κ7(1 + logm).

The parts (ii) and (iii) of Theorem 1.1 involve a family of Thue inequa-
tions |Fn,a(x, y)| ≤ m with m ≥ 1, but it suffices to consider for each
m0 ∈ {1, 2, . . . ,m} the family of Thue equations

|Fn,a(x, y)| = m0,

where the unknowns (n, a, x, y) take their values in Z4. The constants κ
which will appear (often implicitly, in the O’s) are positive numbers (abso-
lute constants), the existence of which is postulated.

To prove parts (i) and (ii) of Theorem 1.1, there is no restriction in
assuming n ≥ 0, thanks to the equality

F−n−1(X,Y ) = Fn(−Y,−X)

which implies
F−n−1,a(X,Y ) = Fn,a(−Y,−X).

In the same vein, the relation

Fn,−|a|(X,Y ) = −Fn,|a|(Y,X)

allows to suppose a ≥ 1. As a consequence of these two relations, in the
part (iii), we may replace the assumptions

n ≥ 0, a ≥ 1 and |y| ≥ 2 3
√
m

by
min{|x|, |y|} ≥ 2 3

√
m,

provided that we replace n and a by |n| and |a| respectively in the conclu-
sion.
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Moreover, because of the relation

Fn,a(X,Y ) = −Fn,a(−X,−Y ),

to prove each part of Theorem 1.1, we may assume y ≥ 0. Since the parts
(i) and (ii) of Theorem 1.1 are not new for a = 1, we may assume a ≥ 2
(which is no restriction for the parts (iii) and (iv)).

It happens that this paper is the fourth one in which we use the effective
method arising from Baker’s work on linear forms of logarithms for families
of Thue equations obtained via a twist of a given equation by units. The first
paper [3] was dealing with non totally real cubic fields ; the second one [4]
was dealing with Thue equations attached to a number field having at most
one real embedding. In the third paper [5], for each (irreducible) binary
form attached to an algebraic number field, which is not a totally real cubic
field, we exhibited an infinite family of equations twisted by units for which
Baker’s method provides effective bounds for the solutions. In this paper,
we deal with equations related to infinite families of cyclic cubic fields. In
a forthcoming paper [6], we go one step further by considering twists by a
power of a totally real unit.

2. Related results

Let us state other results involving the families of Thomas. Theorem 3 of
M. Mignotte, A. Pethő and F. Lemmermeyer [8], published in 1996, gives a
complete list of the triples (x, y, n) ∈ Z3 with n ≥ 0 such that

0 < |Fn(x, y)| ≤ 2n+ 1.

In particular, when m is a given positive integer, there exists an integer n0
depending upon m such that the inequality |Fn(x, y)| ≤ m with n ≥ 0 and
|y| > 3

√
m implies n ≤ n0. Note that for 0 < |t| ≤ 3

√
m, (−t, t) and (t,−t)

are solutions. Therefore, the condition |y| > 3
√
m cannot be omitted.

Also in 1996, for the family of Thue inequations

0 < |Fn(x, y)| ≤ m,

J.H. Chen [1] has given a bound for n by using Padé’s approximations. This
bound was highly improved in 1999 by G. Lettl, A. Pethő and P. Voutier
[2]. More recently, I. Wakabayashi [11], using again the approximants of
Padé, extended these results to the families of forms, depending upon two
parameters,

sX3 − tX2Y − (t+ 3s)XY 2 − sY 3,

which includes the family of Thomas for s = 1 (with t = n−1). Wakabayashi
considered also the family of quartic forms

sX4 − tX3Y − 6sX2Y 2 + tXY 3 + sY 4
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and the family of sextic forms

sX6−2tX5Y −(5t+15s)X4Y 2−20sX3Y 3+5tX2Y 4+(2t+6s)XY 5+sY 6.

When the following polynomials are irreducible for s, t ∈ Z, the fields
Q(ω) generated by a root ω of respectively

sX3 − tX2 − (t+ 3s)X − s,

sX4 − tX3 − 6sX2 + tX + s,

sX6 − 2tX5 − (5t+ 15s)X4 − 20sX3 + 5tX2 + (2t+ 6s)X + s,

are cyclic over Q of degree 3, 4 and 6 respectively and are called simplest
fields by many authors. In each of the three cases, the roots of the polyno-
mials can be described via homographies of PSL2(Z) of degree 3, 4 and 6
respectively. See [2, 11].

3. A side remark

The parts (ii) and (iii) of Theorem 1.1 may be viewed as writing lo-
wer bounds for |Fn,a(x, y)|. In some opposite direction, we can exhibit qua-
druples
(n, a, x, y) ∈ Z4 such that |Fn,a(x, y)| takes relatively small values.

Lemma 3.1. Let n ≥ 0 and a ≥ 1 be integers. There exist infinitely many
(x, y) ∈ Z2 with y > 0 such that

|Fn,a(x, y)| ≤ y(n+ 4)a.

The proof of Lemma 3.1 will use the following bounds for the three roots
of fn(X) = Fn,1(X, 1) for n ≥ 2 ; the bounds are given in [2] and are easily
validated with MAPLE :

the bounds are given in [2]

(3.1)



n+
1

n
< n+

2

n+ 1
< λ0 < n+

2

n
,

− 1

n+ 1
< − 1

n+ 1 + 1
n

< λ1 < −
1

n+ 1 + 2
n

≤ − 1

n+ 2
,

−1− 1

n
< −1− n

n2 + 1
< λ2 < −1− n

n2 + 2
≤ −1− 1

n+ 1
·

For n = 1, f1(X) = X3−3X−1 = (X−λ0)(X−λ1)(X−λ2) and we have

1.8793 < λ0 < 1.8794, −0.3473 < λ1 < −0.3472, −1.5321 < λ2 < −1.532.

Proof of Lemma 3.1. Let ε be a positive real number. We will prove a
refined version of Lemma 3.1 according to which there exist infinitely many
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(x, y) ∈ Z2 with y > 0 such that

|Fn,a(x, y)| ≤ 1

2
y(1 + ε)|λa2 − λa1|· |λa0 − λa2|·

Lemma 3.1 will follow from the upper bound

|λa2 − λa1|· |λa0 − λa2| < 2(n+ 4)a

by selecting ε sufficiently small so that

(1 + ε)|λa2 − λa1|· |λa0 − λa2| ≤ 2(n+ 4)a.

We may assume ε < 3 so that(
1 +

ε

3

)2
< 1 + ε.

Let Y be a sufficiently large integer so that
1

2Y 2
≤ ε

3
min {|λa2 − λa1| , |λa0 − λa2|} .

Thanks to the theory of Diophantine rational approximation of real numbers
(continued fractions, Farey sequences or geometry of numbers), we know
that there exist infinitely many couples (x, y) ∈ Z2 with

y ≥ Y and y|x− λa2y| ≤
1

2
·

For these couples (x, y) of integers, we have
|x− λa0y| ≤ |x− λa2y|+ |λa0 − λa2|y ≤

1

2y
+ |λa0 − λa2|y ≤ y

(
1 +

ε

3

)
|λa0 − λa2|,

|x− λa1y| ≤ |x− λa2y|+ |λa2 − λa1|y ≤
1

2y
+ |λa2 − λa1|y ≤ y

(
1 +

ε

3

)
|λa2 − λa1|,

whereupon we have

|Fn,a(x, y)| = |x− λa0y| · |x− λa1y| · |x− λa2y| ≤
1

2
y(1 + ε)|λa2 − λa1|· |λa0 − λa2|·

�

4. The notation O

When U , V ,W are real numbers depending upon the data of the problem
that we deal with, namely n, a, x, y and m, the notations

U = V +O(W ) or U − V = O(W )

mean that there exists an absolute positive constant κ such that

|U − V | ≤ κ|W |
for max{|n|, |a|} sufficiently large. These absolute constants κ, together with
the absolute constant defined by the minimal value of max{|n|, |a|} from
which all these inequalities hold true, are effectively computable.
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We also write
U = V

(
1 +O(W )

)
for

U = V +O(VW ).

Very often the following lemma will be used without being explicitly
quoted.

Lemma 4.1. Let U , U1, U2, V , V1, V2, W , W1, W2 be real functions of n
and a. Suppose that V , V1, V2 do not vanish and that, when max{|n|, |a|}
goes to infinity, the limits of W , W1, W2 all are 0.

(i) Suppose
U = V

(
1 +O(W1)

)
and W1 ≤W2. Then

U = V
(
1 +O(W2)

)
.

(ii) Suppose
U = V

(
1 +O(W )

)
.

Then for max{|n|, |a|} sufficiently large, U 6= 0 and one has

(4.1) V = U
(
1 +O(W )

)
,

(4.2) −U = −V
(
1 +O(W )

)
,

(4.3)
1

U
=

1

V

(
1 +O(W )

)
,

(4.4) log |U | = log |V |+O(W ).

(iii) Suppose

U1 = V1
(
1 +O(W1)

)
and U2 = V2

(
1 +O(W2)

)
.

Let W = max{|W1|, |W2|}. Then

U1U2 = V1V2
(
1 +O(W )

)
.

If in addition, V1 and V2 have the same sign, then

U1 + U2 = (V1 + V2)
(
1 +O(W )

)
.

(iv) Suppose

U = V1
(
1 +O(W )

)
and V1 = V2

(
1 +O(W )

)
.

Then
U = V2

(
1 +O(W )

)
.
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Proof. Since only the absolute values of W , W1, W2 come into play, we
will assume that these values are≥ 0. The part (i) follows from the definition
of O.

The hypothesis in (ii) implies the existence of an absolute constant κ > 0
such that for max{|n|, |a|} sufficiently large we have

(4.5) V − κ|V |W ≤ U ≤ V + κ|V |W.
The number t = κW verifies 0 ≤ t < 1, whereupon, for max{|n|, |a|}
sufficiently large, U 6= 0, U and V are of the same sign and

(4.6) 1− κW ≤ U

V
≤ 1 + κW.

For 0 ≤ t ≤ 1/2, one has

1− t ≤ 1

1 + t
≤ 1 and 1 ≤ 1

1− t
≤ 1 + 2t.

For max{|n|, |a|} sufficiently large, the number t = κW verifies 0 ≤ t ≤ 1/2 ;
hence

1− κW ≤ 1

1 + κW
≤ V

U
≤ 1

1− κW
≤ 1 + 2κW

and
U − 2κ|U |W ≤ V ≤ U + 2κ|U |W,

which secures the equality (4.1). The proof of (4.2) is direct.
Upon division of each member of (4.5) by UV (which is positive), we

obtain
1

U
− κ W
|U |
≤ 1

V
≤ 1

U
+ κ

W

|U |
,

which leads to (4.3).
For 0 ≤ t ≤ 1/2, we have

−2t ≤ log(1− t) and log(1 + t) ≤ 2t.

Thanks to (4.6), these inequalities with t = κW imply (4.4). This takes care
of the proof of (ii).

Using (i), we deduce from the hypothesis in (iii) that there exists a
constant κ such that
(4.7)
V1−κ|V1|W ≤ U1 ≤ V1+κ|V1|W and V2−κ|V2|W ≤ U2 ≤ V2+κ|V2|W.
To estimate the value of the product, by using (4.2), we are reduced to
the case where U1 and U2 are both positive (and so will be V1 and V2).
Multiplying the members of these inequalities, we obtain

(V1 − κV1W )(V2 − κV2W ) ≤ U1U2 ≤ (V1 + κV1W )(V2 + κV2W ).

It only remains to use the upper bound 3κV1V2W for 2κV1V2W+κ2V1V2W
2

to conclude since W goes to 0.
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For the sum, supposing that V1 and V2 have the same sign (which is also
the sign of U1 and U2), we add the corresponding members of the inequalities
(4.7) :

V1 + V2 − κ(|V1|+ |V2|)W ≤ U1 + U2 ≤ V1 + V2 + κ(|V1|+ |V2|)W ;

note that |V1 + V2| = |V1|+ |V2|. So the part (iii) is secured.
Notice that the hypothesis that V1 and V2 have the same signs may not

be removed : consider for instance V1 = −V2, U1 = V1, U2 = V2 +W .
Under the hypotheses of (iv), there exists an absolute constant κ > 0

such that, for max{|n|, |a|} sufficiently large, we have

|U − V1| ≤ κ|V1|W and |V1 − V2| ≤ κ|V2|W.

Hence

|U − V2| ≤ |U − V1|+ |V1 − V2| ≤ κ(|V1|+ |V2|)W

≤ κ|V2|W + κ(|V2|+ κ|V2|W )W ≤ 3κ|V2|W,

since κW ≤ 1 for max{|n|, |a|} sufficiently large. This completes the proof
of Lemma 4.1. �

5. Estimates for |x− λai y|

Suppose that n, a, m, x, y are rational integers with n ≥ 0, a ≥ 2, m ≥ 1
and y ≥ 0 such that

|Fn,a(x, y)| = m.

When n and a are bounded by absolute constants, the conclusion of the
parts (iii) and (iv) of Theorem 1.1 is immediate, while the upper bounds for
max{|x|, |y|} given in the parts (i) and (ii) of Theorem 1.1 come from the
theorem of Thue under an effective formulation (given by N.I. Feldman and
A. Baker) that one can find for instance in Theorem 5.1 of [9]. Therefore, let
us suppose max{n, a} sufficiently large, so we are free to use the notation
O of Section 4. Our paper [6] takes care of the case where n is bounded by
an absolute constant. This allows us to suppose n ≥ 1.

Thanks to (3.1) and to our assumption n ≥ 1, we have |λ2| < λ0. We
deduce 

λa0 − λa1 = λa0

(
1 +O

(
1

λ2a0

))
,

λa0 − λa2 = λa0

(
1 +O

(
λa2
λa0

))
,

λa2 − λa1 = λa2

(
1 +O

(
1

λa0

))
,
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from which we obtain

λa1 − λa2
λa1 − λa0

=
(−1)a(λ0 + 1)a

λ2a0

(
1 +O

(
1

λa0

))
,

λa2 − λa0
λa2 − λa1

=
(−1)a+1λ2a0
(λ0 + 1)a

(
1 +O

(
λa2
λa0

))
,

λa0 − λa1
λa0 − λa2

= 1 +O

(
λa2
λa0

)
.

Writing

γ0,a = x− λa0y, γ1,a = x− λa1y, γ2,a = x− λa2y,
we have

(5.1) |γ0,aγ1,aγ2,a| = m.

For at least one index i ∈ {0, 1, 2}, we have

|γi,a| ≤ 3
√
m

and such an index will be denoted by i0. The two other indices will be deno-
ted by i1, i2, under the assumption that (i0, i1, i2) be a circular permutation
of (0, 1, 2).

Let us first consider an easy case of the part (ii) of Theorem 1.1, namely
when we are under the hypothesis that y ≤ 2 3

√
m. It turns out that we have

|x| ≤ |γi0,a|+ y|λai0 | ≤
3
√
m+ yλa0,

hence
log max{|x|, y, 2} ≤ 1

3
logm+ (a+ 1) log(n+ 2),

which is much stronger than required to secure the conclusion of the part
(ii) of Theorem 1.1 .

When y = 0 or y = 1, the first case of Theorem 1.1 is immediate. As a
matter of fact, the hypothesis max{|x|, |y|} ≥ 2 forces |x| ≥ 2 and each of
the two cases y = 0 and y = 1 are dealt with in some elementary way.

From now on and up to the end of section 13, we will assume that we are
under the hypothesis

(5.2) y ≥ 2 3
√
m.

Lemma 5.1. (i) Suppose i0 = 0. We have

γ1,a = yλa0

(
1 +O

(
1

λ2a0

))
, γ2,a = yλa0

(
1 +O

(
λa2
λa0

))
,

|γ0,a| =
m

y2λ2a0

(
1 +O

(
λa2
λa0

))
,
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from which we obtain∣∣∣∣γ0,a(λa1 − λa2)

γ2,a(λa1 − λa0)

∣∣∣∣ =
m(λ0 + 1)a

y3λ5a0

(
1 +O

(
λa2
λa0

))
.

(ii) Suppose i0 = 1. We have

γ2,a = −yλa2
(

1 +O

(
1

λa0

))
, γ0,a = −yλa0

(
1 +O

(
1

λ2a0

))
,

|γ1,a| =
m

y2(λ0 + 1)a

(
1 +O

(
1

λa0

))
,

from which we obtain∣∣∣∣γ1,a(λa2 − λa0)

γ0,a(λa2 − λa1)

∣∣∣∣ =
mλa0

y3(λ0 + 1)2a

(
1 +O

(
λa2
λa0

))
.

(iii) Suppose i0 = 2. We have

γ0,a = −yλa0
(

1 +O

(
λa2
λa0

))
, γ1,a = yλa2

(
1 +O

(
1

λa0

))
,

|γ2,a| =
m

y2(λ0 + 1)a

(
1 +O

(
λa2
λa0

))
,

from which we obtain∣∣∣∣γ2,a(λa0 − λa1)

γ1,a(λa0 − λa2)

∣∣∣∣ =
mλa0

y3(λ0 + 1)2a

(
1 +O

(
λa2
λa0

))
.

Proof. We will use the equality

(5.3) γj,a = x− λajy = γi0,a + (λai0 − λ
a
j )y

to estimate γ0,a, γ1,a and γ2,a.
(i) Suppose i0 = 0. Using the hypotheses (5.2) and |γi0,a| ≤ 3

√
m, we

deduce from (5.3)

γ1,a = yλa0

(
1 +O

(
1

λa0

))
and γ2,a = yλa0

(
1 +O

(
λa2
λa0

))
and in this case the estimate for |γ0,a| results from (5.1). Finally, we deduce
the refined estimate

γ1,a = yλa0

(
1 +O

(
1

λ2a0

))
from (5.3) again.

(ii) Suppose i0 = 1. We have

γ0,a = −yλa0
(

1 +O

(
1

λa0

))
and λa2 − λa1 = λa2

(
1 +O

(
1

λa0

))
.
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From the inequalities

|γ1,a| ≤ 3
√
m ≤ y

2
and |λa2 − λa1| ≥

3

4
,

we deduce, using (5.3),

|γ2,a| ≥
1

4
y;

then the use of (5.1) gives, for sufficiently large max{n, a},

|γ1,a| ≤
5m

y2λa0
≤ 5 3
√
m

4λa0
·

Let us redo the same calculations, though this time, in (5.3), we replace the
initial upper bound |γ1,a| ≤ 3

√
m by this last improved bound. This leads

on the one hand to

γ2,a = −yλa2
(

1 +O

(
1

λa0

))
.

On the other hand, thanks to (5.1), we have

|γ1,a| =
m

y2(λ0 + 1)a

(
1 +O

(
1

λa0

))
.

Using this last upper bound in (5.3), we are led to the estimate for |γ1,a|.
(iii) Suppose that i0 = 2. The proof of this part mimics the proof of

the part (ii). The estimate for γ0,a follows from (5.3). Next we use the
inequalities

|γ2,a| ≤
y

2
and |λa2 − λa1| ≥

3

4

to obtain, for sufficiently large max{n, a},

|γ2,a| ≤
5 3
√
m

4λa0
·

Using this last upper bound in (5.3), we are led to the estimate for γ1,a given
in the lemma and we use it with (5.1) to obtain the estimate for |γ2,a|. �

Note that we have

|γi0,a| ≤


2m

y2λ2a0
if i0 = 0,

2m

y2(λ0 + 1)a
if i0 ∈ {1, 2}.



14 Claude Levesque, Michel Waldschmidt

6. Rewriting an element of norm m

Any pair of elements among {λ0, λ1, λ2} is a fundamental system of units
for the cubic field Q(λ0) (p. 237 of [10]).

Using a result of Mignotte, Pethő and Lemmermeyer, we can write an
element of norm m in a way that we have a better control on it. The result
is obtained as a consequence of Lemma 3 of [8] and it reads as follows.

Lemma 6.1. Let γ be a nonzero element of Z[λ0] of norm N(γ) = m. Then
there exist some integers A, B and some nonzero element δ of Z[λ0], with
conjugates δ0 = δ, δ1 and δ2, such that

γ = δλA0 λ
B
2

with, for any n ≥ 3,

3
√
m√

n+ 3
≤ |δi| ≤

√
n+ 3 3

√
m for i ∈ {1, 2} and

3
√
m

n+ 3
≤ |δ0| ≤ (n+3) 3

√
m.

Moreover, if m = 1, then |δ0| = |δ1| = |δ2| = 1.

The statement of the last lemma follows from Lemma 3 of [8] by taking

c1 = c2 =
3
√
m√

n+ 3
·

As in [10], we use λ = λ0, λ1 and λ2, but in [8] these elements correspond
respectively to λ(3), λ(1) and λ(2).

The last estimations for δi with i ∈ {1, 2} and for δ0 lead to the inequa-
lities∣∣∣∣log |δi| −

1

3
logm

∣∣∣∣ ≤ 1

2
log(n+ 3) and

∣∣∣∣log |δ0| −
1

3
logm

∣∣∣∣ ≤ log(n+ 3).

Moreover, we have

3∏
i=1

max{1, |δi|} ≤ (n+ 3)2m;

since δ is an algebraic integer, we deduce

(6.1) h(δ) ≤ 2

3
log(n+ 3) +

1

3
logm.

In the case m = 1, the conclusion of the lemma holds with δ = ±1, since
{λ0, λ2} is a fundamental system of units for the ring Z[λ0].
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7. Some estimations on the integers A and B

We will use {λ0, λ2} for a fundamental system of units for the cubic field
Q(λ0). Note that we have

(7.1)
∣∣∣∣log |λ2| −

1

λ0

∣∣∣∣ ≤ 1

2λ20

and
log |λ1| = − log λ0 − log |λ2|.

The relation (5.1) and Lemma 6.1 indicate that there exist rational integers
A, B and an element δ0 ∈ Z[λ0], with conjugates δ1 and δ2, verifying the
conclusion of Lemma 6.1, such that, via Galois actions, we have

(7.2)


γ0,a = δ0λ

A
0 λ

B
2 ,

γ1,a = δ1λ
A
1 λ

B
0 = δ1λ

−A+B
0 λ−A2 ,

γ2,a = δ2λ
A
2 λ

B
1 = δ2λ

−B
0 λA−B2 .

Let us estimate A and B. Writing ci = log |γi,a| − log |δi| (for i = 0, 1, 2),
we obtain 

A log λ0 +B log |λ2| = c0,

A log |λ1|+B log λ0 = c1,

A log |λ2|+B log |λ1| = c2.

The first two equations suffice to find the values A and B. The determinant
R, where

R = (log λ0)
2 − (log |λ1|)(log |λ2|) ≥ (log λ0)

2,

is not zero. We have

A =
1

R
(c0 log λ0 − c1 log |λ2|) and B = − 1

R
(c0 log |λ1| − c1 log λ0),

which, by taking into account the relation λ0λ1λ2 = 1, we write as
(7.3)

A =
1

R

(
c0 log λ0 − c1 log |λ2|

)
and B =

1

R

(
(c0 + c1) log λ0 + c0 log |λ2|

)
.

The following estimates for

c0 = log |γ0,a| − log |δ0| and c1 = log |γ1,a| − log |δ1|
result from Lemma 5.1.

Lemma 7.1. (i) Suppose i0 = 0. Then we have
c0 = logm− 2 log y − 2a log λ0 − log |δ0|+O

(
λa2
λa0

)
,

c1 = log y + a log λ0 − log |δ1|+O

(
1

λ2a0

)
.
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(ii) Suppose i0 = 1. Then we have
c0 = log y + a log λ0 − log |δ0|+O

(
1

λ2a0

)
,

c1 = logm− 2 log y − a log λ0 − a log |λ2| − log |δ1|+O

(
1

λa0

)
.

(iii) Suppose i0 = 2. Then we have
c0 = log y + a log λ0 − log |δ0|+O

(
λa2
λa0

)
,

c1 = log y + a log |λ2| − log |δ1|+O

(
1

λa0

)
.

From Lemma 7.1 we deduce the following.

Lemma 7.2. We have

|A|+ |B| ≤ κ8
(

log y

log λ0
+ a

)
.

8. The Siegel equation

The Siegel equation

γi0,a(λ
a
i1 − λ

a
i2) + γi1,a(λ

a
i2 − λ

a
i0) + γi2,a(λ

a
i0 − λ

a
i1) = 0

leads to the identity

γi1,a(λ
a
i2
− λai0)

γi2,a(λ
a
i1
− λai0)

− 1 = −
γi0,a(λ

a
i1
− λai2)

γi2,a(λ
a
i1
− λai0)

,

which will be used later. From Lemma 5.1 we deduce the inequalities

(8.1) 0 <

∣∣∣∣∣γi1,a(λai2 − λai0)

γi2,a(λ
a
i1
− λai0)

− 1

∣∣∣∣∣ ≤ 2m

y3λa0
·

9. Switching from A and B to A′ and B′

Since 

γ1,a
γ2,a

=
δ1
δ2
λ−A+2B
0 λ−2A+B2 ,

γ2,a
γ0,a

=
δ2
δ0
λ−A−B0 λA−2B2 ,

γ0,a
γ1,a

=
δ0
δ1
λ2A−B0 λA+B2 ,
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we are led to introduce

(A′, B′) =


(−A+ 2B,−2A+B) for i0 = 0,

(−A−B,A− 2B) for i0 = 1,

(2A−B,A+B) for i0 = 2,

so we can write

(9.1)
γi1,a(λ

a
i2
− λai0)

γi2,a(λ
a
i1
− λai0)

= µλA
′

0 λ
B′
2

with

µ =
δi1
δi2

(
λai2 − λ

a
i0

λai1 − λ
a
i0

)
·

Since
h(λ0) =

1

3

(
log λ0 + log |λ2|

)
=

1

3
log(λ0 + 1)

and since, by the inequality (6.1),

h

(
δi1
δi2

)
≤ 2h(δ) ≤ 4

3
log(n+ 3) +

2

3
logm,

we have

h(µ) ≤ 4

3
log(n+ 3) +

2

3
logm+

4

3
a log(λ0 + 1) + 2 log 2,

whereupon we obtain

(9.2) h(µ) ≤ 3
(
logm+ a log(n+ 3)

)
.

By using (9.1), we write (8.1) as

(9.3) 0 <
∣∣∣µλA′

0 λ
B′
2 − 1

∣∣∣ ≤ 2m

y3λa0
·

10. Proof of the second part of Theorem 1.1

We are now ready to write the

Proof of the part (ii) of Theorem 1.1. Let us write the right member of
(9.1) in the form

λA
′

0 λ
B′
2 µ = γc11 γ

c2
2 γ

c3
3 ,

with

γ1 = λ0, γ2 = λ2, γ3 = µ, c1 = A′, c2 = B′, c3 = 1.

The inequality (9.2) provides an upper bound for the height of µ. Note that

|A′|+ |B′| ≤ 3(|A|+ |B|).
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Let us use Proposition 2 of [5] with

s = 3, H1 = H2 = κ9 log n, H3 = 3κ9(logm+ a log n),

C = (|A|+ |B|) log n

logm+ a log n
+ 2.

This gives∣∣∣∣∣γi1,a(λai2 − λai0)

γi2,a(λ
a
i1
− λai0)

− 1

∣∣∣∣∣ ≥ exp
{
−κ10(logm+ a log n)(log n)2 logC

}
.

We deduce from (8.1) the existence of a constant κ11 such that

(10.1) log y ≤ κ11(logm+ a log n)(log n)2 logC.

Then Lemma 7.2 leads to

|A|+ |B| ≤ κ12(logm+ a log n)(log n) logC,

hence
C ≤ 2κ12(log n)2 logC,

whereupon
C ≤ κ13(log n)2 log log n.

This leads to

(10.2) |A|+ |B| ≤ κ14(logm+ a log n)(log n) log log n

with κ14 > 0. From (10.1) we deduce

log y ≤ κ15(logm+ a log n)(log n)2 log logn.

Finally,

|x| ≤ |γi0,a|+ y|λai0 | ≤
3
√
m+ yλa0 ≤

1

2
y + yλa0 ≤ 2yλa0,

hence
log |x| ≤ 2κ15(logm+ a log n)(log n)2 log logn.

This secures the proof of the part (ii) of Theorem 1.1. �

Remark. When we suppose n ≥ 3,

m ≤ n

(log n)3

and

(10.3) 2 ≤ a ≤ n

(log n)4
,

the upper bound (10.2) gives

(10.4) |A|+ |B| ≤ 2κ14n
log logn

(log n)2
·
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11. Estimations of log y

In this section, we combine Lemma 5.1 with the results of Section 7 ;
this allows to estimate log y in two different ways. A comparison between
the two estimates will provide some relations, another proof of which being
given in Lemma 11.2.

Lemma 11.1. (i) If i0 = 0, then we have

log y = log |δ1| − (A−B + a) log λ0 −A log |λ2|+O

(
1

λ2a0

)
,

= log |δ2| − (B + a) log λ0 + (A−B) log |λ2|+O

(
λa2
λa0

)
,

(ii) If i0 = 1, then we have

log y = log |δ2| −B log λ0 + (A−B − a) log |λ2|+O

(
1

λa0

)
,

= log |δ0|+ (A− a) log λ0 +B log |λ2|+O

(
1

λ2a0

)
(iii) If i0 = 2, then we have

log y = log |δ1| − (A−B) log λ0 − (A+ a) log |λ2|+O

(
1

λa0

)
= log |δ0|+ (A− a) log λ0 +B log |λ2|+O

(
λa2
λa0

)
Proof. (i) Suppose i0 = 0. Then we have

γ1,a = δ1λ
−A+B
0 λ−A2 = yλa0

(
1 +O

(
1

λ2a0

))
,

from which we deduce

y = δ1λ
−A+B−a
0 λ−A2

(
1 +O

(
1

λ2a0

))
.

We also have

γ2,a = δ2λ
−B
0 λA−B2 = yλa0

(
1 +O

(
λa2
λa0

))
,

hence

y = δ2λ
−B−a
0 λA−B2

(
1 +O

(
λa2
λa0

))
.

(ii) Suppose i0 = 1. Then we have

γ2,a = δ2λ
−B
0 λA−B2 = −yλa2

(
1 +O

(
1

λa0

))
,
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from which we deduce

y = −δ2λ−B0 λA−B−a2

(
1 +O

(
1

λa0

))
.

We also have

γ0,a = δ0λ
A
0 λ

B
2 = −yλa0

(
1 +O

(
1

λ2a0

))
,

hence

y = −δ0λA−a0 λB2

(
1 +O

(
1

λ2a0

))
.

(iii) Suppose i0 = 2. Then we have

γ1,a = δ1λ
−A+B
0 λ−A2 = yλa2

(
1 +O

(
1

λa0

))
,

from which we deduce

y = δ1λ
−A+B
0 λ−A−a2

(
1 +O

(
1

λa0

))
.

We also have

γ0,a = δ0λ
A
0 λ

B
2 = −yλa0

(
1 +O

(
λa2
λa0

))
,

hence

y = −δ0λA−a0 λB2

(
1 +O

(
λa2
λa0

))
.

�

Lemma 11.2. One has

Λ =



A′ log λ0 +B′ log |λ2|+ log
|δ1|
|δ2|

+O

(
λa2
λa0

)
if i0 = 0,

(A′ + a) log λ0 + (B′ − a) log |λ2|+ log
|δ2|
|δ0|

+O

(
1

λa0

)
if i0 = 1,

(A′ − a) log λ0 + (B′ + a) log |λ2|+ log
|δ0|
|δ1|

+O

(
λa2
λa0

)
if i0 = 2.

Proof. (i) Suppose i0 = 0. We just use

Λ = A′ log λ0 +B′ log |λ2|+ log
|δ1|
|δ2|

+ log
|λa2 − λa0|
|λa1 − λa0|

with

log
|λa2 − λa0|
|λa1 − λa0|

= O

(
λa2
λa0

)
.
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(ii) Suppose i0 = 1. This time, we use

Λ = A′ log λ0 +B′ log |λ2|+ log
|δ2|
|δ0|

+ log
|λa0 − λa1|
|λa2 − λa1|

with

log
|λa0 − λa1|
|λa2 − λa1|

= a log λ0 − a log |λ2|+O

(
1

λa0

)
.

(iii) Suppose i0 = 2. Here, we use

Λ = A′ log λ0 +B′ log |λ2|+ log
|δ0|
|δ1|

+ log
|λa1 − λa2|
|λa0 − λa2|

with

log
|λa1 − λa2|
|λa0 − λa2|

= −a log λ0 + a log |λ2|+O

(
λa2
λa0

)
.

�

By using (7.1), (10.4) and (11.1), we deduce from Lemma 11.2 the follo-
wing statement.

Corollary 11.1. Assumem ≤ n

(log n)3
, 2 ≤ a ≤ n

(log n)4
and n sufficiently

large.
(i) Suppose i0 = 0. Then |A− 2B| ≤ 1. Moreover, if m = 1, then A = 2B.
(ii) Suppose i0 = 1. Then |A+B − a| ≤ 1. If m = 1, then A+B = a.
(iii) Suppose i0 = 2. Then |2A−B − a| ≤ 1. If m = 1, then 2A = B + a.

Proof. Thanks to Lemma 11.2, we have the following equalities :

• If i0 = 0, then

(A− 2B) log λ0 + log
|δ2|
|δ1|

+
2A−B
λ0

= O

(
|2A−B|+ 1

λ20

)
.

• If i0 = 1, then

(A+B − a) log λ0 + log
|δ0|
|δ2|
− A− 2B − a

λ0
= O

(
|A− 2B − a|+ 1

λ20

)
.

• If i0 = 2, then

(2A−B − a) log λ0 + log
|δ0|
|δ1|

+
A+B + a

λ0
= O

(
|A+B + a|+ 1

λ20

)
.

In O
(
|U |+ 1

λ20

)
where U is either 2A−B, A− 2B − a or A+B + a, we

included +1 in order to take into account the case U = 0.
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The following inequalites, which come from Lemma 6.1, will be used :∣∣∣∣log
|δ2|
|δ1|

∣∣∣∣ ≤ log(n+3),

∣∣∣∣log
|δ0|
|δ2|

∣∣∣∣ ≤ 3

2
log(n+3),

∣∣∣∣log
|δ0|
|δ1|

∣∣∣∣ ≤ 3

2
log(n+3).

Then we can count on (10.4) and (11.1) to claim that each of the terms

2A−B
λ0

,
A− 2B − a

λ0
,

A+B + a

λ0
, O

(
|A|+ |B|+ a

λ20

)
goes to 0 as n goes to infinity. It happens that in each of the cases (i), (ii),

(iii), we have a formula looking like V log λ0 + log
|δi|
[δj |

, which goes to 0.

Since log λ0 behaves like log n, since log
|δi|
[δj |

is between −(3/2) log(n + 3)

and +(3/2) log(n + 3) and since V ∈ Z, we deduce that V is between −1
and +1.

Finally, in the case m = 1, Lemma 6.1 allows us to use the fact that
|δ0| = |δ1| = |δ2| = 1. �

In taking the logarithms of the absolute values, we deduce from (9.3) and
from the assumption (5.2) that the number

Λ = A′ log λ0 +B′ log |λ2|+ log |µ|, with µ =
δi1
δi2

(
λai2 − λ

a
i0

λai1 − λ
a
i0

)
,

verifies

(11.1) 0 < |Λ| ≤ κ16
λa0

with κ16 > 0.
As a consequence, we have

(11.2)

A′ log λ0 + log
|δ1|
|δ2|

+B′ log |λ2| = O

(
λa2
λa0

)
if i0 = 0,

(−A′ − a) log λ0 + log
|δ0|
|δ2|
− (B′ − a) log |λ2| = O

(
1

λa0

)
if i0 = 1,

(A′ − a) log λ0 + log
|δ0|
|δ1|

+ (B′ + a) log |λ2| = O

(
λa2
λa0

)
if i0 = 2.

These estimates also follow from Lemma 11.1 by using Lemma 4.1.
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12. Proof of the first part of Theorem 1.1

Let us assume the hypotheses of Theorem 1.1 with m = 1 and let us also
suppose

2 ≤ a ≤ n

(log n)4
.

We apply the previous results to the case m = 1 by supposing that n is
sufficiently large, say n ≥ κ17, and by assuming that we have a solution
with y ≥ 2. Note that by Lemma 6.1, we have |δ0| = |δ1| = |δ2| = 1.
Depending upon the values of i0, there are three cases to consider.

(i) Suppose i0 = 0. By Corollary 11.1, we have A = 2B and from (11.2)
we deduce

(−2A+B) log |λ2| = O

(
λa2
λa0

)
,

Hence 2A = B, and consequently A = B = 0. Now Lemma 11.1 implies the
contradiction

log y = −a log λ0 +O

(
1

λ2a0

)
.

This is not possible since y ≥ 2.
(ii) Suppose i0 = 1. Corollary 11.1 gives A + B = a. From (11.2) we

deduce

−(A− 2B − a) log |λ2| = O

(
1

λa0

)
.

This last relation implies A = 2B + a, hence B = 0 and A = a. Then
Lemma 11.1 implies

log y = O

(
1

λ0

)
,

which is not possible because y ≥ 2.
(iii) Suppose i0 = 2. Thanks to Corollary 11.1 we have 2A−B = a. From

(11.2), we deduce

(A+B + a) log |λ2| = O

(
λa2
λa0

)
,

hence A+B = −a. Therefore A = 0 and B = −a. Then Lemma 11.1 implies

log y = −a log λ0 − a log |λ2|+O

(
1

λ0

)
.

This is not possible since y ≥ 2.
This proves that under the hypotheses of the part (i) of Theorem 1.1

in the case (10.3), we have n < κ17. This implies that a is also bounded
because of (10.3).
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13. Proof of the third part of Theorem 1.1

From Lemma 11.2 we deduce the following.

Lemma 13.1. One has

∣∣∣∣A′ log λ0 +B′ log |λ2|+ log
|δ1|
|δ2|

∣∣∣∣ ≤ κ18|λ2|a

λa0
if i0 = 0,

∣∣∣∣(A′ + a) log λ0 + (B′ − a) log |λ2|+ log
|δ2|
|δ0|

∣∣∣∣ ≤ κ18
λa0

if i0 = 1,

∣∣∣∣(A′ − a) log λ0 + (B′ + a) log |λ2|+ log
|δ0|
|δ1|

∣∣∣∣ ≤ κ18|λ2|a

λa0
if i0 = 2.

Proof of the part (iii) of Theorem 1.1. We will take advantage of Lemma
13.1 by using Proposition 2 of [5], with

s = 3, H1 = H2 = κ19 log n, H3 = 3κ19(logm+ log n),

C ′ = (|A|+ |B|+ a)
log n

logm+ log n
+ 2.

This proposition allows to exhibit a lower bound for the left member of the
inequalities of Lemma 13.1, namely

exp{−κ20(logm+ log n)(log n)2 logC ′}.

We are led to

a ≤ κ21(logm+ log n)(log n) logC ′.

Thanks to (10.2) we also have

C ′ ≤ (log n)3
(

a log n

logm+ log n
+ 2

)
,

hence

a log n

logm+ log n
≤ κ21(log n)2

(
3 log log n+ log

(
a log n

logm+ log n
+ 2

))
.

This allows to write

a ≤ κ4(logm+ log n)(log n) log log n.

This proves the part (iii) of Theorem 1.1 and also completes the proof of
the part (i) of Theorem 1.1. �
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14. Proof of the fourth part of Theorem 1.1

Proof of the part (iv) of Theorem 1.1. We may assume

a ≥ κ22, y ≥ 1, max {|x|, y}κ22 ≤ ea and 4m ≤ λa/20

with a sufficiently large constant κ22. Using the estimates

|x− λa0y| ≥ λa0y − |x| ≥ λa0y −
1

2
λa0 ≥

1

2
λa0y

and

|x− λa1y| ≥ |x| − |λ1|ay ≥ |x| −
1

2
≥ |x|

2
,

we deduce from the relation

m = (x− λa0y)(x− λa1y)(x− λa2y)

the estimates

(14.1) 0 <
∣∣∣λa2 yx − 1

∣∣∣ ≤ 4m

x2λa0
≤ λ−a/20 .

Since |λ2|a ≥ 1 and λ−a/20 < 1/2, we deduce y ≤ 2|x|. We use Proposition 2
of [5] with

s = 2, γ1 = λ2, γ2 =
y

x
, c1 = a, c2 = 1,

H1 = log(n+ 2), H2 = 1 + log |x|, C =
a log(n+ 2)

H2
+ 2.

This gives
|γc11 γ

c2
2 − 1| ≥ exp

{
−κ23H1H2 logC

}
.

Combining with (14.1), we obtain
C

logC
≤ κ24 log(n+ 2).

Hence
a ≤ κ25

(
1 + log |x|

)
log log(n+ 3).

This completes the proof of the part (iv) of Theorem 1.1. �

15. Some numerical calculations

Fix an integer n ≥ 0. For all integers a ≥ 0 the cubic forms

Fn,a(X,Y ) = X3 − uaX2Y + (−1)avaXY
2 − Y 3

can be explicitly written by using the recurrence formulas for ua and va,
namely {

ua+3 = (n− 1)ua+2 + (n+ 2)ua+1 + ua,

va+3 = (n+ 2)va+2 − (n− 1)va+1 − va,
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with the the initial conditions
Fn,0(X,Y ) = X3 − 3X2Y + 3XY 2 − Y 3,

Fn,1(X,Y ) = X3 − (n− 1)X2Y − (n+ 2)XY 2 − Y 3,

Fn,2(X,Y ) = X3 − (n2 + 5)X2Y + (n2 + 2n+ 6)XY 2 − Y 3.

For instance,

Fn,3(X,Y ) = X3 − (n3 + 6n− 4)X2Y − (n3 + 3n2 + 9n+ 11)XY 2 − Y 3,

Fn,4(X,Y ) = X3 − (n4 + 8n2 − 4n+ 13)X2Y
+(n4 + 4n3 + 14n2 + 24n+ 26)XY 2 − Y 3,

Fn,5(X,Y ) = X3 − (n5 + 10n3 − 5n2 + 25n− 16)X2Y
−(n5 + 5n4 + 20n3 + 45n2 + 70n+ 57)XY 2 − Y 3,

Fn,6(X,Y ) = X3 − (n6 + 12n4 − 6n3 + 42n2 − 30n+ 38)X2Y
+(n6 + 6n5 + 27n4 + 74n3 + 147n2 + 186n+ 129)XY 2 − Y 3.

Let us make a few remarks about the solutions of the Thue equations

Fn,a(X,Y ) = c with c ∈ {+1,−1}.

For all n, a ∈ Z with a 6= 0, the only solutions (x, y) with xy = 0 are given
by

Fn,a(c, 0) = c and Fn,a(0,−c) = c,

the solutions (c, 0) and (0,−c) being dubbed trivial solutions.

Suppose that for all integers n ≥ 0 and a ≥ 1, we know the solutions of
Fn,a(X,Y ) = 1. Then, because of the formulas Fn,a(X,Y ) = −Fn,a(−X,−Y ),

F−n−1,a(X,Y ) = Fn,a(−Y,−X),

we can exhibit, for all integers n, a ∈ Z with a ≥ 1, the solutions of

Fn,a(X,Y ) = c.

Moreover, because of the formulas

Fn,−a(X,Y ) = −Fn,a(Y,X),

we can exhibit, for all n, a ∈ Z with a 6= 0, the solutions of

Fn,a(X,Y ) = c.

The elements of the sequences {ua}a≥0 and {va}a≥0 verify the following
properties, which will prove useful in the proof of Proposition 15.1.
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Lemma 15.1. Let n and a be nonzero integers.
(i) For n ≥ 1 with a ≥ 1, we have ua > 0, except for (n, a) = (1, 1) where

u1 = 0.
(ii) For n ≥ 1 with a ≥ 2, we have 2ua > nua−1, except for (n, a) = (1, 3)

where 2u3 = u2.
(iii) For n ≥ 1 with a ≥ 2, we have va > ua + va−1, except for (n, a) =

(1, 2) where v2 = u2 + v1 ; for n ≥ 0 we have v1 = u1 + v0 ; moreover, for
n ≥ 0 and a ≥ 1, we have |ua| ≤ va.

(iv) For n ≥ 0 with a ≥ 1, we have va > 2va−1 except for (n, a) = (0, 1)
where (v1, v0) = (2, 3) and for (n, a) = (0, 3) where (v3, v2) = (11, 6) and
for (n, a) = (1, 1) where (v1, v0) = (3, 3).

(v) For n = 0 with a ≥ 1, we have 0 < (−1)aua ≤ 1
2va, except for a = 2

where (u2, v2) = (5, 6).

Proof. The proof of (i) is easy.
(ii) Assume n ≥ 1. The inequality 2ua ≥ nua−1 is true for a = 2, 3, 4 and

is strict for these values of a with (n, a) 6= (1, 3). Suppose now that for some
given a ≥ 4, the inequality is true for a− 2, a− 1 and a. Let us prove it for
a+ 1. Using the linear recurrence satisfied by the elements of {ua}a≥0 and
the induction hypothesis, we have,

2ua+1 = 2(n− 1)ua + 2(n+ 2)ua−1 + 2ua−2

> (n− 1)nua−1 + (n+ 2)nua−2 + nua−3

= nua−1.

(iii) For n = 0 we have v1 = u1 + v0. Assume n ≥ 1. The inequality is
true for a = 2, 3, 4 and is strict for a ≥ 2 with (n, a) 6= (1, 2). Suppose now
that for some given a ≥ 4 the inequality is true for a−2, a−1 and a. Let us
prove it for a+ 1. In what follows, we will use the linear recurrence satisfied
by the elements of {va}a≥0, the induction hypothesis and the results of the
parts (i) and (ii) :

va+1 − ua+1

= (n+ 2)va − (n− 1)va−1 − va−2 − (n− 1)ua − (n+ 2)ua−1 − ua−2
= va + 2ua + 2va−1 − va−2 − (n+ 2)ua−1 − ua−2 + (n+ 1)(va − ua − va−1)
≥ va + 2ua + 2va−1 − va−2 − (n+ 2)ua−1 − ua−2
≥ va + 2ua + 2(va−2 + ua−1)− va−2 − (n+ 2)ua−1 − ua−2

= va + (2ua − nua−1) + va−2 − ua−2
> va + va−3

> va.

The last assertion is obvious.
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(iv) Assume that (n, a) 6= (0, 1), (1, 1) and suppose that n ≥ 0. The proof
will be by induction on a. The result is true for a = 1, 2, 3, 4. Assume that
for some given a ≥ 4, the result is true for a− 1 and a. Let us prove it for
a+ 1 :

va+1 = 2va + nva − (n− 1)va−1 − va−2
> 2va + 2nva−1 − (n− 1)va−1 − va−2
= 2va + (n+ 1)va−1 − va−2
> 2va.

(v) Assume n = 0. We have{
u0 = 3, u1 = −1, u2 = 5, u3 = −4, u4 = 13, u5 = −16,

v0 = 3, v1 = 2, v2 = 6, v3 = 11, v4 = 26, v5 = 57.

The result is true for a = 1, 2, 3, 4, 5. Assume a ≥ 5 and suppose that it is
true for a− 1 and a. Let us prove it for a+ 1 :

(−1)a+1ua+1 = (−1)a+1(−ua + 2ua−1 + ua−2)

≤ (−1)aua + 2(−1)a−1ua−1

≤ 1

2
va + va−1 ≤

1

2
va +

1

2
va ≤

1

2
va+1· �

Proposition 15.1. Suppose n ≥ 0 and a ≥ 1. The only cases where
Fn,a(c1, c2) = c with c, c1, c2 ∈ {+1,−1} are the following ones :

F0,1(−c,−c) = c, F0,2(c, c) = c, Fn,1(−c, c) = c for any n ≥ 0.

Proof. Since Fn,a(−X,−Y ) = −Fn,a(X,Y ), it suffices to investigate when
(1, 1) and (−1, 1) are solutions of Fn,a(X,Y ) = c. Suppose first that (1, 1)
is a solution. The equation we consider is

−ua + (−1)ava = c.

Let a = 1 ; this implies n = 0 and c = −1, hence F0,1(−c,−c) = c. Let
a = 2 ; this implies n = 0 and c = 1, hence F0,2(c, c) = c. Finally, in the
case a ≥ 3, we deduce from the parts (iii) and (iv) of Lemma 15.1 that this
does not occur.

Suppose next that (−1, 1) is a solution. The equation we consider is

−ua − (−1)ava = c+ 2.

If a = 1, then c = 1 and any n is admissible, hence Fn,1(−c, c) = c. If a = 2,
this is impossible. Finally, in the case a ≥ 3, we deduce again from the parts
(iii), (iv) and (v) of Lemma 15.1 that this does not occur. �
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When (x, y,m) ∈ Z3 is given with xy 6= 0 and m > 0, the part (iv) of
Theorem 1.1 shows in an effective way the finiteness of the set of couples
(n, a) with n ≥ 0 and a ≥ 1 for which 0 < |Fn(x, y)| ≤ m, excluding the
cases exhibited in Proposition 15.1. Let us give an elementary proof in the
case where y = ±x.

Lemma 15.2. Let x ∈ Z and c in {+1,−1}. For n ≥ 1 and a ≥ 2, we have

|Fn,a(x, cx)| ≥ |x|
3

8
ana−1.

For n ≥ 0 and a = 1, we have

Fn,1(x, x) = −(2n+ 1)x3.

For n = 0 and a ≥ 3, we have

|F0,a(x, cx)| ≥ |x|32a−1.

Proof. These results are trivial for x = 0. By homogeneity we may assume
x = 1. For 0 < u < 1, we have

log(1 + u) ≥ u

2

and for t ≥ 0 we have
et − 1 ≥ t,

hence

(1 + u)a − 1 = exp
(
a log(1 + u)

)
− 1 ≥ a log(1 + u) ≥ au

2
·

We use this estimate with u = |λ2| − 1. Recall that

u ≥ 1

n+ 1
≥ 1

2n
·

Hence
|1− λa2c| ≥ |λ2|a − 1 = (1 + u)a − 1 ≥ a

4n
·

The first part of the lemma follows from the identity

Fn,a(1, c) = (1− λa0c)(1− λa1c)(1− λa2c)

where

|(1− λa0c)(1− λa1c)| ≥ (λa0 − 1)(1− λa1) ≥ 1

2
na.

The second part of the lemma 15.2 follows from the explicit expression
for Fn,1(X,Y ).

For the third part, we obtain the required inequality by using the part
(iv) of Lemma 15.1. �
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Let c ∈ {+1,−1} and let n, a ∈ N with a ≥ 1. We wonder whether all
the solutions (x, y) ∈ Z2 of Fn,a(x, y) = c are given by

• (c, 0), (0, c) for any n ≥ 0 and a ≥ 1,

• (−c, c) for any n ≥ 0 and a = 1,

• (c, c) for n = 0 and a = 2,

• (−c,−c) for n = 0 and a = 1,

• the exotic solutions

(n, a) (cx, cy)

(0, 1) (−9, 5) (−1, 2) (2,−1) (4,−9) (5, 4)

(0, 2) (−14,−9) (−3,−1) (−2,−1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (−3,−1) (19,−1)

(1, 1) (−3, 2) (1,−3) (2, 1)

(1, 2) (−7,−2) (−3,−1) (2, 1) (7, 3)

(2, 2) (−7,−1) (−2,−1)

(3, 1) (−7,−2) (−2, 9) (9,−7)

(4, 2) (3, 2)

In the above list, the solutions associated to a = 1 come from [10] and [7].
Moreover, the other solutions were obtained via MAPLE in the range

0 ≤ n ≤ 10, 2 ≤ a ≤ 70, −1000 ≤ x, y ≤ 1000.

Acknowledgments

We heartily thank Isao Wakabayashi for his clever remarks on a prelimi-
nary version of this paper.

Bibliographie
[1] J.H. Chen, Efficient rational approximation of a class of algebraic numbers, (in Chinese)

Chinese Science Bulletin, 41 (1996), 1643–1646.

[2] G. Lettl, A. Pethő, and P. Voutier, Simple families of Thue inequalities, Trans. Amer.
Math. Soc., 351 (1999), 1871–1894.

[3] C. Levesque and M. Waldschmidt, Families of cubic Thue equations with effective bounds
for the solutions Springer Proceedings in Mathematics & Statistics 43 (2013) 229—243.

[4] C. Levesque and M. Waldschmidt, Solving simultaneously Thue Diophantine equations :
almost totally imaginary case, Proceedings of the International Meeting on Number Theory
2011, in honor of R. Balasubramanian, HBA, India ; to appear.

[5] C. Levesque and M. Waldschmidt, Solving effectively some families of Thue Diophantine
equations, Moscow J. of Combinatorics and Number Theory, 3 3–4 (2013), 118–144.



A family of Thue equations 31

[6] C. Levesque and M. Waldschmidt, Families of Thue equations associated with a totally
real rank 1 subgroup of the units of a number field. Work in progress.

[7] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory, 44 (1993),
172–177.

[8] M. Mignotte, A. Pethő and F. Lemmermeyer, On the family of Thue equations x3 −
(n− 1)x2y − (n+ 2)xy2 − y3 = k, Acta Arith. 76 (1996), 245–269.

[9] T.N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge
Tracts in Mathematics, Cambridge University Press, Cambridge, 1986.

[10] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number
Theory, 34 (1990), pp. 235–250.

[11] I. Wakabayashi, Simple families of Thue inequalities, Ann. Sci. Math. Québec 31 (2007),
no. 2, 211–232.

Claude Levesque
Dép. de mathématiques et de statistique
Université Laval, Québec (Québec)
CANADA G1V 0A6
E-mail : cl@mat.ulaval.ca

Michel Waldschmidt
UPMC Univ Paris 06, UMR 7586-IMJ
F–75005 Paris France
E-mail : michel.waldschmidt@imj-prg.fr
URL: http://www.imj-prg.fr/ michel.waldschmidt/


