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Abstract

In the first part :

Linear recurrence sequences : an introduction

we gave a number of examples and we stated some properties
of linear recurrence sequences.

Here we give more information on this topic and we include
new results, arising from a joint work with Claude Levesque,
involving families of Diophantine equations, with explicit
examples related to some units of L. Bernstein and H. Hasse.



Linear recurrence sequences : definitions
A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences .
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = X

d � a1X
d�1 � · · ·� ad.



Linear recurrence sequences : definitions
A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences .
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = X

d � a1X
d�1 � · · ·� ad.



Linear recurrence sequences : definitions
A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences .
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = X

d � a1X
d�1 � · · ·� ad.



Linear recurrence sequences : definitions
A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences .
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = X

d � a1X
d�1 � · · ·� ad.



Linear recurrence sequences : examples
• Constant sequence : un = u0.
Linear recurrence sequence of order 1 : un+1 = un.
Characteristic polynomial : f(X) = X � 1.
Generating series :

X

n�0

X

n
=

1

1�X

·

• Geometric progression : un = u0�
n.

Linear recurrence sequence of order 1 : un = �un�1.
Characteristic polynomial f(X) = X � �.
Generating series :

X

n�0

u0�
n
X

n
=

u0

1� �X

·
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Linear recurrence sequences : examples
• un = n. This is a linear recurrence sequence of order 2 :

n+ 2 = 2(n+ 1)� n.

Characteristic polynomial

f(X) = X

2 � 2X + 1 = (X � 1)

2
.

Generating series

X

n�0

nX

n
=

1

1� 2X +X

2
·

Power of matrices :
✓

0 1

�1 2

◆n

=

✓�n+ 1 n

�n n+ 1

◆
.



Linear recurrence sequences : examples

• un = f(n), where f is polynomial of degree d. This is a
linear recurrence sequence of order d+ 1.

Proof. The sequences

(f(n))n�0, (f(n+ 1))n�0, · · · , (f(n+ k))n�0

are K–linearly independent in KN for k = d� 1 and linearly
dependent for k = d .

A basis of the space of polynomials of degree d is given by the
d+ 1 polynomials

f(X), f(X + 1), . . . , f(X + d).

Question : which is the characteristic polynomial ?
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Linear sequences which are ultimately recurrent

The sequence
(1, 0, 0, . . . )

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n � 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfill the requirement ad 6= 0.
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Order of a linear recurrence sequence

If u = (un)n�0 satisfies the linear recurrence, the characteristic
polynomial of which is f , then, for any monic polynomial
g 2 K[X] with g(0) 6= 0, this sequence u also satisfies the
linear recurrence, the characteristic polynomial of which is fg.
Example : for g(X) = X � � with � 6= 0, from

(?) un+d � a1un+d�1 � · · ·� adun = 0

we deduce

un+d+1 � a1un+d � · · ·� adun+1

��(un+d � a1un+d�1 � · · ·� adun) = 0.

The order of a linear recurrence sequence is the smallest d
such that (?) holds for all n � 0.
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Generating series of a linear recurrence sequence
Let u = (un)n�0 be a linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

with characteristic polynomial

f(X) = X

d � a1X
d�1 � · · ·� ad.

Denote by f

� the reciprocal polynomial of f :

f

�
(X) = X

d
f(X

�1
) = 1� a1X � · · ·� adX

d
.

Then
1X

n=0

unX
n
=

r(X)

f

�
(X)

,

where r is a polynomial of degree less than d determined by
the initial values of u.



Generating series of a linear recurrence sequence

Assume

un+d = a1un+d�1 + · · ·+ adun for n � 0.

Then
1X

n=0

unX
n
=

r(X)

f

�
(X)

·

Proof. Comparing the coe�cients of Xn for n � d shows that

f

�
(X)

1X

n=0

unX
n

is a polynomial of degree less than d
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Taylor coe�cients of rational functions

Conversely, the coe�cients the Taylor expansion of any
rational fraction a(X)/b(X) with deg a < deg b and b(0) 6= 0

satisfies the recurrence relation with characteristic polynomial
f 2 K[X] given by f(X) = b

�
(X).

Therefore a sequence u = (un)n�0 satisfies the recurrence
relation (?) with characteristic polynomial f 2 K[X] if and
only if

1X

n=0

unX
n
=

r(X)

f

�
(X)

,

where r is a polynomial of degree less than d determined by
the initial values of u.
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Linear di↵erential equations
Given a sequence (un)n�0 of numbers, its exponential
generating power series is

f(z) =

X

n�0

un
z

n

n!

·

For k � 0, the k-the derivative f

(k) of f satisfies

f

(k)
(z) =

X

n�0

un+k
z

n

n!

·

Hence the sequence satisfies the linear recurrence relation

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

if and only if f satisfies the homogeneous linear di↵erential
equation

y

(d)
= a1y

(d�1)
+ · · ·+ ady.
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Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

can be written

0

BBB@

un+1

un+2
...

un+d

1

CCCA
=

0

BBBBB@

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1

ad ad�1 ad�2 · · · a1

1

CCCCCA

0

BBB@

un

un+1
...

un+d�1

1

CCCA
.



Matrix notation for a linear recurrence sequence

Un+1 = AUn

with

Un =

0

BBB@

un

un+1
...

un+d�1

1

CCCA
, A =

0

BBBBB@

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1

ad ad�1 ad�2 · · · a1

1

CCCCCA
.

The determinant of IdX � A (the characteristic polynomial of
A) is nothing but

f(X) = X

d � a1X
d�1 � · · ·� ad,

the characteristic polynomial of the linear recurrence sequence.
By induction

Un = A

n
U0.
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Powers of matrices

Let A = (aij)1i,jd 2 GLd⇥d(K) be a d⇥ d matrix with
coe�cients in K and nonzero determinant. For n � 0, define

A

n
=

�
a

(n)
ij

�
1i,jd

.

Then each of the d

2 sequences
�
a

(n)
ij

�
n�0

, (1  i, j  d) is a
linear recurrence sequence. The roots of the characteristic
polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence
�
Tr(A

n
)

�
n�0

satisfies the linear
recurrence, the characteristic polynomial of which is the
characteristic polynomial of the matrix A.
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Conversely :

Given a linear recurrence sequence u 2 KN, there exist an
integer d � 1 and a matrix A 2 GLd(K) such that, for each
n � 0,

un = a

(n)
11 .

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –

Recurrence sequences, Mathematical Surveys and Monographs (AMS,

2003), volume 104.



Conversely :

Given a linear recurrence sequence u 2 KN, there exist an
integer d � 1 and a matrix A 2 GLd(K) such that, for each
n � 0,

un = a

(n)
11 .

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –

Recurrence sequences, Mathematical Surveys and Monographs (AMS,

2003), volume 104.



Linear recurrence sequences : simple roots

A basis of Ea over K is obtained by attributing to the initial
values u0, . . . , ud�1 the values given by the canonical basis of
Kd.
Given � in K⇥, a necessary and su�cient condition for a
sequence (�

n
)n�0 to satisfy (?) is that � is a root of the

characteristic polynomial

f(X) = X

d � a1X
d�1 � · · ·� ad.

If this polynomial has d distinct roots �1, . . . , �d in K,

f(X) = (X � �1) · · · (X � �d), �i 6= �j,

then a basis of Ea over K is given by the d sequences (�n
i )n�0,

i = 1, . . . , d.
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Linear recurrence sequences : double roots

The characteristic polynomial of the linear recurrence
un = 2�un�1 � �

2
un�2 is X2 � 2�X + �

2
= (X � �)

2 with a
double root �.

The sequence (n�

n
)n�0 satisfies

n�

n
= 2�(n� 1)n�

n�1 � �

2
(n� 2)�

n�2
.

A basis of Ea for a1 = 2�, a2 = ��

2 is given by the two
sequences (�n

)n�0, (n�n
)n�0.

Given � 2 K⇥, a necessary and su�cient condition for the
sequence n�

n to satisfy the linear recurrence relation (?) is
that � is a root of multiplicity � 2 of f(X).
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Linear recurrence sequences : multiple roots

In general, when the characteristic polynomial splits as

X

d � a1X
d�1 � · · ·� ad =

Ỳ

i=1

(X � �i)
ti
,

a basis of Ea is given by the d sequences

(n

k
�

n
i )n�0, 0  k  ti � 1, 1  i  `.



Polynomial combinations of powers

The sum and the product of any two linear recurrence
sequences are linear recurrence sequences.

The set [aEa of all linear recurrence sequences with
coe�cients in K is a sub–K–algebra of KN.

Given polynomials p1, . . . , p` in K[X] and elements �1, . . . , �`
in K⇥, the sequence

�
p1(n)�

n
1 + · · ·+ p`(n)�

n
`

�
n�0

is a linear recurrence sequence.

Conversely, any linear recurrence sequence is of this form.
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sequences are linear recurrence sequences.
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Consequence

• When f is a polynomial of degree < d, the characteristic
polynomial of the sequence un = f(n) divides (X � 1)

d.

Proof.

Set

A =

0

BBBBBBB@

1 1 0 · · · 0 0

0 1 1 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 1 1

0 0 0 · · · 0 1

1

CCCCCCCA

= Id +N

where Id is the d⇥ d identity matrix and N is nilpotent :
N

d
= 0.



Consequence

The characteristic polynomial of A is (X � 1)

d. Hence for

1  i, j  d, the sequence un of the coe�cient a(n)ij of An

satisfies the linear recurrence relation

(?) un+d = a1un+d�1 + · · ·+ adun,

that is

un+d = dun+d�1 �
✓
d

2

◆
un+d�2 + · · ·+ (�1)

d�2
dun+1 + (�1)

d�1
un.

The characteristic polynomial of this recurrence relation is
(X � 1)

d.



Characteristic polynomial of the recurrence
sequence f (n).

Since, for 1  i, j  d and n � 0, we have

a

(n)
ij =

✓
n

j � i

◆

(where we agree that
�
n
k

�
= 0 for k < 0 and for k > n, while�

d
0

�
=

�
d
d

�
= 1), we deduce that each of the d polynomials

1,

X(X + 1) · · · (X + k � 1)

k!

k = 1, 2, . . . , d� 1

namely

1, X,

X(X + 1)

2

, . . . ,

X(X + 1) · · · (X + d� 2)

(d� 1)!

,

satisfies the recurrence (?). These d polynomials constitute a
basis of the space of polynomials of degree < d.



Sum of polynomial combinations of powers

If u1 and u2 are two linear recurrence sequences of
characteristic polynomials f1 and f2 respectively, then u1 + u2

satisfies the linear recurrence, the characteristic polynomial of
which is

f1f2

gcd(f1, f2)
·



Product of polynomial combinations of powers

If the characteristic polynomials of the two linear recurrence
sequences u1 and u2 are respectively

f1(T ) =

Ỳ

j=1

(T � �j)
tj and f2(T ) =

`0Y

k=1

(T � �

0
k)

t0k
,

then u1u2 satisfies the linear recurrence, the characteristic
polynomial of which is

Ỳ

j=1

`0Y

k=1

(T � �j�
0
k)

tj+t0k�1
.



Linear recurrence sequences and
Brahmagupta–Pell–Fermat Equation

Let d be a positive integer, not a square. The solutions
(x, y) 2 Z⇥ Z of the Brahmagupta–Pell–Fermat Equation

x

2 � dy

2
= ±1

form a sequence (xn, yn)n2Z defined by

xn +

p
dyn = (x1 +

p
dy1)

n
.

From
2xn = (x1 +

p
dy1)

n
+ (x1 �

p
dy1)

n

we deduce that (xn)n�0 is a linear recurrence sequence. Same
for yn, and also for n  0.
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Doubly infinite linear recurrence sequences

A sequence (un)n2Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d�1 + · · ·+ adun.

for all n 2 Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.
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for all n 2 Z.
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Discrete version of linear di↵erential equations

A sequence u 2 KN can be viewed as a linear map N �! K.
Define the discrete derivative D by

Du : N �! K
n 7�! un+1 � un.

A sequence u 2 KN is a linear recurrence sequence if and only
if there exists Q 2 K[T ] with Q(1) 6= 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
di↵erential equations with constant coe�cients.

The condition Q(1) 6= 0 reflects ad 6= 0 – otherwise one gets ultimately

recurrent sequences.



97th Indian Science Congress, 2010

A.K. Agarwal

Invited by Ashok Agrawal to
the 97th Indian Science
Congress in
Thiruvananthapuram
(Trivandrum, Kerala), January
3-7, 2010.
• Lecture on Number Theory
Challenges of 21st Century



A. P. J. Abdul Kalam (1931-2015)

Public Lecture during the 97th Indian Science Congress,
Thiruvananthapuram – 4 January 2010 Thiruvananthapuram

Basic research is vital for
enhancing national and
international competitiveness

http://www.abdulkalam.com/kalam/theme/jsp/guest/

content-display.jsp

http://www.abdulkalam.com/kalam/theme/jsp/guest/index.jsp
http://www.abdulkalam.com/kalam/theme/jsp/guest/content-display.jsp
http://www.abdulkalam.com/kalam/theme/jsp/guest/content-display.jsp


Kerala 2010

Sudhir Ghorpade Jugal K. Verma Ambar Vijayatkumar

January 9-10, 2010, Cochin = Kochi (Kerala) Department of
Mathematics, Cochin University of Science and Technology
CUSAT

http://www.math.iitb.ac.in/~srg//
http://www.math.iitb.ac.in/~jkv/
http://cusat.ac.in/staff/staff_details.php?userid=62


KSOM 2010

January 8, 2010, Calicut = Kozhikode (Kerala) The Kerala
School of Mathematics (KSoM)

A. J. Parameswaran, Director of the Kerala School of
Mathematical Science (KSOM) in Kozikhode (Calicut)

http://www.ksom.res.in/
http://www.ksom.res.in/
http://www.ksom.res.in/
http://www.ksom.res.in/


KSOM 2010

Work on dynamical systems by A. J. Parameswaran and S.G.
Dani

A. J. Parameswaran S.G. Dani



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, H an hyperplane of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Theorem. If there exist infinitely many n � 1 such that
f

n
(x) 2 H, then there is an (infinite) arithmetic progression of

n for which it is so.
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Skolem – Mahler – Lech Theorem
Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a
linear recurrence sequence, the set of indices n � 0 such that
un = 0 is a finite union of arithmetic progressions.

Linear recurrence sequence :

un+d = a1un+d�1 + · · ·+ adun, n � 0 (ad 6= 0).

Characteristic polynomial :

X

d � a1X
d�1 � · · ·� ad =

Ỳ

j=1

(X � �j)
tj

un =

X̀

j=1

tj�1X

i=0

cijn
i
�

n
j .
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Ỳ

j=1

(X � �j)
tj

un =

X̀

j=1

tj�1X

i=0

cijn
i
�

n
j .



Skolem – Mahler – Lech Theorem
Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a
linear recurrence sequence, the set of indices n � 0 such that
un = 0 is a finite union of arithmetic progressions.

Linear recurrence sequence :

un+d = a1un+d�1 + · · ·+ adun, n � 0 (ad 6= 0).

Characteristic polynomial :

X

d � a1X
d�1 � · · ·� ad =

Ỳ
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Wolfgang M. Schmidt
Thue – Siegel – Roth – Schmidt,

Schmidt’s Subspace Theorem. The generalized S–unit
Theorem

Let K be a field of characteristic zero, let G be a finitely
multiplicative subgroup of the multiplicative group
K⇥

= K \ {0} and let n � 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the values of the unknowns u1, u2, · · · , un are in G for
which no nontrivial subsum

X

i2I

ui ; 6= I ⇢ {1, . . . , n}

vanishes, has only finitely many solutions.
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Schmidt’s subspace Theorem

Wolfgang M. Schmidt

Pietro Corvaja Umberto Zannier



Balu’s 60’s Birthday, 2011

December 15 - 20, 2011 : HRI : International Meeting on
Number Theory 2011 celebrating the 60th Birthday of
Professor R. Balasubramanian.

Pietro Corvaja M. Manickam, director of KSOM.

December 16, 2011 : lecture on Families of Thue-Mahler
equations.



Joint work with Claude Levesque
http://arxiv.org/abs/1505.06653

Solving simultaneously Thue
Diophantine equations :
almost totally imaginary case
Proceedings of the
International Meeting on
Number Theory HRI 2011, in
honor of R. Balasubramanian.

Ramanujan Mathematical Society, Lecture Notes Series 23,
Highly composite : papers in number theory, (2016), 137–156.
Editors Kumar Murty, Ravindranathan Thangadurai.

http://www.ramanujanmathsociety.org/publications/

rms-lecture-notes-series

http://arxiv.org/abs/1505.06653
http://www.ramanujanmathsociety.org/publications/rms-lecture-notes-series
http://www.ramanujanmathsociety.org/publications/rms-lecture-notes-series


http://www.ramanujanmathsociety.org/publications/rms-lecture-notes-series

http://www.ramanujanmathsociety.org/publications/rms-lecture-notes-series


KSOM 2013

Workshop number theory and dynamical systems in KSOM
(Director M. Manickam) in February 2013

Yann Bugeaud Pietro Corvaja S.G. Dani



Reference

M. Waldschmidt. Diophantine approximation with
applications to dynamical systems. Proceedings of the
International Conference on Pure and Applied Mathematics
ICPAM–LAE 2013, South Pacific Journal of Pure and Applied
Mathematics, vol. 1, No 2 (2014), 1–18.



Skolem – Mahler – Lech Theorem

Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a
linear recurrence sequence, the set of indices n � 0 such that
un = 0 is a finite union of arithmetic progressions.

Thoralf Albert Skolem Kurt Mahler Christer Lech
(1887 – 1963) (1903 – 1988)

An arithmetic progression is a set of positive integers of the
form {n0, n0 + k, n0 + 2k, . . .}. Here, we allow k = 0.



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Corollary of the Skolem – Mahler – Lech Theorem. The
set of n � 0 such that fn

(x) 2 W is a finite union of
arithmetic progressions.

By induction, it su�ces to consider the case where W = H is
an hyperplane of V .



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Corollary of the Skolem – Mahler – Lech Theorem. The
set of n � 0 such that fn

(x) 2 W is a finite union of
arithmetic progressions.

By induction, it su�ces to consider the case where W = H is
an hyperplane of V .



A dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Corollary of the Skolem – Mahler – Lech Theorem. The
set of n � 0 such that fn

(x) 2 W is a finite union of
arithmetic progressions.

By induction, it su�ces to consider the case where W = H is
an hyperplane of V .



Idea of the proof of the corollary

Choose a basis of V . The endomorphism f is given by a
square d⇥ d matrix A, where d is the dimension of V .
Consider the characteristic polynomial of A, say

X

d � ad�1X
d�1 � · · ·� a1X � a0.

By the Theorem of Cayley – Hamilton,

A

d
= ad�1A

d�1
+ · · ·+ a1A+ a0Id

where Id is the identity d⇥ d matrix.



Theorem of Cayley – Hamilton

Arthur Cayley Sir William Rowan Hamilton
(1821 – 1895) (1805 – 1865)

Hence, for n � 0,

A

n+d
= ad�1A

n+d�1
+ · · ·+ a1A

n+1
+ a0A

n
.

It follows that each entry aij(n), 1  i, j  d, satisfies a linear
recurrence relation, the same for all i, j.



Theorem of Cayley – Hamilton

Arthur Cayley Sir William Rowan Hamilton
(1821 – 1895) (1805 – 1865)

Hence, for n � 0,

A

n+d
= ad�1A

n+d�1
+ · · ·+ a1A

n+1
+ a0A

n
.

It follows that each entry aij(n), 1  i, j  d, satisfies a linear
recurrence relation, the same for all i, j.



Theorem of Cayley – Hamilton

Arthur Cayley Sir William Rowan Hamilton
(1821 – 1895) (1805 – 1865)

Hence, for n � 0,

A

n+d
= ad�1A

n+d�1
+ · · ·+ a1A

n+1
+ a0A

n
.

It follows that each entry aij(n), 1  i, j  d, satisfies a linear
recurrence relation, the same for all i, j.



Hyperplane membership

Let b1x1 + · · ·+ bdxd = 0 be an equation of the hyperplane H

in the selected basis of V . Let t
b denote the 1⇥ d matrix

(b1, . . . , bd) (transpose of a column matrix b). Using the
notation v for the d⇥ 1 (column) matrix given by the
coordinates of an element v in V , the condition v 2 H can be
written t

b v = 0.

Let x be an element in V and x the d⇥ 1 (column) matrix
given by its coordinates. The condition f

n
(x) 2 H can now be

written
t
bA

n
x = 0.

The entry un of the 1⇥ 1 matrix t
bA

n
x satisfies a linear

recurrence relation, hence, the Skolem – Mahler – Lech
Theorem applies.
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Remark on the theorem of Skolem–Mahler–Lech

T.A. Skolem treated the case K = Q of in 1934

K. Mahler the case K = Q, the algebraic closure of Q, in 1935

The general case was settled by C. Lech in 1953.



Finite characteristic
C. Lech pointed out in 1953 that such a result may not hold if
the characteristic of K is positive : he gave as an example the
sequence un = (1 + x)

n � x

n � 1, a third-order linear
recurrence over the field of rational functions in one variable
over the field Fp with p elements, where un = 0 for
n 2 {1, p, p2, p3, . . .}. A substitute is provided by a result of
Harm Derksen (2007), who proved that the zero set in
characteristic p is a p–automatic sequence. Further results by
Boris Adamczewski and Jason Bell.

Harm Derksen Boris Adamczewski Jason Bell

http://www.math.uwaterloo.ca/~jpbell/


Polynomial-linear recurrence relation

A generalization of the Theorem of Skolem–Mahler–Lech has
been achieved by Jason P. Bell, Stanley Burris and Karen Yeats
who prove that the same conclusion holds if the sequence
(un)n�0 satisfies a polynomial-linear recurrence relation

un =

dX

i=1

Pi(n)un�i

where d is a positive integer and P1, . . . , Pd are polynomials
with coe�cient in the field K of zero characteristic, provided
that Pd(x) is a nonzero constant.



Algebraic maps, algebraic groups

There are also analogues of the Theorem of
Skolem–Mahler–Lech for algebraic maps on varieties (Jason
Bell).

A version of the Skolem–Mahler–Lech Theorem for any
algebraic group is due to Umberto Zannier.

Jason Bell
Umberto Zannier



Open problem

One main open problem related with Theorem of
Skolem–Mahler–Lech is that it is not e↵ective : explicit upper
bounds for the number of arithmetic progressions, depending
only on the order d of the linear recurrence sequence, are
known (W.M. Schmidt, U. Zannier), but no upper bound for
the arithmetic progressions themselves is known. A related
open problem raised by T.A. Skolem and C. Pisot is :

Given an integer linear recurrence sequence, is the
truth of the statement “xn 6= 0 for all n” decidable
in finite time ?

T. Tao, E↵ective Skolem Mahler Lech theorem. In “Structure and

Randomness : pages from year one of a mathematical blog”, American

Mathematical Society (2008), 298 pages.

http://terrytao.wordpress.com/2007/05/25/open-question-effective-skolem-mahler-lech-theorem/

http://terrytao.wordpress.com/2007/05/25/open-question-effective-skolem-mahler-lech-theorem/


Zeros of linear recurrence sequences

Jean Berstel et Maurice Mignotte. – Deux propriétés
décidables des suites récurrentes linéaires Bulletin de la
S.M.F., tome 104 (1976), p. 175-184.
http://www.numdam.org/item?id=BSMF_1976__104__175_0

Given a linear recurrence sequence with integer coe�cients ;
are there finitely or infinitely many zeroes ?

Philippe Robba. – Zéros de suites récurrentes linéaires. Groupe
de travail d’analyse ultramétrique (1977-1978) Volume : 5,
page 1-5.

L. Cerlienco, M. Mignotte, F. Piras. Suites récurrentes
linéaires. Propriétés algébriques et arithmétiques.
L’Enseignement Mathématique 33 (1987).

http://www.numdam.org/item?id=BSMF_1976__104__175_0
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Zeros of linear recurrence sequences

Maurice Mignotte Propriétés arithmétiques des suites
récurrentes linéaires. Besançon, 1989
http://pmb.univ-fcomte.fr/1989/Mignotte.pdf

E. Bavenco↵e and J-P. Bézivin Une famille remarquable de
suites recurrentes lineaires. – Monatshefte für Mathematik,
(1995) 120 3, 189–203

Karim Samake. – Suites récurrentes linéaires, problème
d’e↵ectivité. Inst. de Recherche Math. Avancée, 1996 - 62
pages

http://pmb.univ-fcomte.fr/1989/Mignotte.pdf
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Reference
Everest, Graham ; van der Poorten, Alf ;

Shparlinski, Igor ; Ward, Tom – Recurrence
sequences, Mathematical Surveys and Monographs (AMS,
2003), volume 104. 1290 references.

Graham Everest Alf van der Poorten

Igor Shparlinski Tom Ward



Berstel’s sequence http://oeis.org/A007420

0, 0, 1, 2, 0, �4, 0, 16, 16, �32, �64, 64, 256, 0, �768, . . .

Jean Berstel

b0 = b1 = 0, b2 = 1,
bn+3 = 2bn+2 � 4bn+1 + 4bn

for n � 0.

Linear recurrence sequence of
order 3 with exactly 6 zeros :
n = 0, 1, 4, 6, 13, 52.

http://www-igm.univ-mlv.fr/

~

berstel/

http://oeis.org/A007420
http://www-igm.univ-mlv.fr/~berstel/


Ternary linear recurrences

Berstel’s sequence is a linear recurrence sequence of order 3
with 6 zeroes.

Frits Beukers

Frits Beukers (1991) : up to
trivial transformation, any
other linear recurrence of
order 3 with finitely many
zeroes has at most 5 zeros.

http://www.staff.science.uu.nl/~beuke106/


Edgard Bavenco↵e and Jean-Paul Bézivin

Let n � 2. The sequence with initial values

u0 = 1, u1 = · · · = un�1 = 0

satisfying the recurrence relation of order n with characteristic
polynomial

X

n+1 � (�2)

n�1
X + (�2)

n

X + 2

has at least
n(n+ 1)

2

� 1

zeroes.



Edgard Bavenco↵e and Jean-Paul Bézivin

For n = 3 one obtains Berstel’s sequence which happens to
have an extra zero.

X

4
+ 4X � 8

X + 2

= X

3 � 2X

2
+ 4X � 4.

Edgard Bavenco↵e Jean-Paul Bézivin



Berstel’s sequence

0, 0, 1, 2, 0, �4, 0, 16, 16, �32, �64, 64, 256, 0, �768, . . .

b0 = b1 = 0, b2 = 1, bn+3 = 2bn+2 � 4bn+1 + 4bn for n � 0.

Maurice Mignotte

The equation bm = ±bn has
exactly 21 solutions (m,n)

with m 6= n.

The equation bn = ±2

r
3

s has
exactly 44 solutions (n, r, s).



Joint work with Claude Levesque

Linear recurrence sequences
and twisted binary forms.
Proceedings of the
International Conference on
Pure and Applied
Mathematics
ICPAM-GOROKA 2014.
South Pacific Journal of Pure
and Applied Mathematics.

http://webusers.imj-prg.fr/

~

michel.waldschmidt//articles/

pdf/ProcConfPNG2014.pdf

http://webusers.imj-prg.fr/~michel.waldschmidt//articles/pdf/ProcConfPNG2014.pdf
http://webusers.imj-prg.fr/~michel.waldschmidt//articles/pdf/ProcConfPNG2014.pdf


Families of binary forms
Consider a binary form F0(X, Y ) 2 C[X, Y ] which satisfies
F0(1, 0) = 1. We write it as

F0(X, Y ) = X

d
+ a1X

d�1
Y + · · ·+ adY

d
=

dY

i=1

(X � ↵iY ).

Let ✏1, . . . , ✏d be d nonzero complex numbers not necessarily
distinct. Twisting F0 by the powers ✏n1 , . . . , ✏

n
d (n 2 Z) boils

down to considering the family of binary forms

Fn(X, Y ) =

dY

i=1

(X � ↵i✏
n
i Y ),

which we write as

X

d � U1(n)X
d�1

Y + · · ·+ (�1)

d
Ud(n)Y

d
.

Therefore

Uh(0) = (�1)

h
ah (1  h  d).
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Families of Diophantine equations
With Claude Levesque, we considered some families of
diophantine equations

Fn(x, y) = m

obtained in the same way from a given irreducible form
F (X, Y ) with coe�cients in Z, when ✏1, . . . , ✏d are algebraic
units and when the algebraic numbers ↵1✏1, . . . ,↵d✏d are
Galois conjugates with d � 3.
Theorem. Let K be a number field of degree d � 3, S a finite
set of places of K containing the places at infinity. Denote by
OS the ring of S–integers of K and by O⇥

S the group of
S–units of K. Assume ↵1, . . . ,↵d, ✏1, . . . , ✏d belong to K⇥

Then there are only finitely many (x, y, n) in OS ⇥OS ⇥ Z
satisfying

Fn(x, y) 2 O⇥
S , xy 6= 0 and Card{↵1✏

n
1 , . . . ,↵d✏

n
d} � 3.
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Families of Diophantine equations
Each of the sequences

�
Uh(n)

�
n2Z coming from the

coe�cients of the relation

Fn(X, Y ) = X

d � U1(n)X
d�1

Y + · · ·+ (�1)

d
Ud(n)Y

d

is a linear recurrence sequence.

For example, for n 2 Z,

U1(n) =

dX

i=1

↵i✏
n
i , Ud(n) =

dY

i=1

↵i✏
n
i .

For 1  h  d, the sequence
�
Uh(n)

�
n2Z is a linear

combination of the sequences

�
(✏i1 · · · ✏ih)n

�
n2Z, (1  i1 < · · · < ih  d).
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Some units of Bernstein and Hasse

Let t and s be two positive integers, D an integer � 1, and
c 2 {�1,+1}. Let ! > 1 satisfy

!

st
= D

st
+ c,

where it is assumed that Q(!) is of degree st.
Consider

↵ = D � !, ✏ = D

t � !

t
.

L. Bernstein and H. Hasse noticed that ↵ and ✏ are units of
degree st and s respectively, and showed that these units can
be obtained from the Jacobi–Perron algorithm. H.-J. Stender
proved that for s = t = 2, {↵, ✏} is a fundamental system of
units of the quartic field Q(!).
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Helmut Hasse (1898-1979)

D > 0, s � 1, t � 1,
c 2 {�1,+1}, ! > 0,

!

st
= D

st
+ c,

↵ = D � !,

✏ = D

t � !

t
.

(↵�D)

st
= (�1)

st
(D

st
+ c).



Diophantine equations associated with some units
of Bernstein and Hasse

The irreducible polynomial of ↵ is F0(X, 1), with

F0(X, Y ) = (X �DY )

st � (�1)

st
(D

st
+ c)Y

st
.

For n 2 Z, the binary form Fn(X, Y ), obtained by twisting
F0(X, Y ) with the powers ✏n of ✏, is the homogeneous version
of the irreducible polynomial Fn(X, 1) of ↵✏n. So Fn depends
of the parameters n, D, s, t and c.
Theorem (LW). Suppose st � 3. There exists an e↵ectively
computable constant , depending only on D, s and t, with
the following property. Let m, a, x, y be rational integers
satisfying m � 2, xy 6= 0, [Q(↵✏

a
) : Q] = st and

|Fn(x, y)|  m.

Then
max{log |x|, log |y|, |n|}   logm.
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Hankel determinants
To test an arbitrary sequence u = (un)n�0 of elements of a
field K for the property of being a linear recurrence sequence,
consider the Hankel determinants

�N,d(u) = det (ud+i+j)0i,jN .

Hermann Hankel
(1839–1873)

The sum

f(z) =

1X

n=0

unz
n

represents a rational function
if and only if for some d,
�N,d(u) = 0 for all
su�ciently large N



Hankel determinants
Alan Haynes, Wadim Zudilin. – Hankel determinants of zeta
values
(Submitted on 7 Oct 2015)

Abstract: We study the asymptotics of Hankel determinants
constructed using the values ⇣(an+ b) of the Riemann zeta
function at positive integers in an arithmetic progression. Our
principal result is a Diophantine application of the
asymptotics.

Alan Haynes Wadim Zudilin



Perfect powers in the Fibonacci sequence

Yann Bugeaud, Maurice Mignotte, Samir Siksek (2004) : The
only perfect powers (squares, cubes, etc.) in the Fibonacci
sequence are 1, 8 and 144.

Y. Bugeaud M. Mignotte S. Siksek

http://www-irma.u-strasbg.fr/~bugeaud/
http://homepages.warwick.ac.uk/~maseap/


Powers in recurrence sequences

Mike Bennett

M. A. Bennett, Powers in
recurrence sequences : Pell
equations, Trans. Amer.
Math. Soc. 357 (2005),
1675-1691.

http://www.math.ubc.ca/

~

bennett/paper31.pdf

http://www.math.ubc.ca/~bennett/paper31.pdf


Bases of the space of linear recurrence sequences
Given a1, . . . , ad with ad 6= 0, consider the vector space of
linear recurrence sequences satisfying, for n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Assuming the characteristic polynomial

f(X) = X

d � a1X
d�1 � · · ·� ad

of the recurrence splits completely in K,

f(X) =

Ỳ

j=1

(X � �j)
ti

we have two bases. The first one given by the initial conditions
(u0, . . . , ud�1), and the second one is given by the sequences

(n

i
�

n
j )n�0, 0  i  tj � 1, 1  j  `.
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Change of basis

The matrix of change of bases is

M =

0

B@
M1
...

M`

1

CA

where

Mj =

0

BBBBBBBBB@

1 �j �2j · · · �
tj�1
j �

tj
j · · · �d�1

j

0 1
�2
1

�
�j . . .

�tj�1
1

�
�
tj�2
j

�tj
1

�
�
tj�1
j . . .

�d�1
1

�
�d�2
j

0 0 1 . . .
�tj�1

2

�
�
tj�3
j

�tj
2

�
�
tj�2
j . . .

�d�1
2

�
�d�3
j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 1
� tj
tj�1

�
�j · · · � d�1

tj�1

�
�
d�tj
j

1

CCCCCCCCCA

.



Exponential polynomials
The sequence of derivatives of an exponential polynomial
evaluated at one point satisfies a linear recurrence relation.
Let p1(z), . . . , p`(z) be nonzero polynomials of C[z] of degrees
smaller than t1, . . . , t` respectively. Let �1, . . . , �` be distinct
complex numbers. Suppose that the function

F (z) = p1(z)e
�1z

+ · · ·+ p`(z)e
�`z

is not identically 0. Then its vanishing order at a point z0 is
smaller than or equal to t1 + · · ·+ t` � 1.
In other terms, when the complex numbers �j are distinct, the
determinant

����

✓
d

dz

◆a �
z

i
e

�jz
�
z=0

����
0itj�1, 1j`

0ad�1

is di↵erent from 0. This is no surprise that we come across the
determinant of the matrix M .
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The matrix M
The determinant of M is

detM =

Y

1i<j`

(�j � �i)
titj

.

For 1  j  `, 0  i  tj � 1, 0  k  d� 1, the (sj + i, k)

entry of the matrix M is

1

i!

✓
d

dT

◆i

T

k

�����
T=�j

=

✓
k

i

◆
�

k�i
j .

The matrix M is associated with the linear system of d
equations in d unknowns which amounts to finding a
polynomial f 2 K[z] of degree < d for which the d numbers

d

i
f

dz

i
(�j), (1  j  `, 0  i  tj � 1)

take prescribed values.
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Interpolation

Let �j (1  j  `) be distinct elements in K, tj (1  j  `)
be positive integers, ⌘ij (1  j  `, 0  i  tj � 1) be
elements in K. Set d = t1 + · · ·+ t`. There exists a unique
polynomial f 2 K[z] of degree < d satisfying

d

i
f

dz

i
(�j) = ⌘ij, (1  j  `, 0  i  tj � 1).



Truncated Taylor expansion

Let g 2 K(z), let z0 2 K and let t � 1. Assume z0 is not a
pole of g. We set

Tg,z0,t(z) =

t�1X

i=0

d

i
g

dz

i
(z0)

(z � z0)
i

i!

·

In other words, Tg,z0,t is the unique polynomial in K[z] of
degree < t such that there exists r(z) 2 K(z) having no pole
at z0 with

g(z) = Tg,z0,t(z) + (z � z0)
t
r(z).

Notice that if g is a polynomial of degree < t, then g = Tg,z0,t

for any z0 2 K.
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Explicit solution to the interpolation problem

For j = 1, . . . , `, define

hj(z) =

Y

1k`
k 6=j

✓
z � �k

�j � �k

◆tk

and pj(z) =

tj�1X

i=0

⌘ij
(z � �j)

i

i!

·

Then the solution f of the interpolation problem

d

i
f

dz

i
(�j) = ⌘ij, (1  j  `, 0  i  tj � 1).

is given by

f =

X̀

j=1

hjT pj
hj

,�j ,tj
.
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