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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
including connections with linear combinations of powers and
with exponential polynomials, with an emphasis on arithmetic
questions. This lecture will include new results, arising from a
joint work with Claude Levesque, involving families of
Diophantine equations, with explicit examples related to some
units of L. Bernstein and H. Hasse.



Leonardo Pisano (Fibonacci)

Fibonacci sequence (Fn)n�0

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233 . . .

is defined by

F0 = 0, F1 = 1,

Fn+2 = Fn+1 + Fn (n � 0).

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)

http://oeis.org/A000045


Fibonacci rabbits
Fibonacci considers the growth of a rabbit population.

A newly born pair of rabbits,
one male, one female, are put
in a field. Rabbits are able to
mate at the age of one month
so that at the end of its
second month a female can
produce another pair of
rabbits ; rabbits never die and
a mating pair always produces

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year ?

Answer : F12 = 144.



Fibonacci squares

http://mathforum.org/dr.math/faq/faq.golden.ratio.html

http://mathforum.org/dr.math/faq/faq.golden.ratio.html


Geometric construction of the 
Fibonacci sequence
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Fibonacci numbers in nature

Ammonite (Nautilus shape)



Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by pn the number of di↵erent paths with the ray going
out of the system after n reflections.

p0 = 1,

p1 = 2,

p2 = 3,

p3 = 5.

In general, pn = Fn+2.
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Levels of energy of an electron of an atom of
hydrogen

An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step,
alternatively, it gains or losses 1 or 2 levels of energy, without
going below 0 nor above 2. Let `n. be the number of di↵erent
possible histories of this electron are there after n steps.

We have `0 = 1 (initial state
level 0)
`1 = 2 : state 1 or 2, histories
01 or 02.
`2 = 3 : histories 010, 021 or
020.
`3 = 5 : histories 0101, 0102,
0212, 0201 or 0202.
In general, `n = Fn+2.



Rhythmic patterns
The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135),
and the Jain scholar Hemachandra (c. 1150) studied rhythmic
patterns that are formed from one-beat notes (or short
syllables, ti in Morse Alphabet) : • and two-beat notes (or
long syllables, ta ta in Morse) : ⌅⌅.

1 beat, 1 pattern : •
2 beats, 2 patterns : •• and ⌅⌅
3 beats, 3 patterns : • • •, •⌅⌅ and ⌅⌅•
4 beats, 5 patterns :

• • ••, ⌅⌅ • •, •⌅⌅•, • •⌅⌅, ⌅⌅⌅⌅

n beats, Fn+1 patterns
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Fibonacci sequence and the Golden ratio

For n � 0, the Fibonacci number Fn is the nearest integer to

1p
5

�

n
,

where � is the Golden Ratio :

� =

1 +

p
5

2

= lim

n!1

Fn+1

Fn
= 1.6180339887499 . . .

which satisfies

� = 1 +

1

�

·



Binet’s formula

For n � 0,

Fn =

�

n � (��)
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Jacques Philippe Marie Binet
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The so–called Binet Formula
Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n � 0,

Fn =

1p
5

 
1 +

p
5

2

!n

� 1p
5

 
1�p

5

2

!n

.

Abraham de
Moivre

(1667–1754)

Daniel
Bernoulli

(1700–1782)

Leonhard
Euler

(1707–1783)

Jacques P.M.
Binet

(1786–1856)

Fn is the nearest integer to
1p
5

�

n.



Generating series
A single series encodes all the Fibonacci sequence :
X

n�0

FnX
n
= X +X

2
+ 2X

3
+ 3X

4
+ 5X

5
+ · · ·+ FnX

n
+ · · ·

Fact : this series is the Taylor expansion of a rational fraction :
X

n�0

FnX
n
=

X

1�X �X

2
·

Proof : the product

(X +X

2
+ 2X

3
+ 3X

4
+ 5X

5
+ 8X

6
+ · · · )(1�X �X

2
)

is a telescoping series

X +X

2
+ 2X

3
+ 3X

4
+ 5X

5
+ 8X

6
+ · · ·

�X

2 � X

3 � 2X

4 � 3X

5 � 5X

6 � · · ·
�X

3 � X

4 � 2X

5 � 3X

6 � · · ·
= X.
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Generating series of the Fibonacci sequence

Remark. The denominator 1�X �X

2 in the right hand side
of

X +X

2
+ 2X

3
+ 3X

4
+ · · ·+ FnX

n
+ · · · = X

1�X �X

2

is X2
f(X

�1
), where f(X) = X

2 �X � 1 is the irreducible
polynomial of the Golden ratio �.



Fibonacci and powers of matrices
The Fibonacci linear recurrence relation Fn+2 = Fn+1 + Fn for
n � 0 can be written

✓
Fn+1

Fn+2

◆
=

✓
0 1

1 1

◆✓
Fn

Fn+1

◆
.

By induction one deduces, for n � 0,

✓
Fn

Fn+1

◆
=

✓
0 1

1 1

◆n✓
0

1

◆
.

An equivalent formula is, for n � 1,

✓
0 1

1 1

◆n

=

✓
Fn�1 Fn

Fn Fn+1

◆
.



Fibonacci and powers of matrices
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

✓
0 1

1 1

◆

is

det(XI � A) = det

✓
X �1

�1 X � 1

◆
= X

2 �X � 1,

which is the irreducible polynomial of the Golden ratio �.



Fibonacci sequence and the Golden ratio
(continued)

For n � 1, �n 2 Z[�] = Z+ Z� is a linear combination of 1
and � with integer coe�cients, namely

�

n
= Fn�1 + Fn�
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Fibonacci sequence and Hilbert’s 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, y, z, . . . having the
property that n = F2m i↵ there exist integers x, y, z, . . . such
that P (n,m, x, y, z, . . . ) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert’s problems (does
there exist a general method
for solving Diophantine
equations ?) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Davis.



The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.



Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n�0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln (n � 0),

only the initial values are di↵erent :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322 . . .

A closed form involving the Golden ratio � is

Ln = �

n
+ (��)

�n
,

from which it follows that for n � 2, Ln is the nearest integer
to �

n.

http://oeis.org/000032
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François Édouard Anatole Lucas (1842 - 1891)

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

http://www-history.mcs.st-andrews.ac.uk/history/

Mathematicians/Lucas.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lucas.html


Generating series of the Lucas sequence

The generating series of the Lucas sequence

X

n�0

LnX
n
= 2 +X + 3X

2
+ 4X

3
+ · · ·+ LnX

n
+ · · ·

is nothing else than
2�X

1�X �X

2
·



The Lucas sequence and power of matrices

From the linear recurrence relation Ln+2 = Ln+1 + Ln one
deduces, (as we did for the Fibonacci sequence), for n � 0,

✓
Ln+1

Ln+2

◆
=

✓
0 1

1 1

◆✓
Ln

Ln+1

◆
,

hence ✓
Ln

Ln+1

◆
=

✓
0 1

1 1

◆n✓
2

1

◆
.

Any one of the three sequences (Fn)n�0, (Ln)n�0, (�n
)n�0

can be written as a linear combination of the two others.
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Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence defined by

Pn+3 = Pn+1 + Pn for n � 0,

with the initial conditions

P0 = 3, P1 = 0, P2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68 . . .

François Olivier Raoul Perrin :
https://en.wikipedia.org/wiki/Perrin_number

http://oeis.org/A001608
https://en.wikipedia.org/wiki/Perrin_number
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Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence
approaches the plastic number %, which is the minimal
Pisot–Vijayaraghavan number, real root of

x

3 � x� 1

which has a value of approximately 1.324718.

This constant is equal to

% =

3
p
108 + 12

p
69 +

3
p

108� 12

p
69

6

·

https://oeis.org/A060006
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Perrin sequence and the plastic constant

Decompose the polynomial X3 �X � 1 into irreducible
factors over C

X

3 �X � 1 = (X � %)(X � ⇢)(X � ⇢).

and over R

X

3 �X � 1 = (X � %)(X

2
+ %X + %

�1
).

Hence ⇢ and ⇢ are the roots of X2
+ %X + %

�1. Then, for
n � 0,

Pn = %

n
+ ⇢

n
+ ⇢

n
,

It follows that, for n � 0, Pn is the nearest integer to %

n
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Generating series of the Perrin sequence

The generating series of the Perrin sequence

X

n�0

PnX
n
= 3 + 2X

2
+ 3X

3
+ 2X

4
+ · · ·+ PnX

n
+ · · ·

is nothing else than

3�X

2

1�X

2 �X

3
·

The denominator 1�X

2 �X

3 is X3
f(X

�1
) where

f(X) = X

3 �X � 1 is the irreducible polynomial of %.
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Perrin sequence and power of matrices

From
Pn+3 = Pn+1 + Pn

we deduce
0

@
Pn+1

Pn+2

Pn+3

1

A
=

0

@
0 1 0

0 0 1

1 1 0

1

A

0

@
Pn

Pn+1

Pn+2

1

A

Hence 0

@
Pn

Pn+1

Pn+2

1

A
=

0

@
0 1 0

0 0 1

1 1 0

1

A
n0

@
3

0

2

1

A



Perrin sequence and power of matrices
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Pn+3 = Pn+1 + Pn
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

0

@
0 1 0

0 0 1

1 1 0

1

A

is

det(XI � A) = det

0

@
X �1 0

0 X �1

�1 �1 X

1

A
= X

3 �X � 1,

which is the irreducible polynomial of the plastic constant %.



Perrin pseudoprimes https://oeis.org/A013998

If p is prime, then p divides Pp.

The smallest composite n such that n divides Pn is 5212.

For n either 271441 = 521

2 or 904631 = 7⇥ 13⇥ 9941, the
number n divides Pn.
Jon Grantham has proved that there are infinitely many Perrin
pseudoprimes.
The number c of decimal digits of P271441 satisfies
10

c
= %

271441, hence c = 271441(log %)/(log 10) ⇠ 33 150.

The website www.Perrin088.org maintained by Richard Turk
is devoted to Perrin numbers. See OEISA113788.

https://oeis.org/A013998
www.Perrin088.org
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Padovan sequence https://oeis.org/A000931

The Padovan sequence pn satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has di↵erent initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65 . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html

https://oeis.org/A000931
http://mathworld.wolfram.com/LinearRecurrenceEquation.html


Generating series and power of matrices
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3
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Generating series and power of matrices
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Padovan triangles

pn = pn�2 + pn�3

pn�1 = pn�3 + pn�4

pn�2 = pn�4 + pn�5

Hence

pn � pn�1 = pn�5

pn = pn�1 + pn�5



Padovan triangles



Padovan triangles vs Fibonacci squares



Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.

It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, . . .

Real root of x3 � x

2 � 1

3

s
29 + 3

p
93

2

+

3

s
29� 3

p
93

2

+ 1

3

= 1.465571231876768 . . .

https://oeis.org/A000930
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Generating series and power of matrices
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Narayana’s cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17
years ?



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.
Music : Tom Johnson
Saxophones : Daniel Kientzy

http://www.pogus.com/21033.html


Narayana’s cows
http://webusers.imj-prg.fr/

~

michel.waldschmidt/

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Original 
Cow 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Second 
generation 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Third 
generation 0 0 0 1 3 6 10 15 21 28 36 45 55 66

Fourth 
generation 0 0 0 0 0 0 1 4 10 20 35 56 84 120

Fifth 
generation 0 0 0 0 0 0 0 0 0 1 5 15 35 70

Sixth 
generation 0 0 0 0 0 0 0 0 0 0 0 0 1 6

Total 2 3 4 6 9 13 19 28 41 60 88 129 189 277

http://webusers.imj-prg.fr/~michel.waldschmidt/


Jean-Paul Allouche and Tom Johnson

http://webusers.imj-prg.fr/~jean-paul.allouche/

bibliorecente.html

http://www.math.jussieu.fr/~allouche/johnson1.pdf

http://webusers.imj-prg.fr/~jean-paul.allouche/bibliorecente.html
http://webusers.imj-prg.fr/~jean-paul.allouche/bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf


Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

• Narayana’s Cows and Delayed Morphisms
In 3èmes Journées d’Informatique Musicale (JIM ’96), Ile de

Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May

1996.

http://kalvos.org/johness1.html

• Finite automata and morphisms in assisted musical
composition,
Journal of New Music Research, no. 24 (1995), 97 – 108.

http://www.tandfonline.com/doi/abs/10.1080/

09298219508570676

http://web.archive.org/web/19990128092059/www.swets.

nl/jnmr/vol24_2.html

http://kalvos.org/johness1.html
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://www.tandfonline.com/doi/abs/10.1080/09298219508570676
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html
http://web.archive.org/web/19990128092059/www.swets.nl/jnmr/vol24_2.html


Linear recurrence sequences : definitions
A linear recurrence sequence is a sequence of numbers
u = (u0, u1, u2, . . . ) for which there exist a positive integer d
together with numbers a1, . . . , ad with ad 6= 0 such that, for
n � 0,

(?) un+d = a1un+d�1 + · · ·+ adun.

Here, a number means an element of a field K of zero
characteristic.
Given a = (a1, . . . , ad) 2 Kd, the set Ea of linear recurrence
sequences u = (un)n�0 satisfying (?) is a K–vector subspace
of dimension d of the space KN of all sequences .
The characteristic (or companion) polynomial of the linear
recurrence is

f(X) = X

d � a1X
d�1 � · · ·� ad.
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Linear recurrence sequence : examples
• Constant sequence : un = u0.
Linear recurrence sequence of order 1 : un+1 = un.
Characteristic polynomial : f(X) = X � 1.
Generating series :

X

n�0

X

n
=

1

1�X

·

• Geometric progression : un = u0�
n.

Linear recurrence sequence of order 1 : un = �un�1.
Characteristic polynomial f(X) = X � �.
Generating series :

X

n�0

u0�
n
X

n
=

u0

1� �X

·
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Linear recurrence sequence : examples
• un = n. Linear recurrence sequence of order 2 :

n+ 2 = 2(n+ 1)� n.

Characteristic polynomial

f(X) = X

2 � 2X + 1 = (X � 1)

2
.

Generating series

X

n�0

nX

n
=

1

1� 2X +X

2
·

Power of matrices :
✓

0 1

�1 2

◆n

=

✓�n+ 1 n

�n n+ 1

◆
.



Linear recurrence sequence : examples

• un = f(n), f polynomial of degree d. Linear recurrence
sequence of order d+ 1.

Proof. The sequences

(f(n))n�0, (f(n+ 1))n�0, · · · , (f(n+ k))n�0

are K–linearly independent in KN for k = d� 1 and linearly
dependent for k = d .
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Linear sequences which are ultimately recurrent

The sequence
1, 0, 0, . . .

is not a linear recurrence sequence.

The condition
un+1 = un

is satisfied only for n � 1.

The relation
un+2 = un+1 + 0un

with d = 2, ad = 0 does not fulfill the requirement ad 6= 0.
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Order of a linear recurrence sequence

If u = (un)n�0 satisfies the linear recurrence, the characteristic
polynomial of which is f , then, for any monic polynomial
g 2 K[X], this sequence u also satisfies the linear recurrence,
the characteristic polynomial of which is fg.
Example : for g(X) = X � �, from

(?) un+d � a1un+d�1 � · · ·� adun = 0

we deduce

un+d+1 � a1un+d � · · ·� adun+1

+�(un+d � a1un+d�1 � · · ·� adun) = 0.

The order of a linear recurrence sequence is the smallest d
such that (?) holds for all n � 0.
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Polynomial combinations of powers

The sum of any two linear recurrence sequences is a linear
recurrence sequence.

The set [aEa of all linear recurrence sequences with
coe�cients in K is a sub–K–algebra of KN.

Given polynomials p1, . . . , p` in K[X] and elements �1, . . . , �`
in K⇥, the sequence

�
p1(n)�

n
1 + · · ·+ p`(n)�

n
`

�
n�0

is a linear recurrence sequence.

Fact : any linear recurrence sequence is of this form.
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Linear recurrence sequence and
Brahmagupta–Pell–Fermat Equation

Let d be a positive integer, not a square. The solutions
(x, y) 2 Z⇥ Z of the Brahmagupta–Pell–Fermat Equation

x

2 � dy

2
= ±1

form a sequence (xn, yn)n2Z defined by

xn +

p
dyn = (x1 +

p
dy1)

n
.

From
2xn = (x1 +

p
dy1)

n
+ (x1 �

p
dy1)

n

we deduce that (xn)n�0 is a linear recurrence sequence. Same
for yn, and also for n � 0.
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Doubly infinite linear recurrence sequence

A sequence (un)n2Z indexed by Z is a linear recurrence
sequence if it satisfies

(?) un+d = a1un+d�1 + · · ·+ adun.

for all n 2 Z.

Recall ad 6= 0.

Such a sequence is determined by d consecutive values.
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Linear recurrence sequence : simple roots

A basis of Ea over K is obtained by attributing to the initial
values u0, . . . , ud�1 the values given by the canonical basis of
Kd.
Given � in K⇥, a necessary and su�cient condition for a
sequence (�

n
)n�0 to satisfy (?) is that � is a root of the

characteristic polynomial

f(X) = X

d � a1X
d�1 � · · ·� ad.

If this polynomial has d distinct roots �1, . . . , �d in K,

f(X) = (X � �1) · · · (X � �d), �i 6= �j,

then a basis of Ea over K is given by the d sequences (�n
i )n�0,

i = 1, . . . , d.
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Linear recurrence sequence : double roots

The characteristic polynomial of the linear recurrence
un = 2�un�1 � �

2
un�2 is X2 � 2�X + �

2
= (X � �)

2 with a
double root �.

The sequence (n�

n
)n�0 satisfies

n�

n
= 2�(n� 1)n�

n�1 � �

2
(n� 2)�

n�2
.

A basis of Ea for a1 = 2�, a2 = ��

2 is given by the two
sequences (�n

)n�0, (n�n
)n�0.

Given � 2 K⇥, a necessary and su�cient condition for the
sequence n�

n to satisfy the linear recurrence relation (?) is
that � is a root of multiplicity � 2 of f(X).
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Linear recurrence sequence : multiple roots
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Generating series of a linear recurrence sequence
Let u = (un)n�0 be a linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

with characteristic polynomial

f(X) = X

d � a1X
d�1 � · · ·� ad.

Denote by f

� the reciprocal polynomial of f :

f

�
(X) = X

d
f(X

�1
) = 1� a1X � · · ·� a0X

d
.

Then
1X

n=0

unX
n
=

r(X)

f

�
(X)

,

where r is a polynomial of degree less than d determined by
the initial values of u.
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Taylor coe�cients of rational functions

Conversely, the coe�cients the Taylor expansion of any
rational fraction a(X)/b(X) with deg a < deg b satisfies the
recurrence relation with characteristic polynomial f 2 K[X]

given by f(X) = b

�
(X).

Therefore a sequence u = (un)n�0 satisfies the recurrence
relation (?) with characteristic polynomial f 2 K[X] if and
only if
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Matrix notation for a linear recurrence sequence

The linear recurrence sequence

(?) un+d = a1un+d�1 + · · ·+ adun for n � 0

can be written
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un+1

un+2
...
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1
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0 1 0 · · · 0
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...
...

...
. . .

...
0 0 0 · · · 1

ad ad�1 ad�2 · · · a1

1

CCCCCA
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BBB@

un

un+1
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un+d�1

1

CCCA
.



Matrix notation for a linear recurrence sequence

Un+1 = AUn

with

Un =
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1
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...
. . .

...
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ad ad�1 ad�2 · · · a1

1

CCCCCA
.

The determinant of IdX � A (the characteristic polynomial of
A) is nothing but

f(X) = X

d � a1X
d�1 � · · ·� ad,

the characteristic polynomial of the linear recurrence sequence.
By induction

Un = A

n
U0.
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Powers of matrices

Let A = (aij)1i,jd 2 GLd⇥d(K) be a d⇥ d matrix with
coe�cients in K and nonzero determinant. For n � 0, define

A

n
=

�
aij(n)

�
1i,jd

.

Then each of the d

2 sequences
�
aij(n)

�
n�0

, (1  i, j  d) is a
linear recurrence sequence. The roots of the characteristic
polynomial of these linear recurrences are the eigenvalues of A.

In particular the sequence
�
Tr(A

n
)

�
n�0

satisfies the linear
recurrence, the characteristic polynomial of which is the
characteristic polynomial of the matrix A.
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Conversely :

Given a linear recurrence sequence u 2 KN, there exist an
integer d � 1 and a matrix A 2 GLd(K) such that, for each
n � 0,

un = a11(n).

The characteristic polynomial of A is the characteristic
polynomial of the linear recurrence sequence.

Everest G., van der Poorten A., Shparlinski I., Ward T. –

Recurrence sequences, Mathematical Surveys and Monographs (AMS,

2003), volume 104.
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Discrete version of linear di↵erential equations

A sequence u 2 KN can be viewed as a linear map N �! K.
Define the discrete derivative D by

Du : N �! K
n 7�! un+1 � un.

A sequence u 2 KN is a linear recurrence sequence if and only
if there exists Q 2 K[T ] with Q(1) 6= 1 such that

Q(D)u = 0.

Linear recurrence sequences are a discrete version of linear
di↵erential equations with constant coe�cients.

The condition Q(1) 6= 0 reflects ad 6= 0 – otherwise one gets ultimately
recurrent sequences.
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Families of binary forms
Consider a binary form F0(X, Y ) 2 C[X, Y ] which satisfies
F0(1, 0) = 1. We write it as

F0(X, Y ) = X

d
+ a1X

d�1
Y + · · ·+ adY

d
=

dY

i=1

(X � ↵iY ).

Let ✏1, . . . , ✏d be d nonzero complex numbers not necessarily
distinct. Twisting F0 by the powers ✏n1 , . . . , ✏

n
d (n 2 Z), we

obtain the family of binary forms

Fn(X, Y ) =

dY

i=1

(X � ↵i✏
n
i Y ),

which we write as

X

d � U1(n)X
d�1

Y + · · ·+ (�1)

d
Ud(n)Y

d
.

Therefore

Uh(0) = (�1)

h
ah (1  h  d).
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Families of Diophantine equations
With Claude Levesque, we consider some families of
diophantine equations

Fn(x, y) = m

obtained in the same way from a given irreducible form
F (X, Y ) with coe�cients in Z, when ✏1, . . . , ✏d are algebraic
units and when the algebraic numbers ↵1✏1, . . . ,↵d✏d are
Galois conjugates with d � 3.
Theorem. Let K be a number field of degree d � 3, S a finite
set of places of K containing the places at infinity. Denote by
OS the ring of S–integers of K and by O⇥

S the group of
S–units of K. Assume ↵1, . . . ,↵d, ✏1, . . . , ✏d belong to K⇥

Then there are only finitely many (x, y, n) in OS ⇥OS ⇥ Z
satisfying

Fn(x, y) 2 O⇥
S , xy 6= 0 and Card{↵1✏

n
1 , . . . ,↵d✏

n
d} � 3.
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Families of Diophantine equations
Each of the sequences

�
Uh(n)

�
n2Z coming from the

coe�cients of the relation

Fn(X, Y ) = X

d � U1(n)X
d�1

Y + · · ·+ (�1)

d
Ud(n)Y

d

is a linear recurrence sequence.

For example, for n 2 Z,

U1(n) =

dX

i=1

↵i✏
n
i , Ud(n) =

dY

i=1

↵i✏
n
i .

For 1  h  d, the sequence
�
Uh(n)

�
n2Z is a linear

combination of the sequences

�
(✏i1 · · · ✏ih)n

�
n2Z, (1  i1 < · · · < ih  d).
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Units of Bernstein and Hasse

Let t and s be two positive integers, D an integer � 1, and
c 2 {�1,+1}. Let ! > 1 satisfy

!

st
= D

st
+ c,

where it is assumed that Q(!) is of degree st.
Consider

↵ = D � !, ✏ = D

t � !

t
.

L. Bernstein and H. Hasse noticed that ↵ and ✏ are units of
degree st and s respectively, and showed that these units can
be obtained from the Jacobi–Perron algorithm. H.-J. Stender
proved that for s = t = 2, {↵, ✏} is a fundamental system of
units of the quartic field Q(!).
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Helmut Hasse (1898-1979)

D > 0, s � 1, t � 1,
c 2 {�1,+1}, ! > 0,

!

st
= D

st
+ c,

↵ = D � !,

✏ = D

t � !

t
.

(↵�D)

st
= (�1)

st
(D

st
+ c).



Diophantine equations associated with some units
of Bernstein and Hasse

The irreducible polynomial of ↵ is F0(X, 1), with

F0(X, Y ) = (X �DY )

st � (�1)

st
(D

st
+ c)Y

st
.

For n 2 Z, the binary form Fn(X, Y ), obtained by twisting
F0(X, Y ) with the powers ✏n of ✏, is the homogeneous version
of the irreducible polynomial Fn(X, 1) of ↵✏n. So Fn depends
of the parameters n, D, s, t and c.
Theorem (with Claude Levesque). Suppose st � 3. There
exists an e↵ectively computable constant , depending only on
D, s and t, with the following property. Let m, a, x, y be
rational integers satisfying m � 2, xy 6= 0, [Q(↵✏

a
) : Q] = st

and
Fn(x, y)|  m.

Then
max{log |x|, log |y|, |n|}   logm.
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