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Abstract

Linear recurrence sequences are ubiquitous. They occur in
biology, economics, computer science (analysis of algorithms),
digital signal processing. We give a survey of this subject,
together with connections with linear combinations of powers,
with powers of matrices and with linear differential equations.

This first part is devoted to examples : Fibonacci, Lucas,
balancing numbers, Perrin, Padovan, Narayana.
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Applications of linear recurrence sequences

Combinatorics

Elimination

Symmetric functions

Hypergeometric series

Language

Communication, shift registers

Finite difference equations

Logic

Approximation

Pseudo–random sequences
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Applications of linear recurrence sequences

• Biology (Integrodifference equations, spatial ecology).

• Computer science (analysis of algorithms).

• Digital signal processing (infinite impulse response (IIR)
digital filters).

• Economics (time series analysis).

https://en.wikipedia.org/wiki/Recurrence_relation
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How many ancestors do we have ?
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Geometric series u0 = 1, un+1 = 2un

How many ancesters do we 
have? 

Sequence:  1,  2,  4,  8, 16 …       
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Bees genealogy

Male honeybees are born from
unfertilized eggs. Female
honeybees are born from
fertilized eggs. Therefore
males have only a mother, but
females have both a mother
and a father.
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Genealogy of a male bee (bottom – up)

Number of bees :

1, 1, 2, 3, 5 . . .

Number of females :

0, 1, 1, 2, 3 . . .

Rule :

un+2 = un+1 + un.
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Bees genealogy u1 = 1, u2 = 1, un+2 = un+1 + un

Number of  females at a given level  =          
                                 total population at the previous  level   
Number of  males at a given level=  
                                 number of  females at the previous  level  

1 + 0 = 1 

1 + 1 = 2 

1 + 2 = 3 

2 + 3 = 5 

3 + 5 = 8 

0 + 1 = 1 
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The Lamé Series

Gabriel Lamé
1795 – 1870

Edouard Lucas
1842 - 1891

In 1844 the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

was referred to as the Lamé series, because Gabriel Lamé
used it to give an upper bound for the number of steps in the
Euclidean algorithm for the gcd.
On a trip to Italy in 1876 Edouard Lucas found them in a copy
of the Liber Abbaci of Leonardo da Pisa.
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Leonardo Pisano (Fibonacci)

Fibonacci sequence (F n)n≥0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F 0 = 0, F 1 = 1,

F n+2 = F n+1+F n for n ≥ 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)
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OEIS

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/

Fibonacci sequence : http://oeis.org/A000045
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Fibonacci rabbits
Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,
a male and a female, are put
in a field. Rabbits are able to
mate at the age of one month
so that at the end of its
second month a female can
produce another pair of
rabbits ; rabbits never die and
a mating pair always produces

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year ?

Answer : F 12 = 144.
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Fibonacci’s rabbits

Modelization of a population

•  First month

•  Third month

•  Fifth month

•  Sixth month

•  Second month

•  Fourth month

Adult pairs Young pairs 

Sequence: 1,  1,  2,  3,  5,  8, … 
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Modelization of a population of mice

Exponential sequence 

•  First month

•  Second month

•  Third month

•  Fourth month

Number of  pairs:  1,  2,  4,  8, … 
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Is-it a realistic model ?

The genealogy of the ancestors of a human being is not a
mathematical tree :
30 generations would give 230 ancestors, more than a billion
people, three to four times more than the total population on
earth one thousand years ago.

Even worse for the genealogy of bees :

In every bee hive there is one female queen bee which lays all
the eggs. If an egg is not fertilised it eventually hatches into a
male bee, called a drone. If an egg is fertilised by a male bee,
then the egg produces a female worker bee, which doesn’t lay
any eggs herself.
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Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.

Alfred Lotka
1880 – 1949

Alfred Lotka : American biophysicist, specialist of population dynamics
and energetics. Predator–prey model, developed simultaneously but
independently of Vito Volterra.
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Fibonacci squares

http://mathforum.org/dr.math/faq/faq.golden.ratio.html
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Geometric construction of the 
Fibonacci sequence

1 2 

5 

8 

1 
2 

3 
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This is a nice rectangle
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Golden rectangle

This is a nice rectangle A 
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I 
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E 
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A square 
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Φ

1
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1

Φ− 1
·
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Fibonacci numbers in nature

Ammonite (Nautilus shape)
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Phyllotaxy
•  Study of the position of leaves on a stem 

and the reason for  them
•  Number of petals of flowers: daisies, 

sunflowers, aster, chicory, asteraceae,…
•  Spiral  patern to permit optimal exposure 

to sunlight  
•  Pine-cone, pineapple, Romanesco 

cawliflower, cactus
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Leaf arrangements
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http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm

•  Université de Nice,
    Laboratoire Environnement Marin Littoral, 

Equipe d'Accueil "Gestion de la 
Biodiversité"
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Phyllotaxy
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Phyllotaxy
•  J. Kepler (1611) uses the  Fibonacci 

sequence in his study of the  
dodecahedron and the icosaedron, and 
then of the symmetry of order 5 of the 
flowers.

•  Stéphane Douady and Yves Couder            
Les spirales végétales                                 
La Recherche 250 (Jan. 1993) vol. 24.
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Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by pn the number of different paths with the ray going
out of the system after n reflections.

p0 = 1,

p1 = 2,

p2 = 3,

p3 = 5.

In general, pn = F n+2.
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Levels of energy of an electron of an atom of

hydrogen
An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let `n be the number
of different possible scenarios for this electron after n steps.

In general, `n = F n+2.

We have `0 = 1 (initial state
level 0)

`1 = 2 : state 1 or 2, scenarios
(ending with gain) 01 or 02.

`2 = 3 : scenarios (ending with
loss) 010, 021 or 020.

`3 = 5 : scenarios (ending with
gain) 0101, 0102, 0212, 0201 or
0202.
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Rhythmic patterns
The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes •
and double beat notes ��.
one-beat note • : short syllabe (ti in Morse Alphabet)

double beat note �� : long syllabe (ta ta in Morse)

1 beat, 1 pattern : •
2 beats, 2 patterns : • • and ��

3 beats, 3 patterns : • • • , • �� and �� •
4 beats, 5 patterns :

• • • • , �� • • , • �� • , • • ��, �� ��

n beats, F n+1 patterns.
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Fibonacci sequence and the Golden ratio

For n ≥ 0, the Fibonacci number F n is the nearest integer to

1√
5

Φn,

where Φ is the Golden Ratio : http://oeis.org/A001622

Φ =
1 +
√

5

2
= lim

n→∞

F n+1

F n

= 1.6180339887499 . . .

which satisfies

Φ = 1 +
1

Φ
·
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Binet’s formula

For n ≥ 0,

F n =
Φn − (−Φ)−n√

5

=
(1 +

√
5)n − (1−

√
5)n

2n
√

5
,

Jacques Philippe Marie Binet

1786–1856

Φ =
1 +
√

5

2
, −Φ−1 =

1−
√

5

2
,

X2 −X − 1 = (X − Φ)(X + Φ−1).
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The so–called Binet Formula
Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n ≥ 0,

F n =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

Abraham de
Moivre

(1667–1754)

Daniel
Bernoulli

(1700–1782)

Leonhard
Euler

(1707–1783)

Jacques P.M.
Binet

(1786–1856)

F n is the nearest integer to
1√
5

Φn.
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Generating series
A single series encodes all the Fibonacci sequence :∑
n≥0

F nX
n = X +X2 + 2X3 + 3X4 + 5X5 + · · ·+F nX

n + · · ·

Fact : this series is the Taylor expansion of a rational fraction :∑
n≥0

F nX
n =

X

1−X −X2
·

Proof : the product

(X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · · )(1−X −X2)

is a telescoping series

X +X2 + 2X3 + 3X4 + 5X5 + 8X6 + · · ·
−X2 − X3 − 2X4 − 3X5 − 5X6 − · · ·

−X3 − X4 − 2X5 − 3X6 − · · ·
= X. 2 39 / 87



Generating series of the Fibonacci sequence

Remark. The denominator 1−X −X2 in the right hand side
of

X +X2 + 2X3 + 3X4 + · · ·+ F nX
n + · · · = X

1−X −X2

is X2f(X−1), where f(X) = X2 −X − 1 is the irreducible
polynomial of the Golden ratio Φ.
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Homogeneous linear differential equation
Consider the homogeneous linear differential equation

y′′ − y′ − y = 0.

If y = eλx is a solution, from y′ = λy and y′′ = λ2y we deduce

λ2 − λ− 1 = 0.

The two roots of the polynomial X2 −X − 1 are Φ (the
Golden ration) and Φ′ with

Φ′ = 1− Φ = − 1

Φ
·

A basis of the space of solutions is given by the two functions
eΦx and eΦ′x. Since (Binet’s formula)∑

n≥0

F n
xn

n!
=

1√
5

(
eΦx − eΦ′x

)
,

this exponential generating series of the Fibonacci sequence is
a solution of the differential equation.
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Fibonacci and powers of matrices
The Fibonacci linear recurrence relation F n+2 = F n+1 + F n

for n ≥ 0 can be written(
F n+1

F n+2

)
=

(
0 1
1 1

)(
F n

F n+1

)
.

By induction one deduces, for n ≥ 0,(
F n

F n+1

)
=

(
0 1
1 1

)n(
0
1

)
.

An equivalent formula is, for n ≥ 1,(
0 1
1 1

)n
=

(
F n−1 F n

F n F n+1

)
.
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

(
0 1
1 1

)
is

det(XI − A) = det

(
X −1
−1 X − 1

)
= X2 −X − 1,

which is the irreducible polynomial of the Golden ratio Φ.
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Fibonacci sequence and the Golden ratio

(continued)

For n ≥ 1, Φn ∈ Z[Φ] = Z + ZΦ is a linear combination of 1
and Φ with integer coefficients, namely

Φn = F n−1 + F nΦ.
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Fibonacci sequence and Hilbert’s 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, y, z, . . . having the
property that n = F 2m iff there exist integers x, y, z, . . . such
that P (n,m, x, y, z, . . . ) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert’s problems (does
there exist a general method
for solving Diophantine
equations ?) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Davis.
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The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.
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Why are there so many occurrences of Fibonacci

numbers and Golden ratio in the nature ?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.
http://cristal.univ-lille.fr/~jdelahay/pls/
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Lucas sequence http://oeis.org/000032

The Lucas sequence (Ln)n≥0 satisfies the same recurrence
relation as the Fibonacci sequence, namely

Ln+2 = Ln+1 + Ln for n ≥ 0,

only the initial values are different :

L0 = 2, L1 = 1.

The sequence of Lucas numbers starts with

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

A closed form involving the Golden ratio Φ is

Ln = Φn + (−Φ)−n,

from which it follows that for n ≥ 2, Ln is the nearest integer
to Φn.
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François Édouard Anatole Lucas

Edouard Lucas is best known
for his results in number
theory. He studied the
Fibonacci sequence and
devised the test for Mersenne
primes still used today.

Édouard Lucas
1842 - 1891

http://www-history.mcs.st-andrews.ac.uk/history/

Mathematicians/Lucas.html
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Generating series of the Lucas sequence

The generating series of the Lucas sequence∑
n≥0

LnX
n = 2 +X + 3X2 + 4X3 + · · ·+ LnX

n + · · ·

is nothing else than
2−X

1−X −X2
·
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Homogeneous linear differential equation
We have seen that∑

n≥0

F n
xn

n!
=

1√
5

(
eΦx − eΦ′x

)
is a solution of the homogeneous linear differential equation

y′′ − y′ − y = 0.

Since ∑
n≥0

Ln
xn

n!
= eΦx + eΦ′x,

we deduce that a basis of the space of solutions is given by the
two generating series∑

n≥0

F n
xn

n!
and

∑
n≥0

Ln
xn

n!
·
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The Lucas sequence and power of matrices
From the linear recurrence relation Ln+2 = Ln+1 + Ln one
deduces, (as we did for the Fibonacci sequence), for n ≥ 0,(

Ln+1

Ln+2

)
=

(
0 1
1 1

)(
Ln
Ln+1

)
,

hence (
Ln
Ln+1

)
=

(
0 1
1 1

)n(
2
1

)
.

Take three of the four sequences

(F n)n≥0, (Ln)n≥0, (Φn)n≥0,
(
(−Φ)−n

)
n≥0

.

Any one of them can be written as a linear combination of the
two others (vector space of dimension 2).
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Another binary linear recurrence sequence
A balancing number is an integer B ≥ 0 such that there exists
C with

1 + 2 + 3 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+ C.

Same as B2 = C(C + 1)/2 : a balancing number is an integer
B such that B2 is a triangular number (and a square !).
Sequence of balancing numbers : https://oeis.org/A001109

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214 . . .

This is a linear recurrence sequence

Bn+1 = 6Bn −Bn−1

with the initial conditions B0 = 0, B1 = 1.
53 / 87
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Sequence (Bn)n≥0 of balancing numbers :

2Bn
2 = Cn(Cn + 1)

The corresponding sequence (Cn)n≥0 is
https://oeis.org/A001108

0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, . . .

The solutions of x2 − 2y2 = 1 are given by

xn = 2Bn, yn = 2Cn + 1.

Both sequences (xn)n≥0 and (yn)n≥0 satisfy

un+1 = 6un − un−1.

with x0 = 0, x1 = 2, y0 = 1, y1 = 3.
Hence

Cn+1 = 6Cn − Cn−1 + 2.
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An interesting street number
The puzzle itself was about a street in the town of Louvain in

Belgium, where houses are numbered consecutively. One of the

house numbers had the peculiar property that the total of the

numbers lower than it was exactly equal to the total of the

numbers above it. Furthermore, the mysterious house number was

greater than 50 but less than 500.

Prasanta Chandra Mahalanobis

1893 – 1972

Srinivasa Ramanujan

1887 – 1920

The answer to the puzzle is : house 204 in a street with 288 houses.
http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html

https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf
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The sequence of balancing numbers
Characteristic polynomial :
f(X) = X2 − 6X + 1 = (X − 3− 2

√
2)(X − 3 + 2

√
2).

Closed formula :

Bn =
1

4
√

2

(
(3 + 2

√
2)n − (3− 2

√
2)n
)
.

Generating series :

ϕ(X) =
∑
n≥0

BnX
n = X+6X2 +35X3 + · · · = X

1− 6X +X2
·

Exercise :
X2ϕ′ = (1−X2)ϕ2.

Takao Komatsu & Prasanta Kumar Ray. Higher-order identities for
balancing numbers. arXiv:1608.05925 [math.NT]
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Exponential generating series of the sequence of

balancing numbers

y(x) =
∑
n≥0

Bn
xn

n!

= x+ 3x2 +
35

6
x3 + · · ·

=
1

4
√

2

(
e(3+2

√
2)x − e(3−2

√
2)x
)
.

This is the solution of the homogeneous linear differential
equation of order 2

y′′ = 6y′ − y

with the initial conditions y(0) = 0, y′(0) = 1.
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Balancing numbers and the matrix A =

(
0 1

−1 6

)
(
Bn+1

Bn+2

)
=

(
0 1
−1 6

)(
Bn

Bn+1

)
(n ≥ 0).

Powers of A :(
0 1
−1 6

)n
=

(
−Bn Bn+1

−Bn+1 Bn+2

)
(n ≥ 0).

Characteristic polynomial :

det(XI − A) = det

(
X −1
1 X − 6

)
= X2 − 6X + 1.
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Perrin sequence http://oeis.org/A001608

The Perrin sequence (also called skiponacci sequence) is the
linear recurrence sequence (P n)n≥0 defined by

P n+3 = P n+1 + P n for n ≥ 0,

with the initial conditions

P 0 = 3, P 1 = 0, P 2 = 2.

It starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, . . .

François Olivier Raoul Perrin (1841-1910) :
https://en.wikipedia.org/wiki/Perrin_number
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Plastic (or silver) constant https://oeis.org/A060006

The ratio of successive terms in the Perrin sequence
approaches the plastic number

% = 1.324 717 957 244 746 . . .

which is the minimal Pisot–Vijayaraghavan number, real root
of

x3 − x− 1.

This constant is equal to

% =
3
√

108 + 12
√

69 +
3
√

108− 12
√

69

6
·
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Perrin sequence and the plastic constant

Decompose the polynomial X3 −X − 1 into irreducible
factors over C

X3 −X − 1 = (X − %)(X − ρ)(X − ρ)

and over R

X3 −X − 1 = (X − %)(X2 + %X + %−1).

Hence ρ and ρ are the roots of X2 + %X + %−1. Then, for
n ≥ 0,

P n = %n + ρn + ρn.

It follows that, for n ≥ 0, P n is the nearest integer to %n.
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Generating series of the Perrin sequence

The generating series of the Perrin sequence∑
n≥0

P nX
n = 3 + 2X2 + 3X3 + 2X4 + · · ·+ P nX

n + · · ·

is nothing else than

3−X2

1−X2 −X3
·

The denominator 1−X2 −X3 is X3f(X−1) where
f(X) = X3 −X − 1 is the irreducible polynomial of %.
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Exponential generating series of the Perrin

sequence

The power series

y(x) =
∑
n≥0

P n
xn

n!

is the solution of the differential equation

y′′′ − y′ − y = 0

with the initial conditions y(0) = 3, y′(0) = 0, y′′(0) = 2.
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Perrin sequence and power of matrices

From
P n+3 = P n+1 + P n

we deduce P n+1

P n+2

P n+3

 =

0 1 0
0 0 1
1 1 0

 P n

P n+1

P n+2

 .

Hence  P n

P n+1

P n+2

 =

0 1 0
0 0 1
1 1 0

n3
0
2

 .
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

0 1 0
0 0 1
1 1 0


is

det(XI − A) = det

X −1 0
0 X −1
−1 −1 X

 = X3 −X − 1,

which is the irreducible polynomial of the plastic constant %.
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Perrin’s remark

R. Perrin L’intermédiaire des mathématiciens, Query 1484, v.6,
76–77 (1899).

The website www.Perrin088.org maintained by Richard Turk is
devoted to Perrin numbers. See OEISA113788.
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Perrin pseudoprimes https://oeis.org/A013998

If p is prime, then p divides P p.

The smallest composite n such that n divides P n is
5212 = 271441.
The number P 271441 has 33 150 decimal digits (the number c
which satisfies 10c = %271441 is c = 271441(log %)/(log 10)).

Also for the composite number n = 904631 = 7× 13× 9941,
the number n divides P n.

Jon Grantham has proved in 2010 that there are infinitely
many Perrin pseudoprimes.
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Padovan sequence https://oeis.org/A000931

The Padovan sequence (pn)n≥0 satisfies the same recurrence

pn+3 = pn+1 + pn

as the Perrin sequence but has different initial values :

p0 = 1, p1 = p2 = 0.

It starts with

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . .

Richard Padovan
http://mathworld.wolfram.com/LinearRecurrenceEquation.html
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Generating series and power of matrices

1 +X3 +X5 + · · ·+ pnX
n + · · · = 1−X2

1−X2 −X3
·

For n ≥ 0,  pn
pn+1

pn+2

 =

0 1 0
0 0 1
1 1 0

n1
0
0

 .
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Padovan triangles

pn = pn−2 + pn−3

pn−1 = pn−3 + pn−4

pn−2 = pn−4 + pn−5

Hence

pn − pn−1 = pn−5

pn = pn−1 + pn−5
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Padovan triangles
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Fibonacci squares vs Padovan triangles

Both are C1 curve, not C2
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Padovan, Euler, Zagier, Goncharov and Brown
For n ≥ 0, the number of compositions s = (s1, . . . , sk) with
si ∈ {2, 3} and s1 + · · ·+ sk = n is pn+3. This is (an upper
bound for) the dimension of the space spanned by the multiple
zeta values of weight n of Euler and Zagier.

Leonhard Euler Don Zagier

Alexander Goncharov Francis Brown
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Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.

It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 − x2 − 1

3

√
29 + 3

√
93

2
+

3

√
29− 3

√
93

2
+ 1

3
= 1.465571231876768 . . .
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Generating series and power of matrices

2 + 3X + 4X2 + 6X3 + · · ·+ CnX
n + · · · = 2 +X +X2

1−X −X3
·

Differential equation : y′′′ − y′′ − y = 0 ;
initial conditions : y(0) = 2, y′(0) = 3, y′′(0) = 4.

For n ≥ 0,  Cn

Cn+1

Cn+2

 =

0 1 0
0 0 1
1 0 1

n2
3
4

 .
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Narayana’s cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17
years ?
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Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.
Music : Tom Johnson
Saxophones : Daniel Kientzy
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Year 1 2 3 4 

= + 
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Year 2 3 4 5 

= + 
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Narayana’s cows

http://www.math.jussieu.fr/~michel.waldschmidt/

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Original 
Cow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Second 
generation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Third 
generation 0 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Fourth 
generation 0 0 0 0 0 0 1 4 10 20 35 56 84 120 165 220 286

Fifth 
generation 0 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330

Sixth 
generation 0 0 0 0 0 0 0 0 0 0 0 0 1 6 21 56 126

Seventh 
generation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

Total 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872
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17th year: 872 cows 
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Jean-Paul Allouche and Tom Johnson

http://www.math.jussieu.fr/~jean-paul.allouche/

bibliorecente.html

http://www.math.jussieu.fr/~allouche/johnson1.pdf
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Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

• Narayana’s Cows and Delayed Morphisms
In 3èmes Journées d’Informatique Musicale (JIM ’96), Ile de
Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May
1996.

http://kalvos.org/johness1.html

• Finite automata and morphisms in assisted musical
composition,
Journal of New Music Research, no. 24 (1995), 97 – 108.
http://www.tandfonline.com/doi/abs/10.1080/

09298219508570676

http://web.archive.org/web/19990128092059/www.swets.

nl/jnmr/vol24_2.html
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Music and the Fibonacci 
sequence

•  Dufay, XVème siècle
•  Roland de Lassus
•  Debussy, Bartok, Ravel, Webern
•  Stockhausen
•  Xenakis
•  Tom Johnson Automatic Music for six 

percussionists
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Some recent work

Christian Ballot
On a family of recurrences
that includes the Fibonacci
and the Narayana recurrences.
arXiv:1704.04476 [math.NT]

We survey and prove properties a family of recurrences bears
in relation to integer representations, compositions, the Pascal
triangle, sums of digits, Nim games and Beatty sequences.
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Linear recurrence sequences : examples
q ≥ 1 ; initial conditions u0 = u1 = · · · = uq−2 = 0, uq−1 = 1.

Xq −Xq−1 − 1 :

q = 1, X − 2, exponential un = 2n

q = 2, X2 −X − 1, Fibonacci un = F n

q = 3, X3 −X2 − 1, Narayana un = Cn

Xq −Xq−1 −Xq−2 − · · · −X − 1 :

q = 1, X − 1, constant sequence un = 1
q = 2, X2 −X − 1, Fibonacci un = F n

q = 3, X3 −X2 −X − 1, Tribonacci

Xq −X − 1 :

q = 2, X2 −X − 1, Fibonacci un = F n

q = 3, X3 −X − 1, Padovan un = pn
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Linear recurrence sequences: part I

Michel Waldschmidt

Institut de Mathématiques de Jussieu — Sorbonne Université
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