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Second lecture: April 11, 2011

2 Zagier’s contribution to Brown’s proof

We explain the strategy of Zagier [14] for proving the relation which was needed
and conjectured by F. Brown [5, 6] concerning the numbers

H(a, b) := ζ({2}b3{2}a)

for a ≥ 0 and b ≥ 0. In particularH(0, 0) = ζ(3). Beware that the normalization
used by F. Brown and by D. Zagier is the opposite of ours, this is why a and b
are in this reverse order here.

Set also (cf. Corollary 9)

H(n) = ζ({2}n) =
π2n

(2n+ 1)!

for n ≥ 0 with H(0) = 1.
Consider the alphabet {2, 3}; give to the letter 2 the weight 2 and to the

letter 3 the weight 3, so that the word 2b · 3 · 2a has weight 2a + 2b + 3, while
the word 2n has weight 2n. Give also the weight � to ζ(�) for � ≥ 2 (this
is an abuse of langage). Looking at homogeneous relations, one considers on
the one side the numbers H(a, b) and on the other side the numbers ζ(�)H(m)
with � ≥ 2 and m ≥ 0, restricted to the relation 2a + 2b + 3 = � + 2m, hence
� = 2a+ 2b+ 3− 2m is odd.

Theorem 10 (Zagier, 2011). Let a and b be non–negative integers. Set k =
2a + 2b + 3. Then there exist a + b + 1 rational integers cm,r,a,b with m ≥ 0,
r ≥ 1, m+ r = a+ b+ 1, such that

H(a, b) =
�

m+r=a+b+1

cm,r,a,bH(m)ζ(2r + 1).

Conversely, given two integers r and m with r ≥ 1 and m ≥ 0, there exist m+ r
rational numbers c�m,r,a,b with a ≥ 0, b ≥ 0, a+ b = m+ r − 1, such that

H(m)ζ(2r + 1) =
�

a+b=m+r−1

c�m,r,a,bH(a, b).

The integers cm,r,a,b are explicitly given:

cm,r,a,b = 2(−1)r
��

2r

2a+ 2

�
−

�
1−

1

22r

��
2r

2b+ 1

��

The second part of Theorem 10 means that the square matrix
�
cm,r,a,b

�
, of size

a+ b+ 1, has maximal rank.
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We only give the sketch of proof of the first part of Theorem 10. Consider
the generating series

F (x, y) =
�

a≥0

�

b≥0

(−1)a+b+1H(a, b)x2a+2y2b+1

and
�F (x, y) =

�

a≥0

�

b≥0

(−1)a+b+1 �H(a, b)x2a+2y2b+1

where

�H(a, b) =
a+b�

m=0

cm,a,bH(m)ζ(k − 2m).

The first step relates F (x, y) to a hypergeometric series 3F2, namely F (x, y) is
the product of (1/π) sin(πy) by the z–derivative at z = 0 of the function

3F2

�
x, −x, z

1 + y, 1− y

���� 1
�
.

The second step relates �F (x, y) to the digamma function ψ(x) = Γ�(x)/Γ(x)
(logarithmic derivative of Γ), namely �F (x, y) is a linear combination of fourteen
functions of the form

ψ
�
1 +

u

2

� sin(πv)

2π
with u ∈ {±x± y, ±2x± 2y, ±2y} and v ∈ {x, y}.

The third step is the proof that F and �F are both entire function on C × C,
they are bounded by a constant multiple of eπX logX when X = max{|x|, |y|}
tends to infinity, and also by a constant multiple of eπ|�(y)| when |y| tends to
infinity while x ∈ C is fixed.

The fourth step is about the diagonal: for z ∈ C, we have

F (z, z) = �F (z, z).

Several equivalent explicit formula for this function are given. Let

A(z) := −
π

sin(πz)
F (z, z).

Then

A(z) =
∞�

r=1

ζ(2r + 1)z2r =
∞�

n=1

z2

n(n2 − z2)

and

A(z) =
1

2

∞�

n=1

�
1

n− z
+

1

n+ z
−

2

n

�
= ψ(1)−

1

2

�
ψ(1 + z) + ψ(1− z)

�
.

The fifth step shows that F (n, y) and �F (n, y) are equal when n ∈ N and y ∈ C,
an explicit formula is given.
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The sixth step shows that F (x, k) and �F (x, k) are equal when k ∈ N and x ∈ C,
an explicit formula is given.
Now comes the conclusion, which rests on the next lemma:

Lemma 11. An entire function f : C → C that vanishes at all rational integers
and satisfies

f(z) = O
�
eπ|�(z)|

�

is a constant multiple of sin(πz).

A proof of this lemma, using a Theorem of Phragmén–Lindelöf, is given by
Zagier (Lemma 2 in [14]), but he also notices that other references have been
given subsequently to him, in particular by F. Gramain who pointed out that
this lemma is known since the work of Pólya and Valiron; a reference is in the
book of Boas on entire functions.

3 Lyndon words: conjectural transcendence ba-
sis

D. Broadhurst considered the question of finding a transcendence basis for the
algebra of MZV, he suggested that one should consider Lyndon words. We first
give the definitions.

Here we use the alphabet alphabet A = {a, b}. The set of words on A is
denoted by A∗ (see §6.2). The elements of A∗ can be written

an1bm1 · · · ankbmk

with k ≥ 0, n1 ≥ 0, mk ≥ 0 and mi ≥ 1 for 1 ≤ i < k, and with ni ≥ 1
for 2 ≤ i ≤ k. We endowed A∗ with the lexicographic order with a < b. A
Lyndon word is a non–empty word w ∈ A∗ such that, for each decomposition
w = uv with u �= e and v �= e, the inequality w < v holds. Denote by L the
set of Lyndon words. Examples of Lyndon words are a, b, abk (k ≥ 0), a�b
(� ≥ 0), a2b2, a2bab. Let us check, for instance, that a2bab is a Lyndon word:
this follows from the observation that a2bab is smaller than any of

abab, bab, ab, b.

But a2ba2b is not a Lyndon word since a2ba2b > a2b.
Any Lyndon word other than b starts with a and any Lyndon word other

than a ends with b.
Here are the 21 Lyndon words on the alphabet {a, b} with weight ≤ 15 when

a has weight 2 and b weight 3:

a < a6b < a5b < a4b < a4b2 < a3b < a3bab < a3b2 < a3b3 < a2b < a2bab

< a2bab2 < a2b2 < a2b2ab < a2b3 < ab < abab2 < ab2 < ab3 < ab4 < b.
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We list them according to their weight p = 2, . . . , 15, we display their number
N(p) and the corresponding multiple zeta values where the word an is replaced
by the tuple {2}n and bn by {3}n:

p = 2; N(2) = 1; a; ζ(2)
p = 3; N(3) = 1; b; ζ(3)
p = 4; N(4) = 0
p = 5; N(5) = 1; ab; ζ(2, 3)
p = 6; N(6) = 0
p = 7; N(7) = 1; a2b; ζ(2, 2, 3)
p = 8; N(8) = 1; ab2; ζ(2, 3, 3)
p = 9; N(9) = 1; a3b; ζ(2, 2, 2, 3)
p = 10; N(10) = 1; a2b2; ζ(2, 2, 3, 3)
p = 11; N(11) = 2; a4b, ab3; ζ(2, 2, 2, 2, 3), ζ(2, 3, 3, 3)
p = 12; N(12) = 2; a3b2, a2bab; ζ(2, 2, 2, 3, 3), ζ(2, 2, 3, 2, 3)
p = 13; N(13) = 3; a5b, a2b3, abab2;

ζ(2, 2, 2, 2, 2, 3), ζ(2, 2, 3, 3, 3), ζ(2, 3, 2, 3, 3)
p = 14; N(14) = 3; a4b2, a3bab, ab4;

ζ(2, 2, 2, 2, 3, 3), ζ(2, 2, 2, 3, 2, 3), ζ(2, 3, 3, 3, 3)
p = 15; N(15) = 4; a6b, a3b3, a2bab2, a2b2ab; ;

ζ(2, 2, 2, 2, 2, 2, 3), ζ(2, 2, 2, 3, 3, 3), ζ(2, 2, 3, 2, 3, 3), ζ(2, 2, 3, 3, 2, 3).

Conjecture 12. The set of multiple zeta values ζ(s1, . . . , sk), with k ≥ 1 and
sj ∈ {2, 3} for 1 ≤ j ≤ k, such that s1s2 · · · sk is a Lyndon word on the alphabet
{2, 3}, give a transcendence basis of Z.

The number N(p) of elements of weight p in a transcendence basis of Z

should not depend on the choice of the transcendence basis, and it should be
the number of Lyndon words of weight p on the alphabet {2, 3}.

In the next section we shall see that for p ≥ 1 we have

N(p) =
1

p

�

�|p

µ(p/�)P�

where (P�)�≥1 is the linear recurrence sequence defined by

P� = P�−2 + P�−3 for � ≥ 4

with the initial conditions

P1 = 0, P2 = 2, P3 = 3.

If one forgets about the weight of the words, one may list the Lyndon words
according to the number of letters (which correspond to the length for MZV
with sj ∈ {2, 3}), which yields a partial order on the words on the alphabet
{a, b} where there are 2k words with k letters. Here are the Lyndon words with
k letters on the alphabet {a, b) for the first values of k, with their numbers Lk:
k = 1, L1 = 2; a, b.
k = 2, L2 = 1; ab.
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k = 3, L3 = 2; a2b, ab2.
k = 4, L4 = 3, a3b, a2b2, ab3.
k = 5, L5 = 6, a4b, a3b2, a2bab, a2b3, abab2, ab4.
k = 6, L6 = 9, a5b, a4b2, a3bab, a3b3, a2ba2b, a2bab2, a2b2ab, abab3, ab5

The sequence (Lk)k≥1 starts with

2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, . . .

(See [3] A001037).

This text can be downloaded on the internet at URL

http://www.math.jussieu.fr/∼miw/articles/pdf/MZV2011IMSc2.pdf

12


