Third lecture: April 122011

4 Hilbert-Poincaré series

We shall work with commutative algebras, namely polynomial algebras in variables having each a weight, a conjectural (recall the open problem 2) example being the algebra \mathfrak{Z} of MZV which is a subalgebra of the real numbers. This algebra \mathfrak{Z} is the image by specialization of an algebra of polynomials in infinitely many variables, with one variable of weight 2 (corresponding to $\zeta(2)$), one of weight 3 (corresponding to $\zeta(3)$), one of weight 5 (corresponding to $\zeta(3,2)$) and so on. According to Conjecture 12, the number of variables of weight p should be the number $N(p)$ of Lyndon words on the alphabet $\{2,3)\}$ with 2 having weight 2 and 3 weight 3 . In general, we shall consider countably many variables with $N(p)$ variables of weight p for $p \geq 0$, with $N(0)=0$. But later we shall also consider non-commutative variables; for instance the free algebra on the words $\{2,3\}$ will play a role.

5 Graduated algebras and Hilbert-Poincaré series

5.1 Graduations

We introduce basic definitions from algebra. A graduation on a ring A is a decomposition into a direct sum of additive subgroups

$$
A=\bigoplus_{k \geq 0} A_{k}
$$

such that the multiplication $A \times A \rightarrow A$ which maps (a, b) onto the product $a b$ maps $A_{k} \times A_{h}$ into A_{k+h} for all pairs (k, h) of non-negative integers. For us here it will be sufficient to take for indices the non-negative integers, but we could more generally take a commutative additive monoid (see [10] Chap. X §5). The elements in A_{k} are homogeneous of weight (or degree) k. Notice that A_{0} is a subring of A and that each A_{k} is a A_{0}-module ${ }^{1}$.

Given a graduated ring A, a graduation on a A-module E is a decomposition into a direct sum of additive subgroups

$$
E=\bigoplus_{k \geq 0} E_{k}
$$

such that $A_{k} E_{n} \subset E_{k+n}$. In particular each E_{n} is a A_{0}-module. The elements of E_{n} are homogeneous of weight (or degree) n.

[^0]A graduated K-algebra is a K-algebra A with a graduation as a ring $A=$ $\bigoplus_{k \geq 0} A_{k}$ such that $K A_{k} \subset A_{k}$ for all $k \geq 0$ and $A_{0}=K$ (see [10] Chap. XVI, $\S 6$). If the dimension d_{k} of each A_{k} as a K-vector space is finite with $d_{0}=1$, the Hilbert-Poincaré series of the graduated algebra A is

$$
\mathcal{H}_{A}(t)=\sum_{p \geq 0} d_{p} t^{p}
$$

If the K-algebra A is the tensor product $A^{\prime} \otimes A^{\prime \prime}$ of two graded algebras A^{\prime} and $A^{\prime \prime}$ over the field K, then A is graded with the generators of A_{p} as $K-$ vector space being the elements $x^{\prime} \otimes x^{\prime \prime}$, where x^{\prime} runs over the generators of the homogeneous part A_{k}^{\prime} of A^{\prime} and where $x^{\prime \prime}$ runs over the generators of the homogeneous part $A_{\ell}^{\prime \prime}$ of $A^{\prime \prime}$, with $k+\ell=p$. Hence the dimensions $d_{p}, d_{k}^{\prime}, d_{\ell}^{\prime \prime}$ of the homogeneous subspaces of A, A^{\prime} and $A^{\prime \prime}$ satisfy

$$
d_{p}=\sum_{k+\ell=p} d_{k}^{\prime} d_{\ell}^{\prime \prime}
$$

which means that the Hilbert-Poincaré series of A is the product of the HilbertPoincaré series of A^{\prime} and $A^{\prime \prime}$:

$$
\mathcal{H}_{A^{\prime} \otimes A^{\prime \prime}}(t)=\mathcal{H}_{A^{\prime}}(t) \mathcal{H}_{A^{\prime \prime}}(t)
$$

5.2 Commutative polynomials algebras

Let

$$
(N(1), N(2), \ldots, N(p), \ldots)
$$

be a sequence of non-negative integers and let A denote the commutative $K-$ algebra of polynomials with coefficients in K in the variables $Z_{n p}(p \geq 1,1 \leq$ $n \leq N(p))$. We endow the K-algebra A with the graduation for which each $Z_{n p}$ is homogeneous of weight p. We denote by d_{p} the dimension of the homogeneous space A_{p} over K.
Lemma 13. The Hilbert-Poincaré series of A is

$$
\mathcal{H}_{A}(t)=\prod_{p \geq 1} \frac{1}{\left(1-t^{p}\right)^{N(p)}}
$$

Proof. For $p \geq 1$, the K-vector space A_{p} of homogeneous elements of weight p has a basis consisting of monomials

$$
\prod_{k=1}^{\infty} \prod_{n=1}^{N(k)} Z_{n k}^{h_{n k}}
$$

where $\underline{h}=\left(h_{n k}\right) \substack{\begin{subarray}{c}{k \geq 1 \\ 1 \leq n \leq N(k)} }} \end{subarray}$ runs over the set of tuples of non-negative integers satisfying

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{n=1}^{N(k)} k h_{n k}=p \tag{14}
\end{equation*}
$$

Notice that these tuples \underline{h} have a support

$$
\left\{(n, k) ; k \geq 1,1 \leq n \leq N(k), h_{n k} \neq 0\right\}
$$

which is finite, since $h_{n, k}=0$ for $k>p$. The dimension d_{p} of the K-vector space A_{p} is the number of these tuples \underline{h} (with $d_{0}=1$), and by definition we have

$$
\mathcal{H}_{A}(t)=\sum_{p \geq 0} d_{p} t^{p}
$$

In the identity

$$
\frac{1}{(1-z)^{N}}=\sum_{h_{1} \geq 0} \cdots \sum_{h_{N} \geq 0} \prod_{n=1}^{N} z^{h_{n}}
$$

we replace z by t^{k} and N by $N(k)$. We deduce

$$
\prod_{k \geq 1} \frac{1}{\left(1-t^{k}\right)^{N(k)}}=\sum_{\underline{h}} \prod_{k=1}^{\infty} \prod_{n=1}^{N(k)} t^{k h_{n k}}
$$

The coefficient of t^{p} in the right hand side is the number of tuples $\underline{h}=\left(h_{n k}\right) \underset{\substack{k \geq 1 \\ 1 \leq n \leq N(k)}}{\substack{k \geq 1}}$ with $h_{n k} \geq 0$ satisfying (14); hence it is nothing else than d_{p}.

5.3 Examples

Example 15. In Lemma 13, take $N(p)=0$ for $p \geq 2$ and write N instead of $N(1)$. Then A is the ring of polynomials $K\left[Z_{1}, \ldots, Z_{N}\right]$ with the standard graduation of the total degree (each variable $Z_{i}, i=1, \ldots, N$, has weight 1). The Hilbert-Poincaré series is

$$
\frac{1}{(1-t)^{N}}=\sum_{\ell \geq 0}\binom{N+\ell-1}{\ell} t^{\ell}
$$

If each variable Z_{i} has a weight other than 1 but all the same, say p, it suffices to replace t by t^{p}. For instance the Hilbert-Poincaré series of the algebra of polynomials $K[Z]$ in one variable Z having weight 2 is $\left(1-t^{2}\right)^{-1}$.

Example 16. More generally, if there are only finitely many variables, which means that there exists an integer $p_{0} \geq 1$ such that $N(j)=0$ for $j>p_{0}$, the same proof yields

$$
d_{\ell}=\prod_{\ell_{1}+2 \ell_{2}+\cdots+j_{0} \ell_{k_{0}}=\ell} \prod_{j=1}^{k_{0}}\binom{N(j)+\ell_{j}-1}{\ell_{j}}
$$

Example 17. Denote by μ the Möbius function (see [9]—§ 16.3):

$$
\left\{\begin{array}{l}
\mu(1)=1 \\
\mu\left(p_{1} \cdots p_{r}\right)=(-1)^{r} \text { if } p_{1}, \ldots, p_{r} \text { are distinct prime numbers distincts, } \\
\mu(n)=0 \text { if } n \text { has a square factor }>1
\end{array}\right.
$$

Given a positive integer c, under the assumptions of Lemma 13, the following conditions are equivalent:
(i) The Hilbert-Poincaré series of A is

$$
\mathcal{H}_{A}(t)=\frac{1}{1-c t}
$$

(ii) For $p \geq 0$, we have $d_{p}=c^{p}$.
(iii) For $p \geq 1$ we have

$$
c^{p}=\sum_{n \mid p} n N(n) \quad \text { for all } p \geq 1
$$

(iv) For $k \geq 1$ we have

$$
N(k)=\frac{1}{k} \sum_{n \mid k} \mu(k / n) c^{n} .
$$

Proof. The equivalence between (i) and (ii) follows from the definition of \mathcal{H}_{A} and the power series expansion

$$
\frac{1}{1-c t}=\sum_{p \geq 0} c^{p} t^{p}
$$

The equivalence between (iii) and (iv) follows from Möbius inversion formula (see [10] Chap. II Ex. 12.c and Chap. V, Ex. 21; [9] § 16.4).

It remains to check the equivalence between (i) and (iii).The constant term of each of the developments of

$$
\frac{1}{1-c t} \quad \text { and } \quad \prod_{k \geq 1} \frac{1}{\left(1-t^{k}\right)^{N(k)}}
$$

into power series is 1 ; hence the two series are the same if and only if their logarithmic derivatives are the same. The logarithmic derivative of $1 /(1-c t)$ is

$$
\frac{c}{1-c t}=\sum_{p \geq 1} c^{p} t^{p-1}
$$

The logarithmic derivative of $\prod_{k \geq 1}\left(1-t^{k}\right)^{-N(k)}$ is

$$
\begin{equation*}
\sum_{k \geq 1} \frac{k N(k) t^{k-1}}{1-t^{k}}=\sum_{p \geq 1}\left(\sum_{n \mid p} n N(n)\right) t^{p-1} \tag{18}
\end{equation*}
$$

Example 19. Let a and c be two positive integers. Define two sequences of integers $\left(\delta_{p}\right)_{p \geq 1}$ and $\left(P_{\ell}\right)_{\ell \geq 1}$ by

$$
\begin{cases}\delta_{p}=0 & \text { if } a \text { does not divide } p \\ \delta_{p}=c^{p / a} & \text { if } a \text { divides } p\end{cases}
$$

and

$$
\begin{cases}P_{\ell}=0 & a \text { does not divide } \ell \\ P_{\ell}=a c^{\ell / a} & \text { if } a \text { divides } \ell\end{cases}
$$

Under the hypotheses of Lemma 13, the following properties are equivalent:
(i) The Hilbert-Poincaré series of A is

$$
\mathcal{H}_{A}(t)=\frac{1}{1-c t^{a}} .
$$

(ii) For any $p \geq 1$, we have $d_{p}=\delta_{p}$.
(iii) For any $\ell \geq 1$, we have

$$
\sum_{n \mid \ell} n N(n)=P_{\ell} .
$$

(iv) For any $k \geq 1$, we have

$$
N(k)=\frac{1}{k} \sum_{\ell \mid k} \mu(k / \ell) P_{\ell} .
$$

Proof. The definition of the numbers δ_{p} means

$$
\frac{1}{1-c t^{a}}=\sum_{p \geq 0} \delta_{p} t^{p}
$$

while the definition of P_{ℓ} can be written

$$
\sum_{\ell \geq 1} P_{\ell} t^{\ell-1}=\frac{c a t^{a-1}}{1-c t^{a}}
$$

where the right hand side is the logarithmic derivative of $1 /\left(1-c t^{a}\right)$. Recall that the logarithmic derivative of $\prod_{k \geq 1}\left(1-t^{k}\right)^{-N(k)}$ is given by (18). This completes the proof.

[^0]: ${ }^{1}$ According to this definition, 0 is homogeneous of weight k for all $k \geq 0$

