Fourth lecture: April 15, 2011

Example 20. Let a and b be two positive integers with $a<b$. Define two sequences of integers $\left(\delta_{p}\right)_{p \geq 1}$ and $\left(P_{\ell}\right)_{\ell \geq 1}$ by the induction formulae

$$
\delta_{p}=\delta_{p-a}+\delta_{p-b} \quad \text { for } p \geq b+1
$$

with initial conditions

$$
\begin{cases}\delta_{0}=1, \\ \delta_{p}=0 & \text { for } 1 \leq p \leq b-1 \text { if } a \text { does not divide } p \\ \delta_{p}=1 & \text { for } a \leq p \leq b-1 \text { if } a \text { divides } p \\ \delta_{b}=1 & \text { if } a \text { does not divide } b \\ \delta_{b}=2 & \text { if } a \text { divides } b\end{cases}
$$

and

$$
P_{\ell}=P_{\ell-a}+P_{\ell-b} \quad \text { for } \ell \geq b+1
$$

with initial conditions

$$
\begin{cases}P_{\ell}=0 & \text { for } 1 \leq \ell<b \text { if } a \text { does not divides } \ell \\ P_{\ell}=a & \text { for } a \leq \ell<b \text { if } a \text { divides } \ell \\ P_{b}=b & \text { if } a \text { does not divides } b \\ P_{b}=a+b & \text { if } a \text { divides } b\end{cases}
$$

Under the hypotheses of Lemma 13, the following properties are equivalent:
(i) The Hilbert-Poincaré series of A is

$$
\mathcal{H}_{A}(t)=\frac{1}{1-t^{a}-t^{b}}
$$

(ii) For any $p \geq 1$, we have $d_{p}=\delta_{p}$.
(iii) For any $\ell \geq 1$, we have

$$
\sum_{n \mid \ell} n N(n)=P_{\ell}
$$

(iv) For any $k \geq 1$, we have

$$
N(k)=\frac{1}{k} \sum_{\ell \mid k} \mu(k / \ell) P_{\ell} .
$$

Proof. Condition (ii) means that the sequence $\left(d_{p}\right)_{p \geq 0}$ satisfies

$$
\left(1-t^{a}-t^{b}\right) \sum_{p \geq 0} d_{p} t^{p}=1
$$

The equivalence between (i) and (ii) follows from the definition of d_{p} in condition (ii): the series

$$
\mathcal{H}_{A}(t)=\sum_{p \geq 0} d_{p} t^{p}
$$

satisfies

$$
\left(1-t^{a}-t^{b}\right) \mathcal{H}_{A}(t)=1
$$

if and only if the sequence $\left(d_{p}\right)_{p \geq 0}$ is the same as $\left(\delta_{p}\right)_{p \geq 0}$. The definition of the sequence $\left(P_{\ell}\right)_{\ell \geq 0}$ can be written

$$
\left(1-t^{a}-t^{b}\right) \sum_{\ell \geq 1} P_{\ell} t^{\ell-1}=a t^{a-1}+b t^{b-1} .
$$

The equivalence between (iii) and (iv) follows from Möbius inversion formula. It remains to check that conditions (i) and (iii) are equivalent. The logarithmic derivative of $1 /\left(1-t^{a}-t^{b}\right)$ is

$$
\frac{a t^{a-1}+b t^{b-1}}{1-t^{a}-t^{b}}=\sum_{\ell \geq 1} P_{\ell} t^{\ell-1}
$$

while the logarithmic derivative of $\prod_{k \geq 1} 1 /\left(1-t^{k}\right)^{N(k)}$ is given by (18). This completes the proof.

A first special case of example 20 is with $a=1$ and $b=2$: the sequence $\left(d_{p}\right)_{p \geq 1}=(1,2,3,5 \ldots)$ is the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ shifted by 1: $d_{p}=$ F_{p+1} for $p \geq 1$ while the sequence $\left(P_{\ell}\right)_{\ell \geq 1}$ is the sequence of Lucas numbers

$$
1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364, \ldots
$$

See [3] A000045 for the Fibonacci sequence and A000032 for the Lucas sequence. For the application to MZV, we are interested with the special case where $a=2$, $b=3$ in example 20. In this case the recurrence formula for the sequence $\left(P_{\ell}\right)_{\ell \geq 1}$ is $P_{\ell}=P_{\ell-2}+P_{\ell-3}$ and the initial conditions are $P_{1}=0, P_{2}=2, P_{3}=3$, so that, if we set $P_{0}=3$, then the sequence $\left(P_{\ell}\right)_{\ell \geq 0}$ is

$$
3,0,2,3,2,5,5,7,10,12,17,22,29,39,51,68,90,119, \ldots
$$

This is the so-called Perrin sequence or Ondrej Such sequence (see [3] A001608), defined by

$$
P_{\ell}=P_{\ell-2}+P_{\ell-3} \quad \text { for } \ell \geq 3
$$

with the initial conditions

$$
P_{0}=3, \quad P_{1}=0, \quad P_{2}=2
$$

The sequence $N(p)$ of the number of Lyndon words of weight p on the alphabet $\{2,3\}$ satisfies, for $p \geq 1$,

$$
N(p)=\frac{1}{p} \sum_{\ell \mid p} \mu(p / \ell) P_{\ell} .
$$

The generating function of the sequence $\left(P_{\ell}\right)_{\ell \geq 1}$ is

$$
\sum_{\ell \geq 1} P_{\ell} t^{\ell-1}=\frac{3-t^{2}}{1-t^{2}-t^{3}}
$$

For $\ell>9, P_{\ell}$ is the nearest integer to r^{ℓ}, with $r=1.3247179572447 \ldots$ the real root of $x^{3}-x-1$ (see [3] A060006), which has been also called the silver number, also the plastic number: this is the smallest Pisot-Vijayaraghavan number.

Example 21 (Words on the alphabet $\left.\left\{f_{3}, f_{5}, \ldots, f_{2 n+1} \ldots\right\}\right)$. Consider the alphabet $\left\{f_{3}, f_{5}, \ldots, f_{2 n+1} \ldots\right\}$ with countably many letters, one for each odd weight. The free algebra on this alphabet (see $\S 6.2$) is the so-called concatenation algebra $\mathcal{C}:=\mathbf{Q}\left\langle f_{3}, f_{5}, \ldots, f_{2 n+1} \ldots\right\rangle$.

We get a word of weight p by concatenating a word of weight $p-(2 k+1)$ with $f_{2 k+1}$; in other terms, starting with a word of weight q having the last letter say $f_{2 k+1}$, the prefix obtained by removing the last letter has weight $q-2 k-1$. Hence the number of words with weight p satisfies

$$
d_{p}=d_{p-3}+d_{p-5}+\cdots
$$

(a finite sum for each p) with $d_{0}=1$ (the empty word), $d_{1}=d_{2}=0, d_{3}=1$. The Hilbert-Poincaré series of \mathcal{C}

$$
\mathcal{H}_{\mathcal{C}}(t):=\sum_{p \geq 0} d_{p} t^{p}
$$

satisfies

$$
\mathcal{H}_{\mathcal{C}}(t)=1-t^{3} \mathcal{H}_{\mathcal{C}}(T)-t^{5} \mathcal{H}_{\mathcal{C}}(t)-\cdots
$$

Since

$$
\left(1-t^{2}\right)\left(1-t^{3}-t^{5}-t^{7}-\cdots\right)=1-t^{3}-t^{5}-t^{7}-\cdots-t^{2}+t^{-5}+t^{7}+\cdots=1-t^{2}-t^{3}
$$

(telescoping series), we deduce

$$
\mathcal{H}_{\mathcal{C}}(t)=\frac{1-t^{2}}{1-t^{2}-t^{3}}
$$

Recall (example 15) that the Hilbert-Poincaré series of the commutative polynomial algebra $\mathbf{Q}\left[f_{2}\right]$ with f_{2} a single variable of weight 2 is $1 /\left(1-t^{2}\right)$. The algebra $\mathcal{C} \otimes_{\mathbf{Q}} \mathbf{Q}\left[f_{2}\right]$, which plays an important role in the theory of mixed Tate motives, can be viewed either as the free algebra on the alphabet $\left\{f_{3}, f_{5}, \ldots, f_{2 n+1} \ldots\right\}$ over the commutative ring $\mathbf{Q}\left[f_{2}\right]$, or as the algebra $\mathcal{C}\left[f_{2}\right]$ of polynomials in the single variable f_{2} with coefficients in \mathcal{C}. The Hilbert-Poincaré series of this algebra is the product

$$
\mathcal{H}_{\mathcal{C}\left[f_{2}\right]}(t)=\frac{1-t^{2}}{1-t^{2}-t^{3}} \cdot \frac{1}{1-t^{2}}=\frac{1}{1-t^{2}-t^{3}}
$$

which is conjectured to be also the Hilbert-Poincaré series of the algebra \mathfrak{Z}.

5.4 Filtrations

A filtration on a A-module E is an increasing or decreasing sequence of sub- $A-$ modules

$$
\{0\}=E_{0} \subset E_{1} \subset \cdots \subset E_{n} \subset \cdots
$$

or

$$
E=E_{0} \supset E_{1} \supset \cdots \supset E_{n} \supset \cdots
$$

Sometimes one writes $\mathcal{F}^{n}(E)$ in place of E_{n}. For instance if φ is an endomorphism of a A-module E, the sequence of kernels of the iterates

$$
\{0\} \subset \operatorname{ker} \varphi \subset \operatorname{ker} \varphi^{2} \subset \cdots \subset \operatorname{ker} \varphi^{n} \subset \cdots
$$

is an increasing filtration on E, while the images of the iterates

$$
E \supset \operatorname{Im} \varphi \supset \operatorname{Im} \varphi^{2} \subset \cdots \supset \operatorname{Im} \varphi^{n} \supset \cdots
$$

is a decreasing filtration on E.
A filtration on a ring A is an increasing or decreasing sequence of (abelian) additive subgoups

$$
A=A_{0} \supset A_{1} \supset \cdots \supset A_{n} \supset \cdots
$$

or

$$
\{0\}=A_{0} \subset A_{1} \subset \cdots \subset A_{n} \subset \cdots
$$

such that $A_{n} A_{m} \subset A_{n+m}$. In this case A_{0} is a subring of A and each A_{n} is a A_{0}-module.

As an example, if \mathfrak{A} is an ideal of A, a filtration on the ring A is given by the powers of \mathfrak{A} :

$$
A=\mathfrak{A}^{0} \supset \mathfrak{A}^{1} \supset \cdots \supset \mathfrak{A}^{n} \supset \cdots
$$

The first graduated ring associated with this filtration is

$$
\bigoplus_{n \geq 0} \mathfrak{A}^{n}
$$

and the second graduated ring is

$$
\bigoplus_{n \geq 0} \mathfrak{A}^{n} / \mathfrak{A}^{n+1}
$$

For instance if \mathfrak{A} is a proper ideal (that means distinct from $\{0\}$ and from A) and is principal, the the first graduated ring is isomorphic to the ring of polynomials $A[t]$ and the second to $(A / \mathfrak{A})[t]$.

We come back to MZV. We have seen that the length k defines a filtration on the algebra \mathfrak{Z} of multiple zeta values. Recall that $\mathcal{F}^{k} \mathfrak{Z}_{p}$ denotes the \mathbf{Q}-vector subspace of \mathbf{R} spanned by the $\zeta(\underline{s})$ with \underline{s} of weight p and length $\leq k$ and that $d_{p, k}$ be the dimension of $\mathcal{F}^{k} \mathfrak{Z}_{p} / \mathcal{F}^{k-1} \mathfrak{Z}_{p}$. The next conjecture is proposed by D. Broadhurst.

Conjecture 22.

$$
\left(\sum_{p \geq 0} \sum_{k \geq 0} d_{p, k} X^{p} Y^{k}\right)^{-1}=\left(1-X^{2} Y\right)\left(1-\frac{X^{3} Y}{1-X^{2}}+\frac{X^{12} Y^{2}\left(1-Y^{2}\right)}{\left(1-X^{4}\right)\left(1-X^{6}\right)}\right)
$$

That Conjecture 22 implies Zagier's Conjecture 5 is easily seen by substituting $Y=1$ and using (4).

The left hand side in Conjecture 22 can be written as an infinite product: the next Lemma can be proved in the same way as Lemma 13.

Lemma 23. Let $D(p, k)$ for $p \geq 0$ and $k \geq 1$ be non-negative integers. Then

$$
\prod_{p \geq 0} \prod_{k \geq 1}\left(1-X^{p} Y^{k}\right)^{-D(p, k)}=\sum_{p \geq 0} \sum_{k \geq 1} d_{p, k} X^{p} Y^{k}
$$

where $d_{p, k}$ is the number of tuples of non-negative integers of the form $\underline{h}=$ $\left(h_{i j \ell}\right)_{i \geq 0}{ }_{j \geq 1}, 1 \leq \ell \leq D(p, k)$ satisfying

$$
\sum_{i \geq 0} \sum_{j \geq 1} \sum_{n=1}^{D(p, k)} i h_{i j \ell}=p \quad \text { and } \quad \sum_{i \geq 0} \sum_{j \geq 1} \sum_{n=1}^{D(p, k)} j h_{i j \ell}=k
$$

If one believes Conjecture 12, a transcendence basis \mathcal{T} of the field generated over \mathbf{Q} by \mathfrak{Z} should exist such that

$$
D(p, k)=\operatorname{Card}\left(\mathcal{T} \cap \mathcal{F}^{k} \mathfrak{Z}_{p}\right)
$$

is the number of Lyndon words on the alphabet $\{2,3\}$ with weight p and length k, so that

$$
\prod_{p \geq 3} \prod_{k \geq 1}\left(1-X^{p} Y^{k}\right)^{D(p, k)}=1-\frac{X^{3} Y}{1-X^{2}}+\frac{X^{12} Y^{2}\left(1-Y^{2}\right)}{\left(1-X^{4}\right)\left(1-X^{6}\right)}
$$

