Sixth lecture: April 20, 2011

6.2 The free algebra \mathfrak{H} and its two subalgebras \mathfrak{H}^{1} and \mathfrak{H}^{0}

Our first example of an alphabet was the trivial one with a single letter, the free monoid on a set with a single element 1 is just \mathbf{N}. The next example is when $X=\left\{x_{0}, x_{1}\right\}$ has two elements; in this case the algebra $K\left\langle x_{0}, x_{1}\right\rangle$ will be denoted by \mathfrak{H}. Each word w in X^{*} can be written $x_{\epsilon_{1}} \cdots x_{\epsilon_{p}}$ where each ϵ_{i} is either 0 or 1 and the integer p is the weight of w. The number of $i \in\{1, \ldots p\}$ with $\epsilon_{i}=1$ is called the length (or the depth) of w.

We shall denote by $X^{*} x_{1}$ the set of word which end with x_{1}, and by $x_{0} X^{*} x_{1}$ the set of words which start with x_{0} and end with x_{1}.

Consider a word w in $X^{*} x_{1}$. We write it $w=x_{\epsilon_{1}} \cdots x_{\epsilon_{p}}$ with $\epsilon_{p}=1$. Let k be the number of occurrences of the letter x_{1} in w. We have $p \geq 1$ and $k \geq 1$. We can write $w=x_{0}^{s_{1}-1} x_{1} x_{0}^{s_{2}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1}$ by defining $s_{1}-1$ as the number of occurrences of the letter x_{0} before the first x_{1} and, for $2 \leq j \geq k$, by defining $s_{j}-1$ as the number of occurrences of the letter x_{0} between the $(j-1)$-th and the j-th occurrence of x_{1}. This produces a sequence of non-negative integers $\left(s_{1}, \ldots, s_{k}\right) \in \mathbf{N}^{k}$. Such a sequence $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ of positive integers with $k \geq 1$ is a called composition (the set of compositions is the union over $k \geq 1$ of these k-tuples $\left.\left(s_{1}, \ldots, s_{k}\right)\right)$.

For $s \geq 1$, define $y_{s}=x_{0}^{s-1} x_{1}$:

$$
y_{1}=x_{1}, \quad y_{2}=x_{0} x_{1}, \quad y_{3}=x_{0}^{2} x_{1}, \quad y_{4}=x_{0}^{3} x_{1}, \ldots
$$

and let $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$. For $\underline{s}=\left(s_{1}, \ldots, s_{k}\right) \in \mathbf{N}^{k}$ with $s_{j} \geq 1(1 \leq j \leq$ $k)$, set $y_{\underline{s}}=y_{s_{1}} \cdots y_{s_{k}}$, so that

$$
y_{\underline{s}}=x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1} .
$$

Lemma 27.

a) The set $X^{*} x_{1}$ is the same as the set of $y_{s_{1}} \cdots y_{s_{k}}$, where $\left(s_{1}, \ldots, s_{k}\right)$ ranges over the finite sequences of positive integers with $k \geq 1$ and $s_{j} \geq 1$ for $1 \leq j \leq k$.
b) The free monoid Y^{*} on the set Y is $\{e\} \cup X^{*} x_{1}$.
c) The set $x_{0} X^{*} x_{1}$ is the set $\left\{y_{\underline{s}}\right\}$ where \underline{s} is a composition having $s_{1} \geq 2$.

The subalgebra of \mathfrak{H} spanned by $X^{*} x_{1}$ is

$$
\mathfrak{H}^{1}=K e+\mathfrak{H} x_{1}
$$

and $\mathfrak{H} x_{1}$ is a left ideal of \mathfrak{H}. The algebra \mathfrak{H}^{1} is the free algebra $K\langle Y\rangle$ on the set Y. We observe an interesting phenomenon, which does not occur in the commutative case, is that the free algebra $K\left\langle x_{0}, x_{1}\right\rangle$ on a set with only two elements contains as a subalgebra the free algebra $K\left\langle y_{1}, y_{2}, \ldots\right\rangle$ on a set with countably many elements. Notice that for each $n \geq 1$ this last algebra also contains as a subalgebra the free algebra on a set with n elements, namely
$K\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$. From this point of view it suffices to deal with only two variables! Any finite message can be encoded with an alphabet with only two letters. Also, we see that a naive definition of a dimension for such spaces, where $K\left\langle y_{1}, \ldots, y_{n}\right\rangle$ would have dimension n, could be misleading.

A word in $x_{0} X^{*} x_{1}$ is called convergent. The reason is that one defines a map on the convergent words

$$
\widehat{\zeta}: x_{0} X^{*} x_{1} \rightarrow \mathbf{R}
$$

by setting $\widehat{\zeta}\left(y_{\underline{s}}\right)=\zeta(s)$. Also the subalgebra of \mathfrak{H}^{1} spanned by $x_{0} X^{*} x_{1}$ is

$$
\mathfrak{H}^{0}=K e+x_{0} \mathfrak{H} x_{1} .
$$

One extends the map $\widehat{\zeta}: x_{0} X^{*} x_{1} \rightarrow \mathbf{R}$ by K-linearity and obtain a map $\widehat{\zeta}: \mathfrak{H}^{0} \rightarrow \mathbf{R}$ such that $\widehat{\zeta}(e)=1$.

On \mathfrak{H}^{0} there is a structure of non-commutative algebra, given by the concatenation - however, the map $\widehat{\zeta}$ has no good property for this structure. The concatenation of $y_{2}=x_{1} x_{0}$ and $y_{3}=x_{0}^{2} x_{1}$ is $y_{2} y_{3}=y_{(2,3)}=x_{0} x_{1} x_{0}^{2} x_{1}$, and $\zeta(2) \zeta(3) \neq \zeta(2,3)$ and $\zeta(2) \zeta(3) \neq \zeta(2,3)$; indeed according to [1] we have $\zeta(2)=1.644 \ldots, \zeta(3)=1.202 \ldots$

$$
\zeta(2) \zeta(3)=1.977 \ldots \quad \zeta(2,3)=0.711 \ldots \quad \zeta(3,2)=0.228 \ldots
$$

so

$$
\widehat{\zeta}\left(y_{2}\right) \widehat{\zeta}\left(y_{3}\right) \neq \widehat{\zeta}\left(y_{2} y_{3}\right) .
$$

As we have seen in $\S 3$, it is expected that $\zeta(2), \zeta(3)$ and $\zeta(2,3)$ are algebraically independent.

However there are other structures of algebras on \mathfrak{H}^{0}, in particular two commutative algebra structures ш (shuffle) and \star (stuffle or harmonic law) for which $\widehat{\zeta}$ will become an algebra homomorphism: for w and w^{\prime} in \mathfrak{H}^{0},

$$
\widehat{\zeta}\left(w ш w^{\prime}\right)=\zeta(w) \zeta\left(w^{\prime}\right) \quad \text { and } \quad \widehat{\zeta}\left(w \star w^{\prime}\right)=\zeta(w) \zeta\left(w^{\prime}\right)
$$

7 MZV as integrals and the Shuffle Product

7.1 Zeta values as integrals

We first check

$$
\zeta(2)=\int_{1>t_{1}>t_{2}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}}
$$

For t_{2} in the interval $0<t_{2}<1$ we expand $1 /\left(1-t_{2}\right)$ in power series; next we integrate over the interval $\left[0, t_{1}\right]$ where t_{1} is in the interval $0<t_{1}<1$, so that the integration terms by terms is licit:

$$
\frac{1}{1-t_{2}}=\sum_{n \geq 1} t_{2}^{n-1}, \quad \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}=\sum_{n \geq 1} \int_{0}^{t_{1}} t_{2}^{n-1} d t_{2}=\sum_{n \geq 1} \frac{t_{1}^{n}}{n}
$$

Hence, the integral is

$$
\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}=\sum_{n \geq 1} \frac{1}{n} \int_{0}^{1} t_{1}^{n-1} d t_{1}=\sum_{n \geq 1} \frac{1}{n^{2}}=\zeta(2)
$$

In the same way one checks

$$
\zeta(3)=\int_{1>t_{1}>t_{2} t_{3}>0} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{t_{2}} \cdot \frac{d t_{3}}{1-t_{3}} .
$$

We continue by induction and give an integral formula for $\zeta(s)$ when $s \geq 2$ is an integer, and more generally for $\zeta(\underline{s})$ when $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ is a composition. To state the result, it will be convenient to introduce a definition: we set

$$
\omega_{0}(t)=\frac{d t}{t} \quad \text { and } \quad \omega_{1}(t)=\frac{d t}{1-t}
$$

For $p \geq 1$ and $\epsilon_{1}, \ldots, \epsilon_{p}$ in $\{0,1\}$, we define

$$
\omega_{\epsilon_{1}} \cdots \omega_{\epsilon_{p}}=\omega_{\epsilon_{1}}\left(t_{1}\right) \cdots \omega_{\epsilon_{p}}\left(t_{p}\right)
$$

We shall integrate this differential form on the simplex

$$
\Delta_{p}=\left\{\left(t_{1}, \ldots, t_{p}\right) \in \mathbf{R}^{p} ; 1>t_{1}>\cdots>t_{p}>0\right\}
$$

The two previous formulae are

$$
\zeta(2)=\int_{\Delta_{2}} \omega_{0} \omega_{1} \quad \text { and } \quad \zeta(3)=\int_{\Delta_{3}} \omega_{0}^{2} \omega_{1} .
$$

The integral formula for zeta values that follows by induction is

$$
\zeta(s)=\int_{\Delta_{s}} \omega_{0}^{s-1} \omega_{1} \quad \text { for } \quad s \geq 2
$$

We extend this formula to multiple zeta values as follows. Firstly, for $s \geq 1$ we define $\omega_{s}=\omega_{0}^{s-1} \omega_{1}$, which matches the previous definition when $s=1$ and produces, for $s \geq 2$,

$$
\zeta(s)=\int_{\Delta_{s}} \omega_{s} .
$$

Next, for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$, we define $\omega_{\underline{s}}=\omega_{s_{1}} \cdots \omega_{s_{k}}$.
Proposition 28. Assume $s_{1} \geq 2$. Let $p=s_{1}+\cdots+s_{k}$. Then

$$
\zeta(\underline{s})=\widehat{\zeta}\left(y_{\underline{s}}\right)=\int_{\Delta_{p}} \omega_{\underline{s}}
$$

The proof is by induction on p. For this induction it is convenient to introduce the multiple polylogarithm functions in one variable:

$$
L i_{\underline{s}}(z)=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

for $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ with $s_{j} \geq 1$ and for $z \in \mathbf{C}$ with $|z|<1$. Notice that $\operatorname{Li}(z)$ is defined also at $z=1$ when $s_{1} \geq 2$ where it takes the value $L i_{\underline{s_{\underline{~}}}}(z)=1$. One checks, by induction on the weight p, for $0<z<1$,

$$
L i_{\underline{s}}(z)=\int_{\Delta_{p}(z)} \omega_{\underline{s}}
$$

where $\Delta_{p}(z)$ is the simplex

$$
\Delta_{p}(z)=\left\{\left(t_{1}, \ldots, t_{p}\right) \in \mathbf{R}^{p} ; z>t_{1}>\cdots>t_{p}>0\right\}
$$

We now consider products of such integrals. Consider $\zeta(2)^{2}$ as product of two integrals

$$
\zeta(2)^{2}=\int_{\substack{1>t_{1}>t_{2}>0 \\ 1>u_{1}>u_{2}>0}} \frac{d t_{1}}{t_{1}} \cdot \frac{d t_{2}}{1-t_{2}} \cdot \frac{d u_{1}}{u_{1}} \cdot \frac{d u_{2}}{1-u_{2}}
$$

We decompose the domain

$$
1>t_{1}>t_{2}>0, \quad 1>u_{1}>u_{2}>0
$$

into six disjoint domains (and further subsets of zero dimension) obtained by "shuffling" $\left(t_{1}, t_{2}\right)$ with $\left(u_{1}, u_{2}\right)$:

$$
\begin{aligned}
& 1>t_{1}>t_{2}>u_{1}>u_{2}>0, \quad 1>t_{1}>u_{1}>t_{2}>u_{2}>0, \\
& 1>u_{1}>t_{1}>t_{2}>u_{2}>0, \\
& 1>t_{1}>u_{1}>u_{2}>t_{2}>0, \\
& 1>u_{1}>t_{1}>u_{2}>t_{2}>0, \\
& 1>u_{1}>u_{2}>t_{1}>t_{2}>0,
\end{aligned}
$$

Each of the six simplices have either t_{1} or u_{1} as the largest variable (corresponding to $\left.\omega_{0}(t)=1 / t\right)$ and u_{2} or t_{2} as the lowest (corresponding to $\omega_{1}(t)=$ $d t /(1-t))$. The integrals of $\omega_{0}^{2} \omega_{1}^{2}$ produce $\zeta(3,1)$, there are 4 of them, the integrals of $\omega_{0} \omega_{1} \omega_{0} \omega_{1}$ produce $\zeta(2,2)$, and there are 2 of them. From Proposition 28 , we deduce

$$
\zeta(2)^{2}=4 \zeta(3,1)+2 \zeta(2,2)
$$

This is a typical example of a "shuffle relation":

$$
\omega_{0} \omega_{1} \amalg \omega_{0} \omega_{1}=4 \omega_{0}^{2} \omega_{1}^{2}+2 \omega_{0} \omega_{1} \omega_{0} \omega_{1}
$$

