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Sixth lecture: April 20, 2011

6.2 The free algebra H and its two subalgebras H
1 and H

0

Our first example of an alphabet was the trivial one with a single letter, the
free monoid on a set with a single element 1 is just N. The next example is
when X = {x0, x1} has two elements; in this case the algebra K�x0, x1� will be
denoted by H. Each word w in X∗ can be written x�1 · · ·x�p where each �i is
either 0 or 1 and the integer p is the weight of w. The number of i ∈ {1, . . . p}
with �i = 1 is called the length (or the depth) of w.

We shall denote by X∗x1 the set of word which end with x1, and by x0X∗x1

the set of words which start with x0 and end with x1.
Consider a word w in X∗x1. We write it w = x�1 · · ·x�p with �p = 1. Let k

be the number of occurrences of the letter x1 in w. We have p ≥ 1 and k ≥ 1.
We can write w = xs1−1

0 x1x
s2−1
0 x1 · · ·x

sk−1
0 x1 by defining s1 − 1 as the number

of occurrences of the letter x0 before the first x1 and, for 2 ≤ j ≥ k, by defining
sj − 1 as the number of occurrences of the letter x0 between the (j − 1)-th and
the j–th occurrence of x1. This produces a sequence of non–negative integers
(s1, . . . , sk) ∈ N

k. Such a sequence s = (s1, . . . , sk) of positive integers with
k ≥ 1 is a called composition (the set of compositions is the union over k ≥ 1 of
these k–tuples (s1, . . . , sk)).

For s ≥ 1, define ys = xs−1
0 x1:

y1 = x1, y2 = x0x1, y3 = x2
0x1, y4 = x3

0x1, . . .

and let Y = {y1, y2, y3, . . . }. For s = (s1, . . . , sk) ∈ N
k with sj ≥ 1 (1 ≤ j ≤

k), set ys = ys1 · · · ysk , so that

ys = xs1−1
0 x1 · · ·x

sk−1
0 x1.

Lemma 27.

a) The set X∗x1 is the same as the set of ys1 · · · ysk , where (s1, . . . , sk) ranges
over the finite sequences of positive integers with k ≥ 1 and sj ≥ 1 for 1 ≤ j ≤ k.

b) The free monoid Y ∗ on the set Y is {e} ∪X∗x1.
c) The set x0X∗x1 is the set {ys} where s is a composition having s1 ≥ 2.

The subalgebra of H spanned by X∗x1 is

H
1 = Ke+ Hx1

and Hx1 is a left ideal of H. The algebra H
1 is the free algebra K�Y � on the

set Y . We observe an interesting phenomenon, which does not occur in the
commutative case, is that the free algebra K�x0, x1� on a set with only two
elements contains as a subalgebra the free algebra K�y1, y2, . . .� on a set with
countably many elements. Notice that for each n ≥ 1 this last algebra also
contains as a subalgebra the free algebra on a set with n elements, namely
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K�y1, y2, . . . , yn�. From this point of view it suffices to deal with only two
variables! Any finite message can be encoded with an alphabet with only two
letters. Also, we see that a naive definition of a dimension for such spaces, where
K�y1, . . . , yn� would have dimension n, could be misleading.

A word in x0X∗x1 is called convergent. The reason is that one defines a map
on the convergent words

�ζ : x0X
∗x1 → R

by setting �ζ(ys) = ζ(s). Also the subalgebra of H1 spanned by x0X∗x1 is

H
0 = Ke+ x0Hx1.

One extends the map �ζ : x0X∗x1 → R by K–linearity and obtain a map
�ζ : H0

→ R such that �ζ(e) = 1.
On H

0 there is a structure of non–commutative algebra, given by the con-
catenation – however, the map �ζ has no good property for this structure. The
concatenation of y2 = x1x0 and y3 = x2

0x1 is y2y3 = y(2,3) = x0x1x2
0x1, and

ζ(2)ζ(3) �= ζ(2, 3) and ζ(2)ζ(3) �= ζ(2, 3); indeed according to [1] we have
ζ(2) = 1.644 . . . , ζ(3) = 1.202 . . .

ζ(2)ζ(3) = 1.977 . . . ζ(2, 3) = 0.711 . . . ζ(3, 2) = 0.228 . . .

so
�ζ(y2)�ζ(y3) �= �ζ(y2y3).

As we have seen in §3, it is expected that ζ(2), ζ(3) and ζ(2, 3) are algebraically
independent.

However there are other structures of algebras on H
0, in particular two com-

mutative algebra structures x (shuffle) and � (stuffle or harmonic law) for which
�ζ will become an algebra homomorphism: for w and w� in H

0,

�ζ(wxw�) = ζ(w)ζ(w�) and �ζ(w � w�) = ζ(w)ζ(w�).

7 MZV as integrals and the Shuffle Product

7.1 Zeta values as integrals

We first check

ζ(2) =

�

1>t1>t2>0

dt1
t1

·
dt2

1− t2
·

For t2 in the interval 0 < t2 < 1 we expand 1/(1− t2) in power series; next we
integrate over the interval [0, t1] where t1 is in the interval 0 < t1 < 1, so that
the integration terms by terms is licit:

1

1− t2
=

�

n≥1

tn−1
2 ,

� t1

0

dt2
1− t2

=
�

n≥1

� t1

0
tn−1
2 dt2 =

�

n≥1

tn1
n
·
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Hence, the integral is

� 1

0

dt1
t1

� t1

0

dt2
1− t2

=
�

n≥1

1

n

� 1

0
tn−1
1 dt1 =

�

n≥1

1

n2
= ζ(2).

In the same way one checks

ζ(3) =

�

1>t1>t2t3>0

dt1
t1

·
dt2
t2

·
dt3

1− t3
·

We continue by induction and give an integral formula for ζ(s) when s ≥ 2 is
an integer, and more generally for ζ(s) when s = (s1, . . . , sk) is a composition.
To state the result, it will be convenient to introduce a definition: we set

ω0(t) =
dt

t
and ω1(t) =

dt

1− t
·

For p ≥ 1 and �1, . . . , �p in {0, 1}, we define

ω�1 · · ·ω�p = ω�1(t1) · · ·ω�p(tp).

We shall integrate this differential form on the simplex

∆p = {(t1, . . . , tp) ∈ R
p ; 1 > t1 > · · · > tp > 0}

The two previous formulae are

ζ(2) =

�

∆2

ω0ω1 and ζ(3) =

�

∆3

ω2
0ω1.

The integral formula for zeta values that follows by induction is

ζ(s) =

�

∆s

ωs−1
0 ω1 for s ≥ 2.

We extend this formula to multiple zeta values as follows. Firstly, for s ≥ 1
we define ωs = ωs−1

0 ω1, which matches the previous definition when s = 1 and
produces, for s ≥ 2,

ζ(s) =

�

∆s

ωs.

Next, for s = (s1, . . . , sk), we define ωs = ωs1 · · ·ωsk .

Proposition 28. Assume s1 ≥ 2. Let p = s1 + · · ·+ sk. Then

ζ(s) = �ζ(ys) =
�

∆p

ωs.
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The proof is by induction on p. For this induction it is convenient to intro-
duce the multiple polylogarithm functions in one variable:

Lis(z) =
�

n1>n2>···>nk≥1

zn1

ns1
1 · · ·nsk

k

,

for s = (s1, . . . , sk) with sj ≥ 1 and for z ∈ C with |z| < 1. Notice that Li(z)
is defined also at z = 1 when s1 ≥ 2 where it takes the value Lis(z) = 1. One
checks, by induction on the weight p, for 0 < z < 1,

Lis(z) =

�

∆p(z)
ωs,

where ∆p(z) is the simplex

∆p(z) = {(t1, . . . , tp) ∈ R
p ; z > t1 > · · · > tp > 0}.

We now consider products of such integrals. Consider ζ(2)2 as product of
two integrals

ζ(2)2 =

�

1>t1>t2>0
1>u1>u2>0

dt1
t1

·
dt2

1− t2
·
du1

u1
·

du2

1− u2
·

We decompose the domain

1 > t1 > t2 > 0, 1 > u1 > u2 > 0

into six disjoint domains (and further subsets of zero dimension) obtained by
“shuffling” (t1, t2) with (u1, u2):

1 > t1 > t2 > u1 > u2 > 0, 1 > t1 > u1 > t2 > u2 > 0,

1 > u1 > t1 > t2 > u2 > 0, 1 > t1 > u1 > u2 > t2 > 0,

1 > u1 > t1 > u2 > t2 > 0, 1 > u1 > u2 > t1 > t2 > 0,

Each of the six simplices have either t1 or u1 as the largest variable (corre-
sponding to ω0(t) = 1/t) and u2 or t2 as the lowest (corresponding to ω1(t) =
dt/(1− t)). The integrals of ω2

0ω
2
1 produce ζ(3, 1), there are 4 of them, the inte-

grals of ω0ω1ω0ω1 produce ζ(2, 2), and there are 2 of them. From Proposition
28, we deduce

ζ(2)2 = 4ζ(3, 1) + 2ζ(2, 2).

This is a typical example of a “shuffle relation”:

ω0ω1xω0ω1 = 4ω2
0ω

2
1 + 2ω0ω1ω0ω1.
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