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Sixth lecture: April 20, 2011

6.2 The free algebra § and its two subalgebras $' and $°

Our first example of an alphabet was the trivial one with a single letter, the
free monoid on a set with a single element 1 is just N. The next example is
when X = {z9,x1} has two elements; in this case the algebra K (xg,z1) will be
denoted by $). Each word w in X* can be written x, ---z., where each ¢; is
either 0 or 1 and the integer p is the weight of w. The number of i € {1,...p}
with ¢; = 1 is called the length (or the depth) of w.

We shall denote by X*x; the set of word which end with =1, and by xoX*xz;
the set of words which start with zg and end with z;.

Consider a word w in X*z;. We write it w = z,, -+ -z, with ¢, = 1. Let k
be the number of occurrences of the letter z; in w. We have p > 1 and k > 1.
We can write w = zgl_lzlojg"'_lxl e xg’“_lxl by defining s; — 1 as the number
of occurrences of the letter xy before the first z1 and, for 2 < j > k, by defining
s; — 1 as the number of occurrences of the letter 2y between the (j — 1)-th and
the j—th occurrence of ;. This produces a sequence of non—negative integers
(s1,...,8:) € N*. Such a sequence s = (s1,...,5;) of positive integers with
k > 1is a called composition (the set of compositions is the union over k > 1 of
these k—tuples (s1,...,5k))-

For s > 1, define y, = xf)*lxl:

2 3
Yr = 21, Y2 = Tox1, Y3 = ToT1, Y4 = ToT1,

and let Y = {y1, y2, y3,...}. For s = (s1,...,85) € NF with s; >1 (1 <j <
k), set ys = ys, - - - Ys, , SO that

s1—1 sp—1
Ys =Ty X1 xy" T

Lemma 27.
a) The set X*x1 is the same as the set of ys, - - - ys,, where (s1,...,s;) ranges
over the finite sequences of positive integers withk > 1 ands; > 1 for1 < j <k.
b) The free monoid Y* on the set'Y is {e} U X*x;.
¢) The set xoX*x1 is the set {ys} where s is a composition having sq > 2.

The subalgebra of $ spanned by X*z is
H' = Ke+ Hry

and Hz1 is a left ideal of $. The algebra H' is the free algebra K(Y') on the
set Y. We observe an interesting phenomenon, which does not occur in the
commutative case, is that the free algebra K(xg,x1) on a set with only two
elements contains as a subalgebra the free algebra K (y1,ys,...) on a set with
countably many elements. Notice that for each n > 1 this last algebra also
contains as a subalgebra the free algebra on a set with n elements, namely
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K{y1,y2,...,Yn). From this point of view it suffices to deal with only two
variables! Any finite message can be encoded with an alphabet with only two
letters. Also, we see that a naive definition of a dimension for such spaces, where
K({yi,...,yn) would have dimension n, could be misleading.
A word in zg X *z; is called convergent. The reason is that one defines a map
on the convergent words R
C : on*xl —R

by setting 6(y§) = ((s). Also the subalgebra of $' spanned by zoX*z; is
530 = Ke+ xz¢$Hz1.

One extends the mapAZ : 29X z; — R by K-linearity and obtain a map
¢ : 5 — R such that (e) = 1.

On $° there is a structure of non-commutative algebra, given by the con-
catenation — however, the map ¢ has no good property for this structure. The
concatenation of yo = 119 and y3 = 23r; is Yoys = Y2,3) = ror17éT1, and
C(2)C(3) # ¢(2,3) and ¢(2)¢(3) # ((2,3); indeed according to [1] we have
¢(2)=1.644...,((3) =1.202...

C(2)¢(3)=1.977... ((2,3)=0.711... ((3,2)=0.228...

SO

~ o~ ~

C(y2)¢(ys) # C(y2ys3)-

As we have seen in §3, it is expected that ((2), ¢(3) and (2, 3) are algebraically
independent.

However there are other structures of algebras on $°, in particular two com-
mutative algebra structures m (shuffle) and x (stuffle or harmonic law) for which
Z will become an algebra homomorphism: for w and w’ in $°,

o~

((wmw') = ((w)¢(w') and {(wxw') = ((w)((w).

7 MZV as integrals and the Shuffle Product

7.1 Zeta values as integrals

= = B

>t1>t2>0 131 1—t

We first check

For t5 in the interval 0 < t3 < 1 we expand 1/(1 — t2) in power series; next we
integrate over the interval [0, ] where ¢; is in the interval 0 < #; < 1, so that
the integration terms by terms is licit:

! =Yt /tl dt _Z/tltn-ldt —Zf’f
]._tz_ 2 ’ 0 ]._tQ_ 0 2 27 n

n>1 n>1 n>1
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Hence, the integral is
1 t 1
dtq / bodty 1/ 1 1
— | =) = =) = =((2).
/0 tl o 1— t2 = n Jo 1 1 = n2 C( )

In the same way one checks

C(g):/l dty dta _dts

>t1>tat3 >0 t (23 1—1t3

We continue by induction and give an integral formula for ((s) when s > 2 is
an integer, and more generally for ((s) when s = (s1,...,s) is a composition.
To state the result, it will be convenient to introduce a definition: we set

dt dt
WO(t) = 7 and w1 (t) = m

For p>1ande,...,e, in {0,1}, we define
Wey * " We, = Wey (t1) -+~ we, (Ep)-
We shall integrate this differential form on the simplex
Ap={(t1,....tp) eRP; 1>t >--->1t, >0}

The two previous formulae are

C(Q)Z/A[ wowr  and C(3):/A’ w1

The integral formula for zeta values that follows by induction is

C(s)z/ witwy for s>2.
A

s

We extend this formula to multiple zeta values as follows. Firstly, for s > 1
we define wy = wS_lwl, which matches the previous definition when s = 1 and

produces, for s > 2,
¢(s) = / Ws.
A,

s
Next, for s = (s1,...,sx), we define wy; = wy, -+ - ws, .

Proposition 28. Assume s1 > 2. Let p =51+ -+ sg. Then

¢ =L = [ o

P
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The proof is by induction on p. For this induction it is convenient to intro-
duce the multiple polylogarithm functions in one variable:

ni

. z
Lis(2) = > TR
k

LSt
ni>ng>--->np>1

for s = (s1,...,5%) with s; > 1 and for z € C with |z| < 1. Notice that Li(z)
is defined also at z = 1 when s; > 2 where it takes the value Lis(z) = 1. One
checks, by induction on the weight p, for 0 < z < 1,

Liy(z) = /A e

where Ap(z) is the simplex

Ap(z) ={(t1,...,tp) eRP; 2> t1 > --- > t, >0}

We now consider products of such integrals. Consider ((2)? as product of
two integrals

dtl dtg dU1 dUQ
((2)2 — / /. Rt .
1>t1>t9>0 t7 1 —1to wu; 1 —1wug

1>u] >ug>0

We decompose the domain
1>t >t>0, 1>u; >u>0

into six disjoint domains (and further subsets of zero dimension) obtained by
“shuffling” (t1,t2) with (u1,us):

1>t >t >ur >us >0, 1>t >up >ty >ug >0,

I1>ur >t >teo>u >0, 1>t >up >us >ty >0,
1>u >t >us >t >0, 1>u >ug >t >t >0,

Each of the six simplices have either ¢; or u; as the largest variable (corre-
sponding to wo(t) = 1/t) and wus or t2 as the lowest (corresponding to wq(t) =
dt/(1—t)). The integrals of wiw? produce ((3, 1), there are 4 of them, the inte-
grals of wowiwow; produce ((2,2), and there are 2 of them. From Proposition
28, we deduce

¢(2)* = 4¢(3,1) +2¢(2,2).

This is a typical example of a “shuffle relation”:

wWow MWW, = 4w§wf + 2wowiwow1 -
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