Sixth lecture: April 20, 2011

6.2 The free algebra \mathfrak{H} and its two subalgebras \mathfrak{H}^1 and \mathfrak{H}^0

Our first example of an alphabet was the trivial one with a single letter, the free monoid on a set with a single element 1 is just **N**. The next example is when $X = \{x_0, x_1\}$ has two elements; in this case the algebra $K\langle x_0, x_1 \rangle$ will be denoted by \mathfrak{H} . Each word w in X^* can be written $x_{\epsilon_1} \cdots x_{\epsilon_p}$ where each ϵ_i is either 0 or 1 and the integer p is the weight of w. The number of $i \in \{1, \ldots, p\}$ with $\epsilon_i = 1$ is called the *length* (or the *depth*) of w.

We shall denote by X^*x_1 the set of word which end with x_1 , and by $x_0X^*x_1$ the set of words which start with x_0 and end with x_1 .

Consider a word w in X^*x_1 . We write it $w = x_{\epsilon_1} \cdots x_{\epsilon_p}$ with $\epsilon_p = 1$. Let k be the number of occurrences of the letter x_1 in w. We have $p \ge 1$ and $k \ge 1$. We can write $w = x_0^{s_1-1}x_1x_0^{s_2-1}x_1 \cdots x_0^{s_k-1}x_1$ by defining $s_1 - 1$ as the number of occurrences of the letter x_0 before the first x_1 and, for $2 \le j \ge k$, by defining $s_j - 1$ as the number of occurrences of the letter x_0 between the (j-1)-th and the j-th occurrence of x_1 . This produces a sequence of non-negative integers $(s_1, \ldots, s_k) \in \mathbf{N}^k$. Such a sequence $\underline{s} = (s_1, \ldots, s_k)$ of positive integers with $k \ge 1$ is a called *composition* (the set of compositions is the union over $k \ge 1$ of these k-tuples (s_1, \ldots, s_k)).

For $s \ge 1$, define $y_s = x_0^{s-1} x_1$:

$$y_1 = x_1, y_2 = x_0 x_1, y_3 = x_0^2 x_1, y_4 = x_0^3 x_1, \dots$$

and let $Y = \{y_1, y_2, y_3, ...\}$. For $\underline{s} = (s_1, ..., s_k) \in \mathbf{N}^k$ with $s_j \ge 1$ $(1 \le j \le k)$, set $y_{\underline{s}} = y_{s_1} \cdots y_{s_k}$, so that

$$y_{\underline{s}} = x_0^{s_1 - 1} x_1 \cdots x_0^{s_k - 1} x_1.$$

Lemma 27.

a) The set X*x1 is the same as the set of ys1 ··· ysk, where (s1,...,sk) ranges over the finite sequences of positive integers with k ≥ 1 and sj ≥ 1 for 1 ≤ j ≤ k.
b) The free monoid Y* on the set Y is {e} ∪ X*x1.

c) The set $x_0 X^* x_1$ is the set $\{y_s\}$ where \underline{s} is a composition having $s_1 \geq 2$.

The subalgebra of \mathfrak{H} spanned by X^*x_1 is

$$\mathfrak{H}^1 = Ke + \mathfrak{H}x_1$$

and $\mathfrak{H}x_1$ is a left ideal of \mathfrak{H} . The algebra \mathfrak{H}^1 is the free algebra $K\langle Y \rangle$ on the set Y. We observe an interesting phenomenon, which does not occur in the commutative case, is that the free algebra $K\langle x_0, x_1 \rangle$ on a set with only two elements contains as a subalgebra the free algebra $K\langle y_1, y_2, \ldots \rangle$ on a set with countably many elements. Notice that for each $n \geq 1$ this last algebra also contains as a subalgebra the free algebra on a set with n elements, namely

 $K\langle y_1, y_2, \ldots, y_n \rangle$. From this point of view it suffices to deal with only two variables! Any finite message can be encoded with an alphabet with only two letters. Also, we see that a naive definition of a dimension for such spaces, where $K\langle y_1, \ldots, y_n \rangle$ would have dimension n, could be misleading.

A word in $x_0 X^* x_1$ is called *convergent*. The reason is that one defines a map on the convergent words

$$\zeta: x_0 X^* x_1 \to \mathbf{R}$$

by setting $\widehat{\zeta}(y_{\underline{s}}) = \zeta(s)$. Also the subalgebra of \mathfrak{H}^1 spanned by $x_0 X^* x_1$ is

$$\mathfrak{H}^0 = Ke + x_0 \mathfrak{H} x_1.$$

One extends the map $\widehat{\zeta} : x_0 X^* x_1 \to \mathbf{R}$ by *K*-linearity and obtain a map $\widehat{\zeta} : \mathfrak{H}^0 \to \mathbf{R}$ such that $\widehat{\zeta}(e) = 1$.

On \mathfrak{H}^0 there is a structure of non-commutative algebra, given by the concatenation – however, the map $\widehat{\zeta}$ has no good property for this structure. The concatenation of $y_2 = x_1 x_0$ and $y_3 = x_0^2 x_1$ is $y_2 y_3 = y_{(2,3)} = x_0 x_1 x_0^2 x_1$, and $\zeta(2)\zeta(3) \neq \zeta(2,3)$ and $\zeta(2)\zeta(3) \neq \zeta(2,3)$; indeed according to [1] we have $\zeta(2) = 1.644 \dots, \zeta(3) = 1.202 \dots$

$$\zeta(2)\zeta(3) = 1.977...$$
 $\zeta(2,3) = 0.711...$ $\zeta(3,2) = 0.228...$

 \mathbf{so}

$$\widehat{\zeta}(y_2)\widehat{\zeta}(y_3) \neq \widehat{\zeta}(y_2y_3).$$

As we have seen in §3, it is expected that $\zeta(2)$, $\zeta(3)$ and $\zeta(2,3)$ are algebraically independent.

However there are other structures of algebras on \mathfrak{H}^0 , in particular two commutative algebra structures \mathfrak{m} (*shuffle*) and \star (*stuffle* or *harmonic law*) for which $\widehat{\zeta}$ will become an algebra homomorphism: for w and w' in \mathfrak{H}^0 ,

$$\widehat{\zeta}(w \operatorname{m} w') = \zeta(w)\zeta(w') \text{ and } \widehat{\zeta}(w \star w') = \zeta(w)\zeta(w').$$

7 MZV as integrals and the Shuffle Product

7.1 Zeta values as integrals

We first check

$$\zeta(2) = \int_{1 > t_1 > t_2 > 0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1 - t_2}$$

For t_2 in the interval $0 < t_2 < 1$ we expand $1/(1 - t_2)$ in power series; next we integrate over the interval $[0, t_1]$ where t_1 is in the interval $0 < t_1 < 1$, so that the integration terms by terms is licit:

$$\frac{1}{1-t_2} = \sum_{n \ge 1} t_2^{n-1}, \qquad \int_0^{t_1} \frac{dt_2}{1-t_2} = \sum_{n \ge 1} \int_0^{t_1} t_2^{n-1} dt_2 = \sum_{n \ge 1} \frac{t_1^n}{n}$$

Hence, the integral is

$$\int_0^1 \frac{dt_1}{t_1} \int_0^{t_1} \frac{dt_2}{1 - t_2} = \sum_{n \ge 1} \frac{1}{n} \int_0^1 t_1^{n-1} dt_1 = \sum_{n \ge 1} \frac{1}{n^2} = \zeta(2).$$

In the same way one checks

$$\zeta(3) = \int_{1 > t_1 > t_2 t_3 > 0} \frac{dt_1}{t_1} \cdot \frac{dt_2}{t_2} \cdot \frac{dt_3}{1 - t_3}$$

We continue by induction and give an integral formula for $\zeta(s)$ when $s \ge 2$ is an integer, and more generally for $\zeta(\underline{s})$ when $\underline{s} = (s_1, \ldots, s_k)$ is a composition. To state the result, it will be convenient to introduce a definition: we set

$$\omega_0(t) = \frac{dt}{t}$$
 and $\omega_1(t) = \frac{dt}{1-t}$.

For $p \ge 1$ and $\epsilon_1, \ldots, \epsilon_p$ in $\{0, 1\}$, we define

$$\omega_{\epsilon_1}\cdots\omega_{\epsilon_p}=\omega_{\epsilon_1}(t_1)\cdots\omega_{\epsilon_p}(t_p).$$

We shall integrate this differential form on the simplex

$$\Delta_p = \{ (t_1, \dots, t_p) \in \mathbf{R}^p \; ; \; 1 > t_1 > \dots > t_p > 0 \}$$

The two previous formulae are

$$\zeta(2) = \int_{\Delta_2} \omega_0 \omega_1$$
 and $\zeta(3) = \int_{\Delta_3} \omega_0^2 \omega_1.$

The integral formula for zeta values that follows by induction is

$$\zeta(s) = \int_{\Delta_s} \omega_0^{s-1} \omega_1 \quad \text{for} \quad s \ge 2.$$

We extend this formula to multiple zeta values as follows. Firstly, for $s \ge 1$ we define $\omega_s = \omega_0^{s-1} \omega_1$, which matches the previous definition when s = 1 and produces, for $s \ge 2$,

$$\zeta(s) = \int_{\Delta_s} \omega_s.$$

Next, for $\underline{s} = (s_1, \ldots, s_k)$, we define $\omega_{\underline{s}} = \omega_{s_1} \cdots \omega_{s_k}$.

Proposition 28. Assume $s_1 \ge 2$. Let $p = s_1 + \cdots + s_k$. Then

$$\zeta(\underline{s}) = \widehat{\zeta}(y_{\underline{s}}) = \int_{\Delta_p} \omega_{\underline{s}}.$$

The proof is by induction on p. For this induction it is convenient to introduce the *multiple polylogarithm functions in one variable*:

$$\mathrm{L}i_{\underline{s}}(z) = \sum_{n_1 > n_2 > \dots > n_k \ge 1} \frac{z^{n_1}}{n_1^{s_1} \cdots n_k^{s_k}};$$

for $\underline{s} = (s_1, \ldots, s_k)$ with $s_j \ge 1$ and for $z \in \mathbf{C}$ with |z| < 1. Notice that $\operatorname{Li}(z)$ is defined also at z = 1 when $s_1 \ge 2$ where it takes the value $\operatorname{Li}_{\underline{s}}(z) = 1$. One checks, by induction on the weight p, for 0 < z < 1,

$$\mathcal{L}i_{\underline{s}}(z) = \int_{\Delta_p(z)} \omega_{\underline{s}},$$

where $\Delta_p(z)$ is the simplex

$$\Delta_p(z) = \{ (t_1, \dots, t_p) \in \mathbf{R}^p \; ; \; z > t_1 > \dots > t_p > 0 \}$$

We now consider products of such integrals. Consider $\zeta(2)^2$ as product of two integrals

$$\zeta(2)^2 = \int_{\substack{1>t_1>t_2>0\\1>u_1>u_2>0}} \frac{dt_1}{t_1} \cdot \frac{dt_2}{1-t_2} \cdot \frac{du_1}{u_1} \cdot \frac{du_2}{1-u_2}$$

We decompose the domain

$$1 > t_1 > t_2 > 0, \quad 1 > u_1 > u_2 > 0$$

into six disjoint domains (and further subsets of zero dimension) obtained by "shuffling" (t_1, t_2) with (u_1, u_2) :

$$1 > t_1 > t_2 > u_1 > u_2 > 0, \quad 1 > t_1 > u_1 > t_2 > u_2 > 0,$$

$$1 > u_1 > t_1 > t_2 > u_2 > 0, \quad 1 > t_1 > u_1 > u_2 > t_2 > 0,$$

$$1 > u_1 > t_1 > u_2 > t_2 > 0, \quad 1 > u_1 > u_2 > t_1 > t_2 > 0,$$

$$1 > u_1 > t_1 > u_2 > t_2 > 0, \quad 1 > u_1 > u_2 > t_1 > t_2 > 0,$$

Each of the six simplices have either t_1 or u_1 as the largest variable (corresponding to $\omega_0(t) = 1/t$) and u_2 or t_2 as the lowest (corresponding to $\omega_1(t) = dt/(1-t)$). The integrals of $\omega_0^2 \omega_1^2$ produce $\zeta(3, 1)$, there are 4 of them, the integrals of $\omega_0 \omega_1 \omega_0 \omega_1$ produce $\zeta(2, 2)$, and there are 2 of them. From Proposition 28, we deduce

$$\zeta(2)^2 = 4\zeta(3,1) + 2\zeta(2,2).$$

This is a typical example of a "shuffle relation":

$$\omega_0 \omega_1 \mathrm{m} \omega_0 \omega_1 = 4\omega_0^2 \omega_1^2 + 2\omega_0 \omega_1 \omega_0 \omega_1.$$