Seventh lecture: April 21, 2011

7.2 Chen's integrals

Chen iterated integrals are defined by induction as follows. Let $\varphi_1, \ldots, \varphi_p$ be holomorphic differential forms on a simply connected open subset D of the complex plane and let x and y be two elements in D. Define, as usual, $\int_x^y \varphi_1$ as the value, at y, of the primitive of φ_1 which vanishes at x. Next, by induction on p, define

$$\int_x^y \varphi_1 \cdots \varphi_p = \int_x^y \varphi_1(t) \int_x^t \varphi_2 \cdots \varphi_p.$$

By means of a change of variables

 $t \mapsto x + t(y - x)$

one can assume that x = 0, y = 1 and that D contains the real segment [0, 1]. In this case the integral is

$$\int_0^1 \varphi_1 \cdots \varphi_p = \int_{\Delta_p} \varphi_1(t_1) \varphi_2(t_2) \cdots \varphi_p(t_p),$$

where the domain of integration Δ_p is the simplex of \mathbf{R}^p defined by

$$\Delta_p = \{ (t_1, \dots, t_p) \in \mathbf{R}^p , \ 1 > t_1 > \dots > t_p > 0 \}.$$

In our applications the open set D will be the open disk |z - (1/2)| < 1/2, the differential forms will be dt/t and dt/(1-t), so one needs to take care of the fact that the limit points 0 and 1 of the integrals are not in D. One way is to integrate for ϵ_1 to $1 - \epsilon_2$ and to let ϵ_1 and ϵ_2 tend to 0. Here we just ignore these convergence questions by restricting our discussion to the convergent words and to the algebra \mathfrak{H}^0 they generate.

The product of two integrals is a Chen integral, and more generally the product of two Chen integrals is a Chen integral. This is where the shuffle comes in. We consider a special case: the product of the two integrals

$$\int_{1>t_1>t_2>0} \varphi_1(t_1)\varphi_2(t_2) \int_{1>t_3>0} \varphi_3(t_3)$$

is the sum of three integrals

$$\int_{1>t_1>t_2>t_3>0} \varphi_1(t_1)\varphi_2(t_2)\varphi_3(t_3),$$
$$\int_{1>t_1>t_3>t_2>0} \varphi_1(t_1)\varphi_3(t_3)\varphi_2(t_2)$$

and

$$\int_{1>t_3>t_1>t_2>0} \varphi_3(t_3)\varphi_1(t_1)\varphi_2(t_2)$$

Consider for instance the third integral: we write it as

$$\int_{1>t_{\tau(1)}>t_{\tau(2)}>t_{\tau(3)}>0}\varphi_{\tau(1)}(t_{\tau(1)})\varphi_{\tau(2)}(t_{\tau(2)})\varphi_{\tau(3)}(t_{\tau(3)}).$$

The permutation τ of $\{1, 2, 3\}$ is $\tau(1) = 3$, $\tau(2) = 1$, $\tau(3) = 2$, and it is one of the three permutations of \mathfrak{S}_3 which is of the form σ^{-1} where $\sigma(1) < \sigma(2)$.

The shuffle ${\rm m}$ will be defined in §7.3 so that the next lemma holds:

Lemma 29. Let $\varphi_1, \ldots, \varphi_{p+q}$ be differential forms with $p \ge 0$ and $q \ge 0$. Then

$$\int_0^1 \varphi_1 \cdots \varphi_p \int_0^1 \varphi_{p+1} \cdots \varphi_{p+q} = \int_0^1 \varphi_1 \cdots \varphi_p \mathrm{III} \varphi_{p+1} \cdots \varphi_{p+q}.$$

Proof. Define $\Delta'_{p,q}$ as the subset of $\Delta_p \times \Delta_q$ of those elements (z_1, \ldots, z_{p+q}) for which we have $z_i \neq z_j$ for $1 \leq i \leq p < j \leq p+q$. Hence

$$\int_0^1 \varphi_1 \cdots \varphi_p \int_0^1 \varphi_{p+1} \cdots \varphi_{p+q} = \int_{\Delta_p \times \Delta_q} \varphi_1 \cdots \varphi_{p+q} = \int_{\Delta'_{p,q}} \varphi_1 \cdots \varphi_{p+q}$$

where $\Delta'_{p,q}$ is the disjoint union of the subsets $\Delta^{\sigma}_{p,q}$ defined by

$$\Delta_{p,q}^{\sigma} = \left\{ (t_1, \dots, t_{p+q}) \; ; \; 1 > t_{\sigma^{-1}(1)} > \dots > t_{\sigma^{-1}(p+q)} > 0 \right\},\$$

for σ running over the set $\mathfrak{S}_{p,q}$ of permutations of $\{1, \ldots, p+q\}$ satisfying

$$\sigma(1) < \sigma(2) < \dots < \sigma(p)$$
 and $\sigma(p+1) < \sigma(p+2) < \dots < \sigma(p+q).$

Hence

$$\int_{\Delta'_{p,q}} \varphi_1 \cdots \varphi_{p+q} = \sum_{\sigma \in \mathfrak{S}_{p,q}} \int_0^1 \varphi_{\sigma^{-1}(1)} \cdots \varphi_{\sigma^{-1}(p+q)}.$$

Lemma 29 follows if we define the shuffle so that

$$\sum_{\sigma \in \mathfrak{S}_{p,q}} \varphi_{\sigma^{-1}(1)} \cdots \varphi_{\sigma^{-1}(p+q)} = \varphi_1 \cdots \varphi_p \mathfrak{m} \varphi_{p+1} \cdots \varphi_{p+q}.$$

7.3 The shuffle m and the shuffle Algebra \mathfrak{H}_m

Let X be a set and K a field. On $K\langle X \rangle$ we define the *shuffle* product as follows. On the words, the map $\mathbf{m} : X^* \times X^* \to \mathfrak{H}$ is defined by the formula

$$(x_1\cdots x_p)\operatorname{III}(x_{p+1}\cdots x_{p+q}) = \sum_{\sigma\in\mathfrak{S}_{p,q}} x_{\sigma^{-1}(1)}\cdots x_{\sigma^{-1}(p+q)},$$

where $\mathfrak{S}_{p,q}$ denotes the set of permutation σ on $\{1, \ldots, p+q\}$ satisfying

$$\sigma(1) < \sigma(2) < \dots < \sigma(p) \quad \text{and} \quad \sigma(p+1) < \sigma(p+2) < \dots < \sigma(p+q).$$

This set $\mathfrak{S}_{p,q}$ has (p+q)!/p!q! elements; if $(p,q) \neq (0,0)$, it is the disjoint union of two subsets, the first one with (p-1+q)!/(p-1)!q! elements consists of those σ for which $\sigma(1) = 1$, and the second one with (p+q-1)!/p!(q-1)! elements consists of those σ for which $\sigma(p+1) = 1$.

Write $y_i = x_{\sigma^{-1}(i)}$, so that $x_j = y_{\sigma(j)}$ for $1 \leq i \leq p+q$ and $1 \leq j \leq p+q$. The letters x_1, \ldots, x_{p+q} and y_1, \ldots, y_{p+q} are the same, only the order may differ. However x_1, \ldots, x_p (which is the same as $y_{\sigma(1)}, \ldots, y_{\sigma(p)}$) occur in this order in y_1, \ldots, y_{p+q} , and so do x_{p+1}, \ldots, x_{p+q} (which is the same as $y_{\sigma(p+1)}, \ldots, y_{\sigma(p+q)}$).

Accordingly, the previous definition of $\mathfrak{m} : X^* \times X^* \to \mathfrak{H}$ is equivalent to the following inductive one:

$$e m w = w m e = w$$
 for any $w \in X^*$,

and

$$(xu)\mathbf{m}(yv) = x\big(u\mathbf{m}(yv)\big) + y\big((xu)\mathbf{m}v\big)$$

for x and y in X (letters), u and v in X^* (words).

Example. For k and ℓ non-negative integers and $x \in X$,

$$x^k \mathbf{m} x^{\ell} = \frac{(k+\ell)!}{k!\ell!} x^{k+\ell}$$

From

$$\mathfrak{S}_{2,2} = \{ (1) ; (2,3) ; (2,4,3) ; (1,2,3) ; (1,2,4,3) ; (1,3)(2,4) \}$$

 $one \ deduces$

 $x_1x_2 \pm x_3x_4 = x_1x_2x_3x_4 + x_1x_3x_2x_4 + x_1x_3x_4x_2 + x_3x_1x_2x_4 + x_3x_1x_4x_2 + x_3x_4x_1x_2,$

hence

$$x_0 x_1 \dots x_0 x_1 = 2x_0 x_1 x_0 x_1 + 4x_0^2 x_1^2.$$

In the same way the relation

$$x_0 x_1 \pm x_0^2 x_1 = x_0 x_1 x_0^2 x_1 + 3 x_0^2 x_1 x_0 x_1 + 6 x_0^3 x_1^2$$

is easily checked by computing more generally $x_0x_1 \pm x_2x_3x_4$ as a sum of 6!/(2!3! = 10 terms.

Notice that the shuffle product of two words is most often not a word but a polynomial in $K\langle X \rangle$. We extend the definition of $\mathfrak{m} : X^* \times X^* \to \mathfrak{H}$ to $\mathfrak{m} : \mathfrak{H} \times \mathfrak{H} \to \mathfrak{H}$ by distributivity with respect to addition:

$$\sum_{u \in X^*} (S|u)u \ \ \mathrm{m} \sum_{v \in X^*} (T|v)v = \sum_{u \in X^*} \sum_{v \in X^*} (S|u)(T|v)u\mathrm{m} v.$$

One checks that the shuffle ${\rm I\!I}$ endows $K\langle X\rangle$ with a structure of commutative K-algebra.

From now on we consider only the special case $X = \{x_0, x_1\}$. The set $K\langle X \rangle$ with the shuffle law \mathfrak{m} is a commutative algebra which will be denoted by $\mathfrak{H}_{\mathfrak{m}}$. Since \mathfrak{H}^1 as well as \mathfrak{H}^0 are stable under \mathfrak{m} , they define subalgebras

$$\mathfrak{H}^0_{\mathrm{III}} \subset \mathfrak{H}^1_{\mathrm{III}} \subset \mathfrak{H}_{\mathrm{III}}$$

Since

$$\widehat{\zeta}(y_{\underline{s}})\widehat{\zeta}(y_{\underline{s}'}) = \widehat{\zeta}(y_{\underline{s}} \mathrm{m} y_{\underline{s}'}),$$

we deduce:

Theorem 30. The map

$$\widehat{\zeta}:\mathfrak{H}^0_{\mathrm{III}}\longrightarrow \mathbf{R}$$

is a homomorphism of commutative algebras.

8 Product of series and the harmonic algebra

8.1 The stuffle \star and the harmonic algebra \mathfrak{H}_{\star}

There is another shuffle-like law on \mathfrak{H} , called the *harmonic product* by M. Hoffman and *stuffle* by other authors, denoted with a star, which also gives rise to subalgebras

$$\mathfrak{H}^0_\star\subset\mathfrak{H}^1_\star\subset\mathfrak{H}_\star$$

The starting point is the observation that the product of two multizeta series is a linear combination of multizeta series. Indeed, the cartesian product

 $\{(n_1,\ldots,n_k); n_1 > \cdots > n_k\} \times \{(n'_1,\ldots,n'_{k'}); n'_1 > \cdots > n'_{k'}\}$

breaks into a disjoint union of subsets of the form

$$\{(n''_1,\ldots,n''_{k''}); n''_1 > \cdots > n''_{k''}\}$$

with each k'' satisfying max $\{k, k'\}k'' \leq k + k'$. The simplest example is $\zeta(2)^2 = 2\zeta(2,2) + \zeta(4)$., a special case of Nielsen Reflexion Formula already seen in §1.2.

We write this as follows:

$$y_{\underline{s}} \star y_{\underline{s}'} = \sum_{\underline{s}''} y_{\underline{s}''},\tag{31}$$

where \underline{s}'' runs over the tuples $(s''_1, \ldots, s''_{k''})$ obtained from $\underline{s} = (s_1, \ldots, s_k)$ and $\underline{s}' = (s'_1, \ldots, s'_{k'})$ by inserting, in all possible ways, some 0 in the string (s_1, \ldots, s_k) as well as in the string $(s'_1, \ldots, s'_{k'})$ (including in front and at the end), so that the new strings have the same length k'', with $\max\{k, k'\} \leq k'' \leq$ k + k', and by adding the two sequences term by term. Here is an example:

Notice that the weight of the last string (sum of the s''_j) is the sum of the weight of \underline{s} and the weight of \underline{s}' .

More precisely, the law \star on \mathfrak{H} is defined as follows. First on X^* , the map $\star : X^* \times X^* \to \mathfrak{H}$ is defined by induction, starting with

$$x_0^n \star w = w \star x_0^n = w x_0^n$$

for any $w \in X^*$ and any $n \ge 0$ (for n = 0 it means $e \star w = w \star e = w$ for all $w \in X^*$), and then

$$(y_s u) \star (y_t v) = y_s \big(u \star (y_t v) \big) + y_t \big((y_s u) \star v \big) + y_{s+t} (u \star v)$$

for u and v in X^* , s and t positive integers.

We shall not use so many parentheses later: in a formula where there are both concatenation products and either shuffle of star products, we agree that concatenation is always performed first, unless parentheses impose another priority:

$$y_s u \star y_t v = y_s (u \star y_t v) + y_t (y_s u \star v) + y_{s+t} (u \star v)$$

Again this law is extended to all of \mathfrak{H} by distributivity with respect to addition:

$$\sum_{u\in X^*}(S|u)u \ \star \sum_{v\in X^*}(T|v)v = \sum_{u\in X^*}\sum_{v\in X^*}(S|u)(T|v)u\star v.$$

Remark. From the definition (by induction on the length of uv) one deduces

$$(ux_0^m) \star (vx_0^n) = (u \star v)x_0^{m+n}$$

for $m \ge 0$, u and v in X^* .

Example. .

$$y_s^{\star 3} = y_s \star y_s \star y_s = 6y_s^3 + 3y_s y_{2s} + 3y_{2s} y_2 + y_{3s}$$

The set $K\langle X \rangle$ with the harmonic law \star is a commutative algebra which will be denoted by \mathfrak{H}_{\star} . Since \mathfrak{H}^1 as well as \mathfrak{H}^0 are stable under \star , they define subalgebras

$$\mathfrak{H}^0_\star\subset\mathfrak{H}^1_\star\subset\mathfrak{H}_\star^+$$

Since

$$\widehat{\zeta}(y_{\underline{s}})\widehat{\zeta}(y_{\underline{s}'})=\widehat{\zeta}(y_{\underline{s}}\star y_{\underline{s}'}),$$

we deduce:

Theorem 32. The map

 $\widehat{\zeta}:\mathfrak{H}^0_\star\longrightarrow\mathbf{R}$

is a homomorphism of commutative algebras.

MZV IMSc 2011

8.2 Regularized double shuffle relations

As a consequence of theorems 30 and 32, the kernel of $\widehat{\zeta}$ contains all elements $w \square w' - w \star w'$ for w and w' in \mathfrak{H}^0 : indeed

 $\widehat{\zeta}(w \mathbb{m} w') = \widehat{\zeta}(w) \widehat{\zeta}(w') = \widehat{\zeta}(w \star w'), \quad \text{hence} \quad \widehat{\zeta}(w \mathbb{m} w' - w \star w') = 0.$

However the relation $\zeta(2,1) = \zeta(3)$ (due to Euler) is not a consequence of these relations, but one may derive it in a formal way as follows.

Consider

$$y_1 m y_2 = x_1 m x_0 x_1 = 2x_0^2 x_1 + x_1 x_0 x_1 = 2y_2 y_1 + y_1 y_2$$

and

 $y_1 \star y_2 = y_1 y_2 + y_2 y_1 + y_3.$

They are not in \mathfrak{H}^0 , but their difference

$$y_1 \equiv y_2 - y_1 \star y_2 = y_2 y_1 - y_3$$

is in \mathfrak{H}^0 , and Euler's relation says that this difference is in the kernel of $\widehat{\zeta}$. This is the simplest example of the so-called *Regularized double shuffle relations*.