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Seventh lecture: April 21, 2011

7.2 Chen’s integrals

Chen iterated integrals are defined by induction as follows. Let ϕ1, . . . , ϕp be
holomorphic differential forms on a simply connected open subset D of the
complex plane and let x and y be two elements in D. Define, as usual,

� y
x ϕ1 as

the value, at y, of the primitive of ϕ1 which vanishes at x. Next, by induction
on p, define � y

x
ϕ1 · · ·ϕp =

� y

x
ϕ1(t)

� t

x
ϕ2 · · ·ϕp.

By means of a change of variables

t �−→ x+ t(y − x)

one can assume that x = 0, y = 1 and that D contains the real segment [0, 1].
In this case the integral is

� 1

0
ϕ1 · · ·ϕp =

�

∆p

ϕ1(t1)ϕ2(t2) · · ·ϕp(tp),

where the domain of integration ∆p is the simplex of Rp defined by

∆p =
�
(t1, . . . , tp) ∈ R

p , 1 > t1 > · · · > tp > 0
�
.

In our applications the open set D will be the open disk |z − (1/2)| < 1/2, the
differential forms will be dt/t and dt/(1 − t), so one needs to take care of the
fact that the limit points 0 and 1 of the integrals are not in D. One way is to
integrate for �1 to 1−�2 and to let �1 and �2 tend to 0. Here we just ignore these
convergence questions by restricting our discussion to the convergent words and
to the algebra H

0 they generate.
The product of two integrals is a Chen integral, and more generally the

product of two Chen integrals is a Chen integral. This is where the shuffle
comes in. We consider a special case: the product of the two integrals

�

1>t1>t2>0
ϕ1(t1)ϕ2(t2)

�

1>t3>0
ϕ3(t3)

is the sum of three integrals
�

1>t1>t2>t3>0
ϕ1(t1)ϕ2(t2)ϕ3(t3),

�

1>t1>t3>t2>0
ϕ1(t1)ϕ3(t3)ϕ2(t2)

and �

1>t3>t1>t2>0
ϕ3(t3)ϕ1(t1)ϕ2(t2).
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Consider for instance the third integral: we write it as
�

1>tτ(1)>tτ(2)>tτ(3)>0
ϕτ(1)(tτ(1))ϕτ(2)(tτ(2))ϕτ(3)(tτ(3)).

The permutation τ of {1, 2, 3} is τ(1) = 3, τ(2) = 1, τ(3) = 2, and it is one of
the three permutations of S3 which is of the form σ−1 where σ(1) < σ(2).

The shuffle x will be defined in §7.3 so that the next lemma holds:

Lemma 29. Let ϕ1, . . . , ϕp+q be differential forms with p ≥ 0 and q ≥ 0. Then

� 1

0
ϕ1 · · ·ϕp

� 1

0
ϕp+1 · · ·ϕp+q =

� 1

0
ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q.

Proof. Define ∆�
p,q as the subset of ∆p×∆q of those elements (z1, . . . , zp+q) for

which we have zi �= zj for 1 ≤ i ≤ p < j ≤ p+ q. Hence

� 1

0
ϕ1 · · ·ϕp

� 1

0
ϕp+1 · · ·ϕp+q =

�

∆p×∆q

ϕ1 · · ·ϕp+q =

�

∆�
p,q

ϕ1 · · ·ϕp+q

where ∆�
p,q is the disjoint union of the subsets ∆σ

p,q defined by

∆σ
p,q =

�
(t1, . . . , tp+q) ; 1 > tσ−1(1) > · · · > tσ−1(p+q) > 0

�
,

for σ running over the set Sp,q of permutations of {1, . . . , p+ q} satisfying

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).

Hence �

∆�
p,q

ϕ1 · · ·ϕp+q =
�

σ∈Sp,q

� 1

0
ϕσ−1(1) · · ·ϕσ−1(p+q).

Lemma 29 follows if we define the shuffle so that
�

σ∈Sp,q

ϕσ−1(1) · · ·ϕσ−1(p+q) = ϕ1 · · ·ϕpxϕp+1 · · ·ϕp+q.

7.3 The shuffle x and the shuffle Algebra Hx

Let X be a set and K a field. On K�X� we define the shuffle product as follows.
On the words, the map x : X∗ ×X∗ → H is defined by the formula

(x1 · · ·xp)x(xp+1 · · ·xp+q) =
�

σ∈Sp,q

xσ−1(1) · · ·xσ−1(p+q),

where Sp,q denotes the set of permutation σ on {1, . . . , p+ q} satisfying

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).
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This set Sp,q has (p+ q)!/p!q! elements; if (p, q) �= (0, 0), it is the disjoint union
of two subsets, the first one with (p−1+q)!/(p−1)!q! elements consists of those
σ for which σ(1) = 1, and the second one with (p+ q − 1)!/p!(q − 1)! elements
consists of those σ for which σ(p+ 1) = 1.

Write yi = xσ−1(i), so that xj = yσ(j) for 1 ≤ i ≤ p + q and 1 ≤ j ≤

p + q. The letters x1, . . . , xp+q and y1, . . . , yp+q are the same, only the order
may differ. However x1, . . . , xp (which is the same as yσ(1), . . . , yσ(p)) occur
in this order in y1, . . . , yp+q, and so do xp+1, . . . , xp+q (which is the same as
yσ(p+1), . . . , yσ(p+q)).

Accordingly, the previous definition of x : X∗×X∗ → H is equivalent to the
following inductive one:

exw = wxe = w for any w ∈ X∗,

and
(xu)x(yv) = x

�
ux(yv)

�
+ y

�
(xu)xv

�

for x and y in X (letters), u and v in X∗ (words).

Example. For k and � non-negative integers and x ∈ X,

xkxx� =
(k + �)!

k!�!
xk+�.

From

S2,2 =
�
(1) ; (2, 3) ; (2, 4, 3) ; (1, 2, 3) ; (1, 2, 4, 3) ; (1, 3)(2, 4)

�

one deduces

x1x2xx3x4 = x1x2x3x4+x1x3x2x4+x1x3x4x2+x3x1x2x4+x3x1x4x2+x3x4x1x2,

hence
x0x1xx0x1 = 2x0x1x0x1 + 4x2

0x
2
1.

In the same way the relation

x0x1xx2
0x1 = x0x1x

2
0x1 + 3x2

0x1x0x1 + 6x3
0x

2
1

is easily checked by computing more generally x0x1xx2x3x4 as a sum of 6!/(2!3! =
10 terms.

Notice that the shuffle product of two words is most often not a word but
a polynomial in K�X�. We extend the definition of x : X∗ × X∗ → H to
x : H× H → H by distributivity with respect to addition:

�

u∈X∗

(S|u)u x
�

v∈X∗

(T |v)v =
�

u∈X∗

�

v∈X∗

(S|u)(T |v)uxv.

One checks that the shuffle x endows K�X� with a structure of commutative
K-algebra.
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From now on we consider only the special case X = {x0, x1}. The set K�X�

with the shuffle law x is a commutative algebra which will be denoted by Hx.
Since H

1 as well as H0 are stable under x, they define subalgebras

H
0
x ⊂ H

1
x ⊂ Hx.

Since
�ζ(ys)�ζ(ys�) = �ζ(ysxys�),

we deduce:

Theorem 30. The map
�ζ : H0

x −→ R

is a homomorphism of commutative algebras.

8 Product of series and the harmonic algebra

8.1 The stuffle � and the harmonic algebra H�

There is another shuffle-like law on H, called the harmonic product by M. Hoff-
man and stuffle by other authors, denoted with a star, which also gives rise to
subalgebras

H
0
� ⊂ H

1
� ⊂ H�.

The starting point is the observation that the product of two multizeta series is
a linear combination of multizeta series. Indeed, the cartesian product

�
(n1, . . . , nk) ; n1 > · · · > nk} ×

�
(n�

1, . . . , n
�
k�) ; n�

1 > · · · > n�
k�}

breaks into a disjoint union of subsets of the form
�
(n��

1 , . . . , n
��
k��) ; n��

1 > · · · > n��
k��}

with each k�� satisfying max{k, k�}k�� ≤ k+k�. The simplest example is ζ(2)2 =
2ζ(2, 2)+ ζ(4)., a special case of Nielsen Reflexion Formula already seen in §1.2.

We write this as follows:

ys � ys� =
�

s��

ys�� , (31)

where s�� runs over the tuples (s��1 , . . . , s
��
k��) obtained from s = (s1, . . . , sk)

and s� = (s�1, . . . , s
�
k�) by inserting, in all possible ways, some 0 in the string

(s1, . . . , sk) as well as in the string (s�1, . . . , s
�
k�) (including in front and at the

end), so that the new strings have the same length k��, with max{k, k�} ≤ k�� ≤
k + k�, and by adding the two sequences term by term. Here is an example:

s s1 s2 0 s3 s4 · · · 0
s� 0 s�1 s�2 0 s�3 · · · s�k�

s�� s1 s2 + s�1 s�2 s3 s4 + s�3 · · · s�k� .
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Notice that the weight of the last string (sum of the s��j ) is the sum of the weight
of s and the weight of s�.

More precisely, the law � on H is defined as follows. First on X∗, the map
� : X∗ ×X∗ → H is defined by induction, starting with

xn
0 � w = w � xn

0 = wxn
0

for any w ∈ X∗ and any n ≥ 0 (for n = 0 it means e � w = w � e = w for all
w ∈ X∗), and then

(ysu) � (ytv) = ys
�
u � (ytv)

�
+ yt

�
(ysu) � v

�
+ ys+t(u � v)

for u and v in X∗, s and t positive integers.
We shall not use so many parentheses later: in a formula where there are

both concatenation products and either shuffle of star products, we agree that
concatenation is always performed first, unless parentheses impose another pri-
ority:

ysu � ytv = ys(u � ytv) + yt(ysu � v) + ys+t(u � v)

Again this law is extended to all of H by distributivity with respect to addition:

�

u∈X∗

(S|u)u �
�

v∈X∗

(T |v)v =
�

u∈X∗

�

v∈X∗

(S|u)(T |v)u � v.

Remark. From the definition (by induction on the length of uv) one deduces

(uxm
0 ) � (vxn

0 ) = (u � v)xm+n
0

for m ≥ 0, u and v in X∗.

Example. .

y�3s = ys � ys � ys = 6y3s + 3ysy2s + 3y2sy2 + y3s.

The set K�X� with the harmonic law � is a commutative algebra which
will be denoted by H�. Since H

1 as well as H
0 are stable under �, they define

subalgebras
H

0
� ⊂ H

1
� ⊂ H�.

Since
�ζ(ys)�ζ(ys�) = �ζ(ys � ys�),

we deduce:

Theorem 32. The map
�ζ : H0

� −→ R

is a homomorphism of commutative algebras.

35



Updated April 21, 2011 MZV IMSc 2011

8.2 Regularized double shuffle relations

As a consequence of theorems 30 and 32, the kernel of �ζ contains all elements
wxw� − w � w� for w and w� in H

0: indeed

�ζ(wxw�) = �ζ(w)�ζ(w�) = �ζ(w � w�), hence �ζ(wxw�
− w � w�) = 0.

However the relation ζ(2, 1) = ζ(3) (due to Euler) is not a consequence of these
relations, but one may derive it in a formal way as follows.

Consider

y1xy2 = x1xx0x1 = 2x2
0x1 + x1x0x1 = 2y2y1 + y1y2

and
y1 � y2 = y1y2 + y2y1 + y3.

They are not in H
0, but their difference

y1xy2 − y1 � y2 = y2y1 − y3

is in H
0, and Euler’s relation says that this difference is in the kernel of �ζ. This

is the simplest example of the so–called Regularized double shuffle relations.
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