7.2 Chen's integrals

Chen iterated integrals are defined by induction as follows. Let $\varphi_{1}, \ldots, \varphi_{p}$ be holomorphic differential forms on a simply connected open subset D of the complex plane and let x and y be two elements in D. Define, as usual, $\int_{x}^{y} \varphi_{1}$ as the value, at y, of the primitive of φ_{1} which vanishes at x. Next, by induction on p, define

$$
\int_{x}^{y} \varphi_{1} \cdots \varphi_{p}=\int_{x}^{y} \varphi_{1}(t) \int_{x}^{t} \varphi_{2} \cdots \varphi_{p}
$$

By means of a change of variables

$$
t \longmapsto x+t(y-x)
$$

one can assume that $x=0, y=1$ and that D contains the real segment $[0,1]$. In this case the integral is

$$
\int_{0}^{1} \varphi_{1} \cdots \varphi_{p}=\int_{\Delta_{p}} \varphi_{1}\left(t_{1}\right) \varphi_{2}\left(t_{2}\right) \cdots \varphi_{p}\left(t_{p}\right)
$$

where the domain of integration Δ_{p} is the simplex of \mathbf{R}^{p} defined by

$$
\Delta_{p}=\left\{\left(t_{1}, \ldots, t_{p}\right) \in \mathbf{R}^{p}, 1>t_{1}>\cdots>t_{p}>0\right\}
$$

In our applications the open set D will be the open disk $|z-(1 / 2)|<1 / 2$, the differential forms will be $d t / t$ and $d t /(1-t)$, so one needs to take care of the fact that the limit points 0 and 1 of the integrals are not in D. One way is to integrate for ϵ_{1} to $1-\epsilon_{2}$ and to let ϵ_{1} and ϵ_{2} tend to 0 . Here we just ignore these convergence questions by restricting our discussion to the convergent words and to the algebra \mathfrak{H}^{0} they generate.

The product of two integrals is a Chen integral, and more generally the product of two Chen integrals is a Chen integral. This is where the shuffle comes in. We consider a special case: the product of the two integrals

$$
\int_{1>t_{1}>t_{2}>0} \varphi_{1}\left(t_{1}\right) \varphi_{2}\left(t_{2}\right) \int_{1>t_{3}>0} \varphi_{3}\left(t_{3}\right)
$$

is the sum of three integrals

$$
\begin{aligned}
& \int_{1>t_{1}>t_{2}>t_{3}>0} \varphi_{1}\left(t_{1}\right) \varphi_{2}\left(t_{2}\right) \varphi_{3}\left(t_{3}\right), \\
& \int_{1>t_{1}>t_{3}>t_{2}>0} \varphi_{1}\left(t_{1}\right) \varphi_{3}\left(t_{3}\right) \varphi_{2}\left(t_{2}\right)
\end{aligned}
$$

and

$$
\int_{1>t_{3}>t_{1}>t_{2}>0} \varphi_{3}\left(t_{3}\right) \varphi_{1}\left(t_{1}\right) \varphi_{2}\left(t_{2}\right) .
$$

Consider for instance the third integral: we write it as

$$
\int_{1>t_{\tau(1)}>t_{\tau(2)}>t_{\tau(3)}>0} \varphi_{\tau(1)}\left(t_{\tau(1)}\right) \varphi_{\tau(2)}\left(t_{\tau(2)}\right) \varphi_{\tau(3)}\left(t_{\tau(3)}\right) .
$$

The permutation τ of $\{1,2,3\}$ is $\tau(1)=3, \tau(2)=1, \tau(3)=2$, and it is one of the three permutations of \mathfrak{S}_{3} which is of the form σ^{-1} where $\sigma(1)<\sigma(2)$.

The shuffle $ш$ will be defined in $\S 7.3$ so that the next lemma holds:
Lemma 29. Let $\varphi_{1}, \ldots, \varphi_{p+q}$ be differential forms with $p \geq 0$ and $q \geq 0$. Then

$$
\int_{0}^{1} \varphi_{1} \cdots \varphi_{p} \int_{0}^{1} \varphi_{p+1} \cdots \varphi_{p+q}=\int_{0}^{1} \varphi_{1} \cdots \varphi_{p} \amalg \varphi_{p+1} \cdots \varphi_{p+q}
$$

Proof. Define $\Delta_{p, q}^{\prime}$ as the subset of $\Delta_{p} \times \Delta_{q}$ of those elements $\left(z_{1}, \ldots, z_{p+q}\right)$ for which we have $z_{i} \neq z_{j}$ for $1 \leq i \leq p<j \leq p+q$. Hence

$$
\int_{0}^{1} \varphi_{1} \cdots \varphi_{p} \int_{0}^{1} \varphi_{p+1} \cdots \varphi_{p+q}=\int_{\Delta_{p} \times \Delta_{q}} \varphi_{1} \cdots \varphi_{p+q}=\int_{\Delta_{p, q}^{\prime}} \varphi_{1} \cdots \varphi_{p+q}
$$

where $\Delta_{p, q}^{\prime}$ is the disjoint union of the subsets $\Delta_{p, q}^{\sigma}$ defined by

$$
\Delta_{p, q}^{\sigma}=\left\{\left(t_{1}, \ldots, t_{p+q}\right) ; 1>t_{\sigma^{-1}(1)}>\cdots>t_{\sigma^{-1}(p+q)}>0\right\}
$$

for σ running over the set $\mathfrak{S}_{p, q}$ of permutations of $\{1, \ldots, p+q\}$ satisfying

$$
\sigma(1)<\sigma(2)<\cdots<\sigma(p) \quad \text { and } \quad \sigma(p+1)<\sigma(p+2)<\cdots<\sigma(p+q)
$$

Hence

$$
\int_{\Delta_{p, q}^{\prime}} \varphi_{1} \cdots \varphi_{p+q}=\sum_{\sigma \in \mathfrak{S}_{p, q}} \int_{0}^{1} \varphi_{\sigma^{-1}(1)} \cdots \varphi_{\sigma^{-1}(p+q)} .
$$

Lemma 29 follows if we define the shuffle so that

$$
\sum_{\sigma \in \mathfrak{S}_{p, q}} \varphi_{\sigma^{-1}(1)} \cdots \varphi_{\sigma^{-1}(p+q)}=\varphi_{1} \cdots \varphi_{p} \amalg \varphi_{p+1} \cdots \varphi_{p+q}
$$

7.3 The shuffle $ш$ and the shuffle Algebra $\mathfrak{H}_{\text {II }}$

Let X be a set and K a field. On $K\langle X\rangle$ we define the shuffle product as follows. On the words, the map $ш: X^{*} \times X^{*} \rightarrow \mathfrak{H}$ is defined by the formula

$$
\left(x_{1} \cdots x_{p}\right) \amalg\left(x_{p+1} \cdots x_{p+q}\right)=\sum_{\sigma \in \mathfrak{S}_{p, q}} x_{\sigma^{-1}(1)} \cdots x_{\sigma^{-1}(p+q)}
$$

where $\mathfrak{S}_{p, q}$ denotes the set of permutation σ on $\{1, \ldots, p+q\}$ satisfying

$$
\sigma(1)<\sigma(2)<\cdots<\sigma(p) \quad \text { and } \quad \sigma(p+1)<\sigma(p+2)<\cdots<\sigma(p+q)
$$

This set $\mathfrak{S}_{p, q}$ has $(p+q)!/ p!q!$ elements; if $(p, q) \neq(0,0)$, it is the disjoint union of two subsets, the first one with $(p-1+q)!/(p-1)!q$! elements consists of those σ for which $\sigma(1)=1$, and the second one with $(p+q-1)!/ p!(q-1)$! elements consists of those σ for which $\sigma(p+1)=1$.

Write $y_{i}=x_{\sigma^{-1}(i)}$, so that $x_{j}=y_{\sigma(j)}$ for $1 \leq i \leq p+q$ and $1 \leq j \leq$ $p+q$. The letters x_{1}, \ldots, x_{p+q} and y_{1}, \ldots, y_{p+q} are the same, only the order may differ. However x_{1}, \ldots, x_{p} (which is the same as $y_{\sigma(1)}, \ldots, y_{\sigma(p)}$) occur in this order in y_{1}, \ldots, y_{p+q}, and so do x_{p+1}, \ldots, x_{p+q} (which is the same as $\left.y_{\sigma(p+1)}, \ldots, y_{\sigma(p+q)}\right)$.

Accordingly, the previous definition of $ш: X^{*} \times X^{*} \rightarrow \mathfrak{H}$ is equivalent to the following inductive one:

$$
e ш w=w ш e=w \quad \text { for any } w \in X^{*},
$$

and

$$
(x u)_{\amalg}(y v)=x(u \amalg(y v))+y\left((x u)_{\amalg v)}\right)
$$

for x and y in X (letters), u and v in X^{*} (words).
Example. For k and ℓ non-negative integers and $x \in X$,

$$
x^{k} \amalg x^{\ell}=\frac{(k+\ell)!}{k!\ell!} x^{k+\ell} .
$$

From

$$
\mathfrak{S}_{2,2}=\{(1) ;(2,3) ;(2,4,3) ;(1,2,3) ;(1,2,4,3) ;(1,3)(2,4)\}
$$

one deduces
$x_{1} x_{2} ш x_{3} x_{4}=x_{1} x_{2} x_{3} x_{4}+x_{1} x_{3} x_{2} x_{4}+x_{1} x_{3} x_{4} x_{2}+x_{3} x_{1} x_{2} x_{4}+x_{3} x_{1} x_{4} x_{2}+x_{3} x_{4} x_{1} x_{2}$,
hence

$$
x_{0} x_{1} ш x_{0} x_{1}=2 x_{0} x_{1} x_{0} x_{1}+4 x_{0}^{2} x_{1}^{2} .
$$

In the same way the relation

$$
x_{0} x_{1} ш x_{0}^{2} x_{1}=x_{0} x_{1} x_{0}^{2} x_{1}+3 x_{0}^{2} x_{1} x_{0} x_{1}+6 x_{0}^{3} x_{1}^{2}
$$

is easily checked by computing more generally $x_{0} x_{1} ш x_{2} x_{3} x_{4}$ as a sum of $6!/(2!3!=$ 10 terms.

Notice that the shuffle product of two words is most often not a word but a polynomial in $K\langle X\rangle$. We extend the definition of $ш: X^{*} \times X^{*} \rightarrow \mathfrak{H}$ to ш: $\mathfrak{H} \times \mathfrak{H} \rightarrow \mathfrak{H}$ by distributivity with respect to addition:

$$
\sum_{u \in X^{*}}(S \mid u) u ш \sum_{v \in X^{*}}(T \mid v) v=\sum_{u \in X^{*}} \sum_{v \in X^{*}}(S \mid u)(T \mid v) u ш v .
$$

One checks that the shuffle mendows $K\langle X\rangle$ with a structure of commutative K-algebra.

From now on we consider only the special case $X=\left\{x_{0}, x_{1}\right\}$. The set $K\langle X\rangle$ with the shuffle law m is a commutative algebra which will be denoted by $\mathfrak{H}_{\mathrm{II}}$. Since \mathfrak{H}^{1} as well as \mathfrak{H}^{0} are stable under m, they define subalgebras

$$
\mathfrak{H}_{\mathrm{II}}^{0} \subset \mathfrak{H}_{\mathrm{II}}^{1} \subset \mathfrak{H}_{\mathrm{II}} .
$$

Since

$$
\widehat{\zeta}\left(y_{\underline{s}}\right) \widehat{\zeta}\left(y_{\underline{s}^{\prime}}\right)=\widehat{\zeta}\left(y_{\underline{s}} \amalg y_{\underline{s}^{\prime}}\right),
$$

we deduce:
Theorem 30. The map

$$
\widehat{\zeta}: \mathfrak{H}_{\mathrm{II}}^{0} \longrightarrow \mathbf{R}
$$

is a homomorphism of commutative algebras.

8 Product of series and the harmonic algebra

8.1 The stuffle \star and the harmonic algebra \mathfrak{H}_{\star}

There is another shuffle-like law on \mathfrak{H}, called the harmonic product by M. Hoffman and stuffle by other authors, denoted with a star, which also gives rise to subalgebras

$$
\mathfrak{H}_{\star}^{0} \subset \mathfrak{H}_{\star}^{1} \subset \mathfrak{H}_{\star} .
$$

The starting point is the observation that the product of two multizeta series is a linear combination of multizeta series. Indeed, the cartesian product

$$
\left\{\left(n_{1}, \ldots, n_{k}\right) ; n_{1}>\cdots>n_{k}\right\} \times\left\{\left(n_{1}^{\prime}, \ldots, n_{k^{\prime}}^{\prime}\right) ; n_{1}^{\prime}>\cdots>n_{k^{\prime}}^{\prime}\right\}
$$

breaks into a disjoint union of subsets of the form

$$
\left\{\left(n_{1}^{\prime \prime}, \ldots, n_{k^{\prime \prime}}^{\prime \prime}\right) ; n_{1}^{\prime \prime}>\cdots>n_{k^{\prime \prime}}^{\prime \prime}\right\}
$$

with each $k^{\prime \prime}$ satisfying $\max \left\{k, k^{\prime}\right\} k^{\prime \prime} \leq k+k^{\prime}$. The simplest example is $\zeta(2)^{2}=$ $2 \zeta(2,2)+\zeta(4)$., a special case of Nielsen Reflexion Formula already seen in $\S 1.2$.

We write this as follows:

$$
\begin{equation*}
y_{\underline{s}} \star y_{\underline{s}^{\prime}}=\sum_{\underline{s}^{\prime \prime}} y_{\underline{s}^{\prime \prime}}, \tag{31}
\end{equation*}
$$

where $\underline{s}^{\prime \prime}$ runs over the tuples $\left(s_{1}^{\prime \prime}, \ldots, s_{k^{\prime \prime}}^{\prime \prime}\right)$ obtained from $\underline{s}=\left(s_{1}, \ldots, s_{k}\right)$ and $\underline{s}^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{k^{\prime}}^{\prime}\right)$ by inserting, in all possible ways, some 0 in the string $\left(s_{1}, \ldots, s_{k}\right)$ as well as in the string $\left(s_{1}^{\prime}, \ldots, s_{k^{\prime}}^{\prime}\right)$ (including in front and at the end), so that the new strings have the same length $k^{\prime \prime}$, with $\max \left\{k, k^{\prime}\right\} \leq k^{\prime \prime} \leq$ $k+k^{\prime}$, and by adding the two sequences term by term. Here is an example:

$$
\begin{array}{cccccccc}
\underline{s} & s_{1} & s_{2} & 0 & s_{3} & s_{4} & \cdots & 0 \\
\underline{s}^{\prime} & 0 & s_{1}^{\prime} & s_{2}^{\prime} & 0 & s_{3}^{\prime} & \cdots & s_{k^{\prime}}^{\prime} \\
\underline{s}^{\prime \prime} & s_{1} & s_{2}+s_{1}^{\prime} & s_{2}^{\prime} & s_{3} & s_{4}+s_{3}^{\prime} & \cdots & s_{k^{\prime}}^{\prime} .
\end{array}
$$

Notice that the weight of the last string (sum of the $s_{j}^{\prime \prime}$) is the sum of the weight of \underline{s} and the weight of \underline{s}^{\prime}.

More precisely, the law \star on \mathfrak{H} is defined as follows. First on X^{*}, the map $\star: X^{*} \times X^{*} \rightarrow \mathfrak{H}$ is defined by induction, starting with

$$
x_{0}^{n} \star w=w \star x_{0}^{n}=w x_{0}^{n}
$$

for any $w \in X^{*}$ and any $n \geq 0$ (for $n=0$ it means $e \star w=w \star e=w$ for all $w \in X^{*}$), and then

$$
\left(y_{s} u\right) \star\left(y_{t} v\right)=y_{s}\left(u \star\left(y_{t} v\right)\right)+y_{t}\left(\left(y_{s} u\right) \star v\right)+y_{s+t}(u \star v)
$$

for u and v in X^{*}, s and t positive integers.
We shall not use so many parentheses later: in a formula where there are both concatenation products and either shuffle of star products, we agree that concatenation is always performed first, unless parentheses impose another priority:

$$
y_{s} u \star y_{t} v=y_{s}\left(u \star y_{t} v\right)+y_{t}\left(y_{s} u \star v\right)+y_{s+t}(u \star v)
$$

Again this law is extended to all of \mathfrak{H} by distributivity with respect to addition:

$$
\sum_{u \in X^{*}}(S \mid u) u \star \sum_{v \in X^{*}}(T \mid v) v=\sum_{u \in X^{*}} \sum_{v \in X^{*}}(S \mid u)(T \mid v) u \star v .
$$

Remark. From the definition (by induction on the length of uv) one deduces

$$
\left(u x_{0}^{m}\right) \star\left(v x_{0}^{n}\right)=(u \star v) x_{0}^{m+n}
$$

for $m \geq 0, u$ and v in X^{*}.

Example. .

$$
y_{s}^{\star 3}=y_{s} \star y_{s} \star y_{s}=6 y_{s}^{3}+3 y_{s} y_{2 s}+3 y_{2 s} y_{2}+y_{3 s} .
$$

The set $K\langle X\rangle$ with the harmonic law \star is a commutative algebra which will be denoted by \mathfrak{H}_{\star}. Since \mathfrak{H}^{1} as well as \mathfrak{H}^{0} are stable under \star, they define subalgebras

$$
\mathfrak{H}_{\star}^{0} \subset \mathfrak{H}_{\star}^{1} \subset \mathfrak{H}_{\star} .
$$

Since

$$
\widehat{\zeta}\left(y_{\underline{s}}\right) \widehat{\zeta}\left(y_{\underline{s}^{\prime}}\right)=\widehat{\zeta}\left(y_{\underline{s}} \star y_{\underline{s}^{\prime}}\right),
$$

we deduce:
Theorem 32. The map

$$
\widehat{\zeta}: \mathfrak{H}_{\star}^{0} \longrightarrow \mathbf{R}
$$

is a homomorphism of commutative algebras.

8.2 Regularized double shuffle relations

As a consequence of theorems 30 and 32 , the kernel of $\widehat{\zeta}$ contains all elements $w ш w^{\prime}-w \star w^{\prime}$ for w and w^{\prime} in \mathfrak{H}^{0} : indeed

$$
\widehat{\zeta}\left(w ш w^{\prime}\right)=\widehat{\zeta}(w) \widehat{\zeta}\left(w^{\prime}\right)=\widehat{\zeta}\left(w \star w^{\prime}\right), \quad \text { hence } \quad \widehat{\zeta}\left(w ш w^{\prime}-w \star w^{\prime}\right)=0
$$

However the relation $\zeta(2,1)=\zeta(3)$ (due to Euler) is not a consequence of these relations, but one may derive it in a formal way as follows.

Consider

$$
y_{1} ш y_{2}=x_{1} ш x_{0} x_{1}=2 x_{0}^{2} x_{1}+x_{1} x_{0} x_{1}=2 y_{2} y_{1}+y_{1} y_{2}
$$

and

$$
y_{1} \star y_{2}=y_{1} y_{2}+y_{2} y_{1}+y_{3} .
$$

They are not in \mathfrak{H}^{0}, but their difference

$$
y_{1} ш y_{2}-y_{1} \star y_{2}=y_{2} y_{1}-y_{3}
$$

is in \mathfrak{H}^{0}, and Euler's relation says that this difference is in the kernel of $\widehat{\zeta}$. This is the simplest example of the so-called Regularized double shuffle relations.

