Eighth lecture: April 25, 2011

9 The structure of the shuffle and harmonic algebras

We shall see that the shuffle and harmonic algebras are polynomial algebras in the Lyndon words.

Consider the lexicographic order on X^{*} with $x_{0}<x_{1}$ and denote by \mathcal{L} the set of Lyndon words (see $\S 3$). We have seen that x_{0} is the only Lyndon word which is not in $\mathfrak{H}_{\mathrm{I}}^{1}$, while x_{0} and x_{1} are the only Lyndon words which are not in $\mathfrak{H}_{\text {III }}^{0}$.

For instance, there are $1+2+2^{2}+2^{3}=15$ words of weight ≤ 3, and 5 among them are Lyndon words:

$$
x_{0}<x_{0}^{2} x_{1}<x_{0} x_{1}<x_{0} x_{1}^{2}<x_{1} .
$$

We introduce 5 variables

$$
T_{10}, T_{21}, T_{11}, T_{12}, T_{01},
$$

where $T_{i j}$ corresponds to $x_{0}^{i} x_{1}^{j}$.

9.1 Shuffle

The structure of the commutative algebra $\mathfrak{H}_{\text {II }}$ is given by Radford Theorem.
Theorem 33. The three shuffle algebras are (commutative) polynomial algebras

$$
\mathfrak{H}_{\mathrm{II}}=K[\mathcal{L}]_{\mathrm{II}}, \quad \mathfrak{H}_{\mathrm{II}}^{1}=K\left[\mathcal{L} \backslash\left\{x_{0}\right\}\right]_{\mathrm{II}} \quad \text { and } \quad \mathfrak{H}_{\mathrm{II}}^{0}=K\left[\mathcal{L} \backslash\left\{x_{0}, x_{1}\right\}\right]_{\mathrm{m}} .
$$

We write the 10 non-Lyndon words of weight ≤ 3 as polynomials in these

Lyndon words as follows:

$$
\begin{aligned}
& e=e, \\
& x_{0}^{2}=\frac{1}{2} x_{0} ш x_{0}=\frac{1}{2} T_{10}^{2}, \\
& x_{0}^{3}=\frac{1}{3} x_{0} ш x_{0} ш x_{0}=\frac{1}{3} T_{10}^{3}, \\
& x_{0} x_{1} x_{0}=x_{0} ш x_{0} x_{1}-2 x_{0}^{2} x_{1}=T_{10} T_{11}-2 T_{21}, \\
& x_{1} x_{0}=x_{0} ш x_{1}-x_{0} x_{1}=T_{10} T_{01}-T_{11}, \\
& x_{1} x_{0}^{2}=\frac{1}{2} x_{0} \amalg x_{0} \amalg x_{1}-x_{0} \amalg x_{0} x_{1}+x_{0}^{2} x_{1}=\frac{1}{2} T_{10}^{2} T_{01}-T_{10} T_{11}+T_{21}, \\
& x_{1} x_{0} x_{1}=x_{0} x_{1} ш x_{1}-2 x_{0} x_{1}^{2}=T_{11} T_{01}-2 T_{12}, \\
& x_{1}^{2}=\frac{1}{2} x_{1} ш x_{1}=\frac{1}{2} T_{01}^{2}, \\
& x_{1}^{2} x_{0}=\frac{1}{2} x_{0} ш x_{1} \amalg x_{1}-x_{0} x_{1} ш x_{1}+x_{0} x_{1}^{2}=\frac{1}{2} T_{10} T_{01}^{2}-T_{11} T_{01}+T_{12}, \\
& x_{1}^{3}=\frac{1}{3} x_{1} ш x_{1} ш x_{1}=\frac{1}{3} T_{01}^{3} .
\end{aligned}
$$

Corollary 34. We have

$$
\mathfrak{H}_{\mathrm{II}}=\mathfrak{H}_{\mathrm{II}}^{1}\left[x_{0}\right]_{\mathrm{II}}=\mathfrak{H}_{\mathrm{II}}^{0}\left[x_{0}, x_{1}\right]_{\mathrm{II}} \quad \text { and } \quad \mathfrak{H}_{\mathrm{II}}^{1}=\mathfrak{H}_{\mathrm{II}}^{0}\left[x_{1}\right]_{\mathrm{II}}
$$

9.2 Harmonic algebra

Hoffman's Theorem gives the structure of the harmonic algebra \mathfrak{H}_{\star} :
Theorem 35. The harmonic algebras are polynomial algebras on Lyndon words:

$$
\mathfrak{H}_{\star}=K[\mathcal{L}]_{\star}, \quad \mathfrak{H}_{\star}^{0}=K\left[\mathcal{L} \backslash\left\{x_{0}, x_{1}\right\}\right]_{\star} \quad \text { and } \quad \mathfrak{H}_{\star}^{1}=K\left[\mathcal{L} \backslash\left\{x_{0}, x_{1}\right\}\right]_{\star} .
$$

For instance, the 10 non-Lyndon words of weight ≤ 3 are polynomials in the

5 Lyndon words as follows:

$$
\begin{aligned}
& e=e, \\
& x_{0}^{2}=x_{0} \star x_{0}=T_{10}^{2}, \\
& x_{0}^{3}=x_{0} \star x_{0} \star x_{0}=T_{10}^{3}, \\
& x_{0} x_{1} x_{0}=x_{0} \star x_{0} x_{1}=T_{10} T_{11}, \\
& x_{1} x_{0}=x_{0} \star x_{1}=T_{10} T_{01}, \\
& x_{1} x_{0}^{2}=x_{0} \star x_{0} \star x_{1}=T_{10}^{2} T_{01}, \\
& x_{1} x_{0} x_{1}=x_{0} x_{1} \star x_{1}-x_{0}^{2} x_{1}-x_{0} x_{1}^{2}=T_{11} T_{01}-T_{21}-T_{12}, \\
& x_{1}^{2}=\frac{1}{2} x_{1} \star x_{1}-\frac{1}{2} x_{0} x_{1}=\frac{1}{2} T_{01}^{2}-\frac{1}{2} T_{11}, \\
& x_{1}^{2} x_{0}=\frac{1}{2} x_{0} \star x_{1} \star x_{1}-\frac{1}{2} x_{0} \star x_{0} x_{1}=\frac{1}{2} T_{10} T_{01}^{2}-\frac{1}{2} T_{10} T_{11}, \\
& x_{1}^{3}=\frac{1}{6} x_{1} \star x_{1} \star x_{1}-\frac{1}{2} x_{0} x_{1} \star x_{1}+\frac{1}{3} x_{0}^{2} x_{1}=\frac{1}{6} T_{01}^{3}-\frac{1}{2} T_{11} T_{01}+\frac{1}{3} T_{21} .
\end{aligned}
$$

In the same way as Corollary 34 follows from Theorem 33, we deduce from Theorem 35:

Corollary 36. We have

$$
\mathfrak{H}_{\star}=\mathfrak{H}_{\star}^{1}\left[x_{0}\right]_{\star}=\mathfrak{H}_{\star}^{0}\left[x_{0}, x_{1}\right]_{\star} \quad \text { and } \quad \mathfrak{H}_{\star}^{1}=\mathfrak{H}_{\star}^{0}\left[x_{1}\right]_{\star} .
$$

Remark. Consider the diagram

The horizontal maps are just the identitication of $\mathfrak{H}_{\text {II }}$ with $K[\mathcal{L}]_{\text {II }}$ and of $\mathfrak{H}_{\text {* }}$ with $K[\mathcal{L}]_{\star}$. The vertical map f is the identity map on \mathfrak{H}, since the algebras $\mathfrak{H}_{\text {II }}$ and \mathfrak{H}_{\star} have the same underlying set \mathfrak{H} (only the law differs). But the map g which makes the diagram commute is not a morphism of algebras: it maps each Lyndon word on itself, but consider, for instance, the image of the word x_{0}^{2}, as a polynomial in $K[\mathcal{L}]_{\text {II }}$,

$$
x_{0}^{2}=(1 / 2) x_{0} \amalg x_{0}=(1 / 2) x_{0}^{\amalg 2},
$$

but as a polynomial in $K[\mathcal{L}]_{\star}$,

$$
x_{0}^{2}=x_{0} \star x_{0}=x_{0}^{\star 2},
$$

hence $g\left(T_{10}^{2}\right)=2 T_{10}^{2}$.

10 Regularized double shuffle relations

10.1 Hoffman standard relations

The relation $\zeta(2,1)=\zeta(3)$ is the easiest example of a whole class of linear relations among MZV.

For any word $w \in X^{*}$, each of $x_{1} \star x_{0} w x_{1}$ and $x_{1} ш x_{0} w x_{1}$ is the sum of $x_{1} x_{0} w x_{1}$ with other words in $x_{0} X^{*} x_{1}$ (i.e. convergent words):

$$
x_{1} \amalg w-x_{1} w \in \mathfrak{H}^{0}, \quad x_{1} \star w-x_{1} w \in \mathfrak{H}^{0},
$$

Hence

$$
x_{1} ш w-x_{1} \star w \in \mathfrak{H}^{0} .
$$

It turns out that these elements $x_{1} ш w-x_{1} \star w$ are in the kernel of $\widehat{\zeta}: \mathfrak{H}^{0} \rightarrow \mathbf{R}$.
Proposition 37. For $w \in \mathfrak{H}^{0}$,

$$
\widehat{\zeta}\left(x_{1} \star w-x_{1} ш w\right)=0 .
$$

Since $x_{1} ш e=x_{1} \star e=e$, these relations are can be written in an equivalent way

$$
\widehat{\zeta}\left(x_{1} \star y_{\underline{s}}-x_{1} \amalg y_{\underline{s}}\right)=0 \quad \text { whenever } s_{1} \geq 2
$$

They are called Hoffman standard relations between multiple zeta values.
Example. Writing

$$
x_{1} \star\left(x_{0}^{s-1} x_{1}\right)=y_{1} \star y_{s}=y_{1} y_{s}+y_{s} y_{1}+y_{s+1}
$$

and

$$
x_{1} \amalg\left(x_{0}^{s-1} x_{1}\right)=x_{1} x_{0}^{s-1} x_{1}+x_{0}\left(x_{1} ш x_{0}^{s-2} x_{1}\right)=\sum_{\nu=1}^{s} y_{\nu} y_{s+1-\nu}+y_{s} y_{1},
$$

we deduce

$$
x_{1} \star\left(x_{0}^{s-1} x_{1}\right)-x_{1} \amalg\left(x_{0}^{s-1} x_{1}\right)=x_{0}^{s} x_{1}-\sum_{\nu=1}^{s} x_{0}^{\nu-1} x_{1} x_{0}^{s-\nu} x_{1},
$$

hence

$$
\zeta(p)=\sum_{\substack{s+s^{\prime}=p \\ s \geq 2, s^{\prime} \geq 1}} \zeta\left(s, s^{\prime}\right) .
$$

Remark. As we have seen, the word

$$
x_{1} \star x_{1}-x_{1} ш x_{1}=x_{0} x_{1}
$$

is convergent, but

$$
\widehat{\zeta}\left(x_{1} \star x_{1}-x_{1} ш x_{1}\right)=\zeta(2) \neq 0
$$

On the other hand a word like

$$
x_{1}^{2} \star x_{0} x_{1}-x_{1}^{2} ш x_{0} x_{1}=x_{1} x_{0}^{2} x_{1}+x_{0}^{2} x_{1}^{2}-x_{1} x_{0} x_{1}^{2}-2 x_{0} x_{1}^{3}
$$

is not convergent; also the "convergent part" of this word in the concatenation algebra \mathfrak{H}, namely $x_{0}^{2} x_{1}^{2}-2 x_{0} x_{1}^{3}=y_{3} y_{1}-2 y_{2} y_{1}^{2}$, does not belong to the kernel of $\bar{\zeta}$:

$$
\zeta(3,1)=\frac{1}{4} \zeta(4), \quad \zeta(2,1,1)=\zeta(4) .
$$

We shall see (theorem 40) that the convergent part in the shuffle algebra $\mathfrak{H}_{\text {II }}$ of a word of the form $w ш w_{0}-w \star w_{0}$ for $w \in \mathfrak{H}^{1}$ and $w_{0} \in \mathfrak{H}^{0}$ is always in the kernel of $\widehat{\zeta}$.

Hoffman's operator $d_{1}: \mathfrak{H} \rightarrow \mathfrak{H}$ is defined by

$$
\delta(w)=x_{1} \star w-x_{1} ш w .
$$

For $w \in \mathfrak{H}^{0}$, we have $d_{1}(w) \in \mathfrak{H}^{0}$ and the Hoffman standard relations (37) mean that it satisfies $d_{1}\left(\mathfrak{H}^{0}\right) \subset \operatorname{ker} \widehat{\zeta}$.

10.2 Ihara-Kaneko

There are further similar linear relations between MZV arising from regularized double shuffle relations

Recall Corollaries 34 and 36 of Radford and Hoffman concerning the structures of the algebras $\mathfrak{H}_{\text {II }}$ and \mathfrak{H}_{\star} respectively (we take here for ground field K the field \mathbf{R} of real numbers). From

$$
\mathfrak{H}_{\mathrm{II}}^{1}=\mathfrak{H}_{\mathrm{II}}^{0}\left[x_{1}\right]_{\mathrm{II}} \quad \text { and } \quad \mathfrak{H}_{\star}^{1}=\mathfrak{H}_{\star}^{0}\left[x_{1}\right]_{\star}
$$

we deduce that there are two uniquely determined algebra morphisms

$$
\widehat{Z}_{\mathrm{II}}: \mathfrak{H}_{\star}^{1} \longrightarrow \mathbf{R}[X] \quad \text { and } \quad \widehat{Z}_{\star}: \mathfrak{H}_{\mathrm{II}}^{1} \longrightarrow \mathbf{R}[T]
$$

which extend $\widehat{\zeta}$ and map x_{1} to X and T respectively: for $a_{i} \in \mathfrak{H}^{0}$,

$$
\widehat{Z}_{\mathrm{II}}\left(\sum_{i} a_{i} \amalg x_{1}^{\mathrm{\Pi} i}\right)=\sum_{i} \widehat{\zeta}\left(a_{i}\right) X^{i} \quad \text { and } \quad \widehat{Z}_{\star}\left(\sum_{i} a_{i} \star x_{1}^{\star i}\right)=\sum_{i} \widehat{\zeta}\left(a_{i}\right) T^{i} .
$$

Proposition 38. There is a \mathbf{R}-linear isomorphism $\varrho: \mathbf{R}[T] \rightarrow \mathbf{R}[X]$ which makes commutative the following diagram:

$$
\begin{array}{cccc}
& & & \mathbf{R}[X] \\
\widehat{Z}_{\text {III }} & \nearrow & \\
\mathfrak{H}^{1} & & & \uparrow \varrho \\
& & & \\
\widehat{Z}_{\star} & \searrow & \\
& & \mathbf{R}[T]
\end{array}
$$

The kernel of $\widehat{\zeta}$ is a subset of \mathfrak{H}^{0} which is an ideal of the algebra $\mathfrak{H}_{\text {III }}^{0}$ and also of the algebra \mathfrak{H}_{\star}^{0}. One can deduce from the existence of a bijective map ϱ as in proposition 38 that $\operatorname{ker} \widehat{\zeta}$ generates the same ideal in both algebras $\mathfrak{H}_{\text {III }}^{1}$ and \mathfrak{H}_{\star}^{1}.

Explicit formulae for ϱ and its inverse ϱ^{-1} are given by means of the generating series

$$
\begin{equation*}
\sum_{\ell \geq 0} \varrho\left(T^{\ell}\right) \frac{t^{\ell}}{\ell!}=\exp \left(X t+\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n)}{n} t^{n}\right) \tag{39}
\end{equation*}
$$

and

$$
\sum_{\ell \geq 0} \varrho^{-1}\left(X^{\ell}\right) \frac{t^{\ell}}{\ell!}=\exp \left(T t-\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n)}{n} t^{n}\right) .
$$

For instance

$$
\begin{gathered}
\varrho\left(T^{0}\right)=1, \quad \varrho(T)=X, \quad \varrho\left(T^{2}\right)=X^{2}+\zeta(2), \quad \varrho\left(T^{3}\right)=X^{3}+3 \zeta(2) X-2 \zeta(3), \\
\varrho\left(T^{4}\right)=X^{4}+6 \zeta(2) X^{2}-8 \zeta(3) X+\frac{27}{2} \zeta(4) .
\end{gathered}
$$

It is instructive to compare the right hand side in (39) with the formula giving the expansion of the logarithm of Euler Gamma function:

$$
\Gamma(1+t)=\exp \left(-\gamma t+\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n)}{n} t^{n}\right) .
$$

Also, ϱ may be seen as the differential operator of infinite order

$$
\exp \left(\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n)}{n}\left(\frac{\partial}{\partial T}\right)^{n}\right)
$$

(consider the image of $e^{t T}$).

10.3 Shuffle regularization of the divergent multiple zeta values, following Ihara and Kaneko

Recall that $\mathfrak{H}_{\text {II }}=\mathfrak{H}^{0}\left[x_{0}, x_{1}\right]_{\text {II }}$. Denote by reg II the \mathbf{Q}-linear map $\mathfrak{H} \rightarrow \mathfrak{H}^{0}$ which maps $w \in \mathfrak{H}$ onto its constant term when w is written as a polynomial in x_{0}, x_{1} in the shuffle algebra $\mathfrak{H}^{0}\left[x_{0}, x_{1}\right]_{\text {II }}$. Then reg ${ }_{\text {II }}$ is a morphism of algebras $\mathfrak{H}_{\mathrm{II}} \rightarrow \mathfrak{H}_{\mathrm{II}}^{0}$. Clearly for $w \in \mathfrak{H}^{0}$ we have

$$
\operatorname{reg}_{\mathrm{II}}(w)=w
$$

Here are the regularized double shuffle relations of Ihara and Kaneko.
Theorem 40. For $w \in \mathfrak{H}^{1}$ and $w_{0} \in \mathfrak{H}^{0}$,

$$
\operatorname{reg}_{\text {II }}\left(w ш w_{0}-w \star w_{0}\right) \in \operatorname{ker} \widehat{\zeta} .
$$

Define a shuffle regularized extension of $\widehat{\zeta}: \mathfrak{H}^{0} \rightarrow \mathbf{R}$ as the map $\widehat{\zeta}_{\text {II }}: \mathfrak{H} \rightarrow \mathbf{R}$ defined by

$$
\widehat{\zeta}_{\mathrm{II}}=\widehat{\zeta} \circ \mathrm{reg}_{\mathrm{II}} .
$$

Hence $\widehat{\zeta}_{\text {III }}$ is nothing else than the composite of $\widehat{Z}_{\text {III }}$ with the specialization map $\mathbf{R}[X] \rightarrow \mathbf{R}$ which sends X to 0 .

With this definition of $\widehat{\zeta}_{\mathrm{II}}$ Theorem 40 can be written

$$
\widehat{\zeta}_{\text {III }}\left(w ш w_{0}-w \star w_{0}\right)=0
$$

for any $w \in \mathfrak{H}^{1}$ and $w_{0} \in \mathfrak{H}^{0}$.
Define a map $D_{\mathrm{II}}: \mathfrak{H} \longrightarrow \mathfrak{H}$ by $D_{\mathrm{II}}(e)=0$ and

$$
D_{\text {III }}\left(x_{\epsilon_{1}} x_{\epsilon_{2}} \cdots x_{\epsilon_{p}}\right)= \begin{cases}0 & \text { if } \epsilon_{1}=0 \\ x_{\epsilon_{2}} \cdots x_{\epsilon_{p}} & \text { if } \epsilon_{1}=1\end{cases}
$$

For instance, for $m \geq 0$ and for $w_{0} \in \mathfrak{H}^{0}$,

$$
D_{\mathrm{II}}^{i}\left(x_{1}^{m} w_{0}\right)= \begin{cases}x_{1}^{m-i} w_{0} & \text { for } 0 \leq i \leq m \\ 0 & \text { for } i>m\end{cases}
$$

One checks that $D_{\text {III }}$ is a derivation on the algebra $\mathfrak{H}_{\mathrm{II}}$. Its kernel contains x_{0}^{m} and $\mathfrak{H}_{\mathrm{II}}^{0}$. There is a Taylor expansion for the elements of $\mathfrak{H}_{\mathrm{II}}^{1}$:

$$
u=\sum_{i \geq 0} \frac{1}{i!} \operatorname{reg}_{\mathrm{II}}\left(D_{\mathrm{II}}^{i} u\right) \mathrm{m} y_{\mathrm{I}}^{\mathrm{m} i}, \quad \text { hence } \quad \widehat{Z}_{\mathrm{II}}(u)=\sum_{i \geq 0} \frac{1}{i!} \mathrm{reg}_{\mathrm{II}}\left(D_{\mathrm{II}}^{i}(u) X^{i},\right.
$$

and

$$
\operatorname{reg}_{\mathrm{\amalg}}(u)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} y_{1}^{\amalg i} \amalg D_{\mathrm{\amalg}}^{i} u
$$

For $w_{0} \in \mathfrak{H}^{0}$ with $w_{0}=x_{0} w$ (with $w \in \mathfrak{H}^{1}$) and for $m \geq 0$, we have

$$
\operatorname{reg}_{\text {ШI }}\left(y_{1}^{m} w_{0}\right)=(-1)^{m} x_{0}\left(w ш y_{1}^{m}\right) .
$$

10.4 Harmonic regularization of the divergent multiple zeta values

There is also a harmonic regularized extension of $\widehat{\zeta}$ by means of the star product. Recall that, according to Hoffman's Corollary $36, \mathfrak{H}_{\star}=\mathfrak{H}_{\star}^{0}\left[x_{0}, x_{1}\right]_{\star}$. Denote by reg $_{\star}$ the Q-linear map $\mathfrak{H} \rightarrow \mathfrak{H}^{0}$ which maps $w \in \mathfrak{H}$ onto its constant term when w is written as a polynomial in x_{0}, x_{1} in the harmonic algebra $\mathfrak{H}_{\star}^{0}\left[x_{0}, x_{1}\right]_{\star}$. Then reg $_{\star}$ is a morphism of algebras $\mathfrak{H}_{\star} \rightarrow \mathfrak{H}_{\star}^{0}$. Clearly for $w \in \mathfrak{H}^{0}$ we have

$$
\operatorname{reg}_{\star}(w)=w
$$

The map $D_{\star}: \mathfrak{H}^{1} \longrightarrow \mathfrak{H}^{1}$ defined by $D_{\star}(e)=0$ and

$$
D_{\star}\left(y_{s_{1}} y_{s_{2}} \cdots y_{s_{k}}\right)= \begin{cases}0 & \text { if } s_{1}=1 \\ y_{s_{2}} \cdots y_{s_{k}} & \text { if } s_{1} \geq 2\end{cases}
$$

is a derivation on the algebra \mathfrak{H}_{\star}^{1} with kernel \mathfrak{H}_{\star}^{0}; there is a Taylor expansion for the elements of \mathfrak{H}_{\star}^{1} :

$$
u=\sum_{i \geq 0} \frac{1}{i!} y_{1}^{\star i} \star \operatorname{reg}_{\star}\left(D_{\star}^{i} u\right), \quad \text { hence } \quad \widehat{Z}_{\star}(u)=\sum_{i \geq 0} \frac{1}{i!} \operatorname{reg}_{\star}\left(D_{\star}^{i} u\right) T^{i},
$$

and

$$
\operatorname{reg}_{\star}(u)=\sum_{i \geq 0} \frac{(-1)^{i}}{i!} y_{1}^{\star i} \star\left(D_{\star}^{i} u\right)
$$

For $w_{0} \in \mathfrak{H}^{0}$ and for $m \geq 0$, we have

$$
\operatorname{reg}_{\star}\left(y_{1}^{m} w_{0}\right)=\sum_{i=0}^{m} \frac{(-1)^{i}}{i!}\left(y_{1}^{m-i} w_{0}\right) \star y_{1}^{i} \text {. }
$$

