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LIDSTONE INTERPOLATION III. SEVERAL VARIABLES

MICHEL WALDSCHMIDT

Dedicated to Damien Roy for his 65-th birthday

Abstract. A polynomial in a single variable is uniquely determined by its

derivatives of even order at 0 and 1. More precisely, such an univariate poly-
nomial can be written and a finite sum of f (2n)(0)Λn(1−z) and f (2n)(1)Λn(z),

(n ≥ 0), where the Λn(z) are the Lidstone polynomials defined by the condi-
tions (

d

dz

)2k

Λn(0) = 0 and

(
d

dz

)2k

Λn(1) = δk,n, k ≥ 0, n ≥ 0.

We generalize this theory to n variables, replacing the two points 0, 1 in C with

n+1 points e0, e1, . . . , en in Cn, where e0 is the origin of Cn and e1, . . . , en the

canonical basis of Cn. By selecting a suitable subset of even order derivatives
at these n+1 points, we show that any polynomial in n variables has a unique

expansion. We obtain generating series for these sequences of polynomials and
we deduce an expansion for entire functions in Cn of exponential type < π.

We extend to several variables results due to Lidstone (1930), Poritsky (1932),

Whittaker (1934), Schoenberg (1936), Buck (1955). We also show that our
results are, to a certain extent, best possible.

1. The main results

Let n be a positive integer. For z = (z1, . . . , zn) ∈ Cn, ζ = (ζ1, . . . , ζn) ∈ Cn and
t = (t1, . . . , tn) ∈ Nn, we set

|z| = max{|z1|, . . . , |zn|}, ‖z‖ = |z1|+ · · ·+ |zn|, ζz = ζ1z1 + · · ·+ ζnzn,

t! = t1! · · · tn! and zt =

n∏
i=1

ztii .

We also use the notation

Dt =

(
∂

∂z1

)t1
· · ·
(

∂

∂zn

)tn
.

We denote by C[z] the vector space of polynomials in n variables. For D ≥ 0, let
C[z]≤D denote the subspace of polynomials of total degree ≤ D.
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Let (e1, . . . , en) denote the canonical basis of Cn:

ei = (δij)1≤j≤n (i = 1, . . . , n)

where δij is the Kronecker symbol. Further, set e0 = (0, . . . , 0). We denote by 2N
the set of even nonnegative integers.

The following definition will play a main role in this paper.

Definition 1.1. We denote by T the set of (t, i) ∈ Nn×{0, 1, . . . , n} such that ‖t‖
is even and, for i ≥ 1, t1, . . . , ti are even.

The initial step is the following result, which is easy to prove by induction on
the number n of variables – see [6, Proposition 2].

Proposition 1.2. If a polynomial f ∈ C[z] satisfies

(Dtf)(ei) = 0

for all (t, i) ∈ T , then f = 0.

From Proposition 1.2 we will deduce the next result, which is our basis for
interpolation. We use the Kronecker symbol

δτ,t =

{
1 if τ = t,

0 otherwise

and similarly for δij .

Theorem 1.3. For each (t, i) ∈ T , there is a unique polynomial Λt,i ∈ C[z] satis-
fying, for all (τ , j) ∈ T ,

(DτΛt,i)(ej) = δτ,tδij .

The total degree of Λt,i is ≤ ‖t‖+ 1.

Here is the expansion formula for polynomials:

Corollary 1.4. Any polynomial f ∈ C[z] can be expanded in a unique way as a
finite sum

f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z).

We now consider extensions of the unicity result in Proposition 1.2 and of the ex-
pansion formula in Corollary 1.4 from polynomials to entire functions of exponential
type < π.

For r > 0 and for f an analytic function in a domain containing {z ∈ Cn |
‖z‖ ≤ r}, set

‖f‖r = sup
‖z‖=r

|f(z)|.

The order of an entire function f is

%(f) = lim sup
r→∞

log log ‖f‖r
log r

and its exponential type

τ(f) = lim sup
r→∞

log ‖f‖r
r

·

These definitions extend to several variables the definitions of [8, § 7] for two vari-
ables. For instance for ζ ∈ Cn the exponential type of the entire function z 7→ eζz
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is |ζ|. If we were using the norm |z| in place of ‖z‖ in the definition of ‖f‖r, the

order would be the same, but not the exponential type: for eζz it would be ‖ζ‖.
Given an entire function f in Cn and a real number τ ≥ 0, we will say that f

has exponential type ≤ τ in each of the variables if, for any i = 1, . . . , n and any
(z1, . . . , zi−1, zi+1, . . . , zn) ∈ Cn−1, the function zi 7→ f(z1, . . . , zn) has exponential
type ≤ τ :

lim sup
r→∞

1

r
log sup
|zi|≤r

|f(z1, . . . , zn)| ≤ τ.

If an entire function f in Cn has exponential type τ(f) ≤ τ , then f has exponential
type ≤ τ in each of the variables. The converse is not true [8, § 7].

The next result is [6, Proposition 2], where it is proved by induction on the
number of variables:

Proposition 1.5. If an entire function f in Cn of exponential type < π in each of
the variables satisfies (Dtf)(ei) = 0 for all (t, i) ∈ T , then f = 0.

Proposition 1.5 is optimal for two different reasons. Firstly, it does not hold with
a subset T ′ of T when T \ T ′ is infinite, as shown by the next Proposition 1.6.

Proposition 1.6. Let T ′ be a subset of T such that T \ T ′ is infinite. Then there
is an uncountable set of entire functions f of order 0, with Taylor expansion at the
origin having rational coefficients, such that (Dtf)(ei) = 0 for all (t, i) ∈ T ′.

The assumption on T \ T ′ is necessary: for a subset T ′ of T such that T \ T ′
is finite, the only entire functions of exponential type < π in each of the variables
such that (Dtf)(ei) = 0 for all (t, i) ∈ T ′ are the polynomials – this follows from
Proposition 1.5. The proof of Proposition 1.6 is given in § 3.

Before giving the second reason for which Proposition 1.5 is optimal, let us state
the following generalization of Corollary 1.4 to entire functions of exponential type
< π.

Following [2, p. 27], we will say that a series of functions
∑
α aα(z) converges

normally in an open subset Ω of Cn if
∑
α supK |aα(z)| converges for every compact

set K ⊂ Ω. For instance [2, Theorem 2.2.6] an analytic function in a polydisc
{z ∈ Cn | |zj | < rj , j = 1, . . . , n} is the sum of its Taylor expansion at the origin
with normal convergence in this polydisc.

Theorem 1.7. Any entire function f in Cn of exponential type < π can be written
in a unique way as the sum of a series

(1.1) f(z) =
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z)

which is normally convergent in Cn.

The case n = 2 of Theorem 1.7 is Theorem 7.1 of [8].
The proof of Theorem 1.7 (§ 6) is an application of the Laplace transform, once

we prove the special case for the functions fζ(z) = eζz for ζ ∈ Cn with |ζ| < π,

which is the following:

Theorem 1.8. For z ∈ Cn and ζ ∈ Cn with |ζ| < π, we have

eζz =
∑
t∈Nn

(t,0)∈T

Λt,0(z)ζt +

n∑
i=1

eζi
∑
t∈Nn

(t,i)∈T

Λt,i(z)ζ
t,
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where the series in the right hand side are normally convergent in the open set
{(ζ, z) ∈ Cn × Cn | |ζ| < π}.

For the proof of Theorem 1.8, we will produce in (§ 4) explicit formulae for
the multivariate polynomials Λt,i(z) ((t, i) ∈ T ) in C[z], in terms of the classical
Lidstone univariate polynomials Λt,1(z) and Λt,0(z) = Λt,1(1− z) (t ∈ 2N) in C[z]
which we recall in § 2. We will deduce in § 5 explicit generating series for the 2n

families of polynomials Λt,i(z), (t, i) ∈ Tα, where Tα (α ∈ (Z/2Z)n) is a partition
of T ; the parity of the components (t1, . . . , tn) of t for (t, i) ∈ Tα depend only on α.

The second reason for which Proposition 1.5 is optimal is that the upper bound π
for the exponential type is best possible: in § 7 we give the following characterisation
(Corollary 1.10) of the entire functions f in Cn of finite exponential type which
satisfy (Dτf)(ej) = 0 for all (t, i) ∈ T .

Theorem 1.9. Let K be a nonnegative integer. Let f be an entire function in Cn
of finite exponential type ≤ τ with τ < (K + 1)π. Then for z ∈ Cn we have

f(z) =
∑

(t,i)∈T

(Dtf)(ei)gt,i(z) +

K∑
k=1

n∑
i=1

hk,i(z1, . . . , zi−1, zi+1 . . . , zn) sin(kπzi),

where the functions gt,i(z) are entire functions in Cn, the series is normally con-
vergent in Cn and hk,i, (k = 1, 2, . . . ,K, i = 1, . . . , n) are entire functions of n− 1
variables of exponential type ≤ τ .

Corollary 1.10. Let f be an entire function in Cn of exponential type ≤ τ with
τ < (K + 1)π. Assume (Dtf)(ei) = 0 for all (t, i) ∈ T . Then there are entire
functions of n− 1 variables hk,i (k = 1, 2, . . . ,K, i = 1, . . . , n) of exponential type
≤ τ , such that

f(z) =

K∑
k=1

n∑
i=1

hk,i(z1, . . . , zi−1, zi+1 . . . , zn) sin(kπzi).

2. Univariate Lidstone polynomials - a survey

We collect here some classical results on univariate Lidstone polynomials. Full
proofs and references are given in [7].

Theorem 2.1 (G. J. Lidstone (1930) [3]). There are two sequences of polynomials
in a single variable,

(
Λt,0(z)

)
t∈2N,

(
Λt,1(z)

)
t∈2N, such that any polynomial f ∈ C[z]

can be written as a finite sum

(2.1) f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z).

For i = 0, 1, the degree of Λt,i is t + 1. These polynomials are characterized by
the following property: for t and τ in 2N, we have

Λ
(τ)
t,0 (0) = δt,τ and Λ

(τ)
t,0 (1) = 0

and
Λ
(τ)
t,1 (0) = 0 and Λ

(τ)
t,1 (1) = δt,τ .

It follows that Λt,0(z) = Λt,1(1−z). In the literature, the polynomials Λ2k,1 are de-
noted by Λk (they are the classical Lidstone polynomials), but for our generalization
to several variables it is more convenient to use the present notation.
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From Theorem 2.1 one deduces, for t ∈ 2N, the recurrence formulae

(2.2) Λt,1(z) =
1

(t+ 1)!
zt+1 −

∑
τ∈2N

0≤τ≤t−2

1

(t− τ + 1)!
Λτ,1(z)

and

(2.3)
zt

t!
= Λt,0(z) +

∑
τ∈2N

0≤τ≤t

1

(t− τ)!
Λτ,1(z).

Lidstone’s Theorem 2.1 for polynomials has been extended by H. Poritsky (1932)
and J.M. Whittaker (1934) [4, 9] to entire functions of sufficiently small exponential
type.

Theorem 2.2. The expansion (2.1) holds for any entire function f of exponential
type < π, with a series in the right hand side of (2.1) which is normally convergent
in C.

Corollary 2.3. Let f be an entire function of exponential type < π satisfying
f (t)(0) = f (t)(1) = 0 for all sufficiently large t ∈ 2N. Then f is a polynomial.

Another consequence of Theorem 2.2 is the following explicit expression for the
generating series of the Lidstone polynomials:

(2.4)
∑
t∈2N

Λt,1(z)ζt =
sinh(ζz)

sinh(ζ)
·

From the estimates in [7, (15)] for the classical Lidstone polynomials, it follows that
the series in the left hand side of (2.4) is normally convergent in {(z, ζ) ∈ C2 |
|ζ| < π}.

Expansions similar to (2.1) hold for functions of finite exponential type, as shown
by R.C. Buck in 1955 [1].

Theorem 2.4. Let K be a positive integer. Let f be an entire function of finite
exponential type τ(f) < (K+1)π and let F (ζ) be the Laplace transform of f . Then
for z ∈ C we have

f(z) =
∑
t∈2N

f (t)(0)gt(1− z) +
∑
t∈2N

f (t)(1)gt(z) +

K∑
k=1

Ck sin(kπz),

where the series are normally convergent in C, the functions gt are entire and, for
max{Kπ, τ(f)} < r < (K + 1)π,

Ck = −ki

∫
|ζ|=r

1 + (−1)k+1eζ

ζ2 + k2π2
F (ζ)dζ (1 ≤ k ≤ K).

Notice the assumption max{τ(f),Kπ} < r < (K + 1)π which replaces the er-
roneous condition τ(f) < r < (K + 1)π of [7, Proposition 3], as pointed out in [8,
§ 8].

The following consequence of Theorem 2.4 was already proved by I.J. Schoenberg
in 1936 [5]:



6 MICHEL WALDSCHMIDT

Corollary 2.5. Let f be an entire function of finite exponential type τ(f) satisfying
f (t)(0) = f (t)(1) = 0 for all t ∈ 2N. Then there are complex numbers such that

f(z) =

K∑
k=1

Ck sin(kπz)

with K ≤ τ(f)/π and C1, . . . , CK are the constants from Theorem 2.4.

3. Existence and unicity of the polynomials

Recall (Definition 1.1) that T denotes the set of (t, i) with t ∈ Nn, ‖t‖ even,
i ∈ {0, 1, . . . , n}, which satisfy the additional condition, for i ≥ 1, that t1, . . . , ti are
even.

Let Ψ : Nn → T be the map which sends k ∈ Nn to (k, 0) for ‖k‖ even and to
(k − ei, i) for ‖k‖ odd, where i ∈ {1, . . . , n} is the index such that k1, . . . , ki−1 are
even and ki is odd. We also define ι(k) as the integer i such that Ψ(k) = (k− ei, i).
This map Ψ is bijective, the inverse bijection is (t, i) 7→ t+ ei.

Proof of Proposition 1.2. For t and k in Nn, we have

(3.1) Dtzk =

{
k!

(k−t)!z
k−t if ki ≥ ti for all i = 1, . . . , n,

0 otherwise.

Let f(z) =
∑
k∈Nn akz

k ∈ C[z]. From (3.1) we deduce that for t ∈ Nn, we have

Dtf(e0) = t!at

and that for 1 ≤ i ≤ n, we have

Dtf(ei) =
∑
`≥0

(t+ `ei)!

`!
at+`ei .

Assume (Dtf)(ei) = 0 for all (t, i) ∈ T . Let K ≥ 0 be an even integer such that f
has degree ≤ K + 1. We prove f = 0 by induction on K.

For K = 0, we have

(3.2) f(z)− f(e0) =

n∑
i=1

zi(f(ei)− f(e0)).

Since (e0, i) ∈ T for 0 ≤ i ≤ n, the assumption on f implies f(ei) = 0 for 0 ≤ i ≤ n,
hence f = 0.

Assume K ≥ 2; recall that K is even. Let (t, i) ∈ T satisfy ‖t‖ = K. From
Dtf(e0) = 0 we deduce at = 0. Since f has degree ≤ K + 1, for 1 ≤ i ≤ n we have

Dtf(ei) = t!at + (t+ ei)!at+ei ,

hence the condition Dtf(ei) = 0 implies at+ei = 0. Since Ψ is bijective, we deduce
ak = 0 for all k ∈ Nn with ‖k‖ ∈ {K,K + 1} and therefore f has degree ≤ K − 1.
This completes the proof of the inductive argument. �

Let T be an even integer ≥ 0. Let TT be the set of pairs (t, i) ∈ T with ‖t‖ ≤ T .
By restriction, Ψ induces a bijective map from {k ∈ Nn | ‖k‖ ≤ T + 1} onto TT .
Therefore Proposition 1.2 can be stated as:
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Proposition 3.1. For each even T ≥ 0, the linear map which, to a polynomial
f ∈ C[z]≤T+1, associates the tuple(

Dtf(ei)
)
(t,i)∈TT

∈ CTT

is an isomorphism from C[z]≤T+1 to CTT .

Proof of Theorem 1.3. The unicity follows from Proposition 1.2. We prove the
existence together with the upper bound for the degree. Let T be an even integer
≥ 0. The inverse image under the isomorphism given by Proposition 3.1 of the
canonical basis of CTT is a family of polynomials Λt,i in C[z]≤T+1 which satisfies,
for each (τ , j) ∈ T with ‖τ‖ ≤ T + 1,

(DτΛt,i)(ej) = δτ,tδij .

Since Λt,i has total degree ≤ T + 1, it also satisfies (DτΛt,i) = 0 for all τ with
‖τ‖ > T + 1.

In a more explicit way, we deduce from Proposition 3.1 that the square matrix(
(Dτzk)(ej)

)
(τ,j)∈TT
‖k‖≤T+1

is regular. Denote by (
a
(k)
t,i

)
‖k‖≤T+1
(t,i)∈TT

the inverse matrix. The polynomials Λt,i are nothing else than

Λt,i(z) =
∑

‖k‖≤T+1

a
(k)
t,i z

k.

�

Proof of Corollary 1.4. Under the assumptions of Corollary 1.4, it follows from
Theorem 1.3 that the polynomial

g(z) = f(z)−
∑

(t,i)∈T

(Dtf)(ei)Λt,i(z)

satisfies

(Dtg)(ei) = 0 for all (t, i) ∈ T ,

hence g = 0 as shown by Proposition 1.2. �

In the case n = 1, we recover the Lidstone univariate polynomials classically
denoted Λm(z) : for m ≥ 0 and z ∈ C,

Λ2m,0(z) = Λm(1− z), Λ2m,1(z) = Λm(z).

They also occur in the relations, for m ≥ 0, i = 1, . . . , n and z ∈ Cn,

Λ2mei,i
(z) = Λm(zi).

For t = e0 we have (compare with (3.2))

Λe0,0(z) = 1− z1 − · · · − zn, Λe0,i(z) = zi for i = 1, . . . , n.
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Proof of Proposition 1.6. Let (Pn)n≥0 be an infinite sequence of polynomials among
the Λt,i, (t, i) ∈ T \ T ′, where the sequence dn of the degree of Pn is increasing.
Let (cn)n≥0 be a sequence of positive rational numbers satisfying

|Pn|r ≤ cnrdn

for all r ≥ 1 and n ≥ 0. For n ≥ 0, set

un =
1

cn(dn!)2
·

The series ∑
n≥0

unPn(z)

is normally convergent in Cn and its sum f(z) is an entire function of order 0. From
the normal hence uniform convergence we deduce, for all (t, i) ∈ T ,

(Dtf)(ei) =

{
un if Λt,i = Pn,

0 otherwise.

As a consequence we have (Dtf)(ei) = 0 for all (t, i) ∈ T ′.
Two distinct sequences (cn)n≥0 give rise to two distinct functions f , and conse-

quently we obtain an uncountable set of such functions. �

4. Explicit formulae

Here are explicit formulae for the multivariate polynomials Λt,i(z) ((t, i) ∈ T ) in
C[z], in terms of the classical Lidstone univariate polynomials Λt,1(z) and Λt,0(z) =
Λt,1(1− z) (t ∈ 2N) in C[z] introduced in § 2.

Theorem 4.1. Let (t, i) ∈ T . If i ∈ {1, . . . , n}, we have

(4.1) Λt,i(z) = Λti,1(zi)
∏

1≤j≤n
j 6=i

z
tj
j

tj !
·

If i = 0, let us denote by ν ∈ {0, 1, . . . , n} the least integer ≥ 0 such that tν+1 is
odd, with ν = 0 if t1 is odd while ν = n if t1, . . . , tn are all even. Then

(4.2) Λt,0(z) =

ν∑
j=1

Λtj ,0(zj)
∏

1≤`≤n
` 6=j

zt``
t`!
− (ν − 1)

zt

t!
·

We will prove Theorem 4.1 by using the following corollary of Theorem 1.3,
where χT denotes the characteristic function of T : for (t, i) ∈ Nn × {0, 1, . . . , n},
we write

χT (t, i)Λt,i(z) =

{
Λt,i(z) if (t, i) ∈ T ,
0 if (t, i) 6∈ T .

Lemma 4.2. For k ∈ Nn, we have

(4.3)
1

k!
zk =

n∑
i=1

ki∑
`=0

1

`!
χT (k − `ei, i)Λk−`ei,i(z) +

{
Λk,0(z) if ‖k‖ is even,

0 if ‖k‖ is odd.
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Proof of Lemma 4.2. We use Corollary 1.4 in the following equivalent form: for
k ∈ Nn,

zk =

n∑
i=0

∑
t∈Nn

(Dtzk)(ei)χT (t, i)Λt,i(z).

From the relations (3.1) we deduce

(Dtzk)(e0) = δtkk!,

hence ∑
t∈Nn

(Dtzk)(e0)χT (t, 0)Λt,0(z) =

{
k!Λk,0(z) if ‖k‖ is even,

0 if ‖k‖ is odd.

Let i ∈ {1, . . . , n}. The relations (3.1) yield

(Dtzk)(ei) =

{
k!

(ki−ti)! if kj = tj for all j 6= i and ti ≤ ki,
0 otherwise,

hence ∑
t∈Nn

(Dtzk)(ei)χT (t, i)Λt,i(z) =

ki∑
`=0

k!

`!
χT (k − `ei, i)Λk−`ei,i(z).

Lemma 4.2 follows. �

We deduce from Lemma 4.2 the following recurrence formulae, which extend to
several variables the inductive formulae (2.2) and (2.3) for the classical Lidstone
polynomials. Corollary 4.3 enables one to compute firstly Λt,i for i = 1, . . . , n by
induction on ‖t‖ and next Λt,0. The computation of Λt,i relies on formula (4.3)
applied to k = t+ ei, that is with k such that Ψ(k) = (t, i), following the notation
of § 3.

Corollary 4.3. For (t, i) ∈ T with 1 ≤ i ≤ n, we have

(4.4) Λt,i(z) =
zt

t!

zi
ti + 1

−
∑
m∈2N

2≤m≤ti

1

(m+ 1)!
Λt−mei,i(z).

For i = 0 and ‖t‖ even, we have

(4.5) Λt,0(z) =
zt

t!
−

ν∑
j=1

∑
`∈2N

0≤`≤tj

1

`!
Λt−`ej ,j(z)

where ν is defined in the statement of Theorem 4.1.

In case n = 1, (4.4) is nothing else than the recurrence formulae (2.2), while
(4.5) corresponds to (2.3) for the univariate Lidstone polynomials. In case n = 2,
Corollary 4.3 reduces to [8, Lemma 3.1] for the bivariate polynomials.

Proof. Let i ∈ {1, . . . , n} and let (t, i) ∈ T ; hence t1, . . . , ti are even and ‖t‖ is even.
We use equation (4.3) with k = t+ ei (hence ki = ti + 1 and ‖k‖ = ‖t‖+ 1 are odd
while k1, . . . , ki−1 are even):

zk

k!
=
zt

t!

zi
ti + 1

=

n∑
j=1

kj∑
`=0

1

`!
χT (k − `ej , j)Λk−`ej ,j(z).
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Let j ∈ {1, 2, . . . , n} and ` ∈ {0, . . . , kj} be such that (k − `ej , j) ∈ T ; then
k1, . . . , kj−1, kj − ` and ‖k − `ej‖ = ‖k‖ − ` are even, hence ` is odd and therefore
kj also. Since k1, . . . , kj−1 are even and ki is odd we have i ≥ j. Since k1, . . . , ki−1
are even and kj is odd we have j ≥ i. Hence j = i. For j = i, we have (k−`ei, i) ∈ T
for all ` odd in the range 0 ≤ ` ≤ kj . Equation (4.4) follows.

Let t ∈ Nn with ‖t‖ even. Let ν ∈ {0, 1, . . . , n} be the index such that t1, . . . , tν
are even and tν+1 is odd. We use (4.3) with k = t (hence ‖k‖ is even):

Λt,0(z) =
1

t!
zt −

n∑
j=1

tj∑
`=0

1

`!
χT (t− `ej , j)Λt−`ej ,j(z).

Let j ∈ {1, 2, . . . , n} and ` ∈ {0, . . . , tj} be such that (t − `ej , j) ∈ T . Now
‖t − `ej‖ = ‖t‖ − ` is even, hence t1, . . . , tj−1 and ` are even. Also tj − ` is even,
hence tj is even. Since t1, . . . , tj are even and tν+1 is odd, we have j ≤ ν. Finally
for ` even in the range 1 ≤ j ≤ ν, we have (t− `ej , j) ∈ T . We deduce (4.5). �

Proof of Theorem 4.1. Let i satisfy 1 ≤ i ≤ n. We prove (4.1) by induction on ‖t‖,
starting with ‖t‖ = 0, that is t = (0, . . . , 0) = e0, for which Λe0,i(z) = zi = Λ0,1(zi).
Assume now (t, i) ∈ T has ‖t‖ ≥ 2. From the induction hypothesis we deduce, for
m even in the range 2 ≤ m ≤ ti,

Λt−mei,i(z) = Λti−m,1(zi)
∏

1≤j≤n
j 6=i

z
tj
j

tj !
·

Using (4.4), we obtain

Λt,i(z) =

 zti+1
i

(ti + 1)!
−

∑
m∈2N

2≤m≤ti

1

(m+ 1)!
Λti−m,1(zi)

 ∏
1≤j≤n
j 6=i

z
tj
j

tj !
·

Now (4.1) follows from the recurrence formula (2.2).
We prove (4.2), again by induction, starting with ‖t‖ = 0 for which we have

ν = n:

Λe0,0(z) = 1−z1−· · ·−zn = (1−z1)+· · ·+(1−zn)−(n−1) =

n∑
i=1

Λ0,0(zi)−(n−1).

Let t ∈ Nn with ‖t‖ even ≥ 2. In (4.5), using (4.1), we substitute, for 1 ≤ j ≤ ν,

Λt−`ej ,j(z) = Λtj−`,1(zj)
∏

1≤i≤n
i6=j

ztii
ti!
·
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Using (2.3) we obtain

Λt,0(z) =
zt

t!
−

ν∑
j=1

∑
`∈2N

0≤`≤tj

1

`!
Λtj−`,1(zj)

∏
1≤i≤n
i6=j

ztii
ti!

=

ν∑
j=1

ztjj
tj !
−

∑
`∈2N

0≤`≤tj

1

`!
Λtj−`,1(zj)

 ∏
1≤i≤n
i6=j

ztii
ti!
− (ν − 1)

zt

t!

=

ν∑
j=1

Λtj ,0(zj)
∏

1≤i≤n
i6=j

ztii
ti!
− (ν − 1)

zt

t!
,

which completes the proof by induction of (4.2).
An alternative proof of Theorem 4.1 is by checking that the polynomials in the

right hand sides of the formulae (4.1) and (4.2) satisfy the properties of Theorem
1.3 which give a characterisation of the polynomials Λt,i. �

From Theorem 4.1 and [7, Equation (15)], we deduce, for (t, i) ∈ T and z ∈ Cn,

(4.6)



|Λt,i(z)| ≤ 2π−tie3π|zi|/2
∏

1≤j≤n
j 6=i

|zj |tj
tj !

, i = 1, . . . , n,

|Λt,0(z)| ≤ (n− 1)
|zt|
t!

+ 2e3π/2
n∑
j=1

π−tje3π|zj |/2
∏

1≤`≤n
` 6=j

|z`|t`
t`!
·

5. Generating series

Let us write the conclusion of Theorem 1.8 as

(5.1) eζz =
∑

(t,i)∈T

Λt,i(z)e
ζiζt,

where we set ζ0 = 0.
For i ∈ {0, 1, . . . , n}, define

Ai = {α ∈ (Z/2Z)n | ‖α‖ = 0, α1 = · · · = αi = 0}
and let

A = {(α, i) | α ∈ Ai, 0 ≤ i ≤ n} ⊂ (Z/2Z)n × {0, 1, . . . , n}.
The number of elements in Ai is{

2n−1−i for 0 ≤ i ≤ n− 1,

1 for i = n,

hence the number of elements in A is 2n. We now split T into a disjoint union of
2n subsets Tα,i: for (α, i) ∈ A, define

Tα,i = {(t, i) ∈ T , tj mod 2 = αj for 1 ≤ j ≤ n}.
We now produce explicit formulae for the 2n generating series indexed by (α, i) ∈

A:
Mα,i(ζ, z) =

∑
t∈Nn

(t,i)∈Tα,i

Λt,i(z)ζ
t.
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Using the notation ζ0 = 0 from above, we have

(5.2)
∑

(t,i)∈T

Λt,i(z)e
ζiζt =

∑
(α,i)∈A

eζiMα,i(ζ, z).

Definition 5.1. For α ∈ A0, we define ν(α) as the largest index ν ∈ {0, 1, . . . , n}
such that α1 = · · · = αν = 0.

If α1 = · · · = αn = 0 then ν(α) = n. Otherwise ν(α) ≤ n − 1 and αν+1 = 1.
Also ν(α) = 0 if and only if α1 = 1.

Theorem 4.1 can be stated as follows:

Theorem 5.2. Let (α, i) ∈ A and let (ζ, z) ∈ Cn × Cn with |ζ| < π.
If i 6= 0, we have

Mα,i(ζ, z) =
sinh(ζizi)

sinh(ζi)

∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj).

If i = 0, we have, with ν = ν(α),

Mα,0(ζ, z) =

ν∑
j=1

sinh(ζj(1− zj))
sinh(ζj)

∏
1≤`≤n, 6̀=j

α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`)

− (ν − 1)
∏

1≤`≤n
α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`),

and also

Mα,0(ζ, z) =
∏

1≤j≤n
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

−
ν∑
j=1

cosh(ζj)

sinh(ζj)
sinh(ζjzj)

∏
1≤`≤n, 6̀=j

α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`).

Proof. The formula for i 6= 0 and the first formula for i = 0 follow from Theorem
4.1, the generating series (2.4) and the Taylor expansions of sinh(ζz) and cosh(ζz).

The last formula for i = 0 follows from the previous one by using the identity

(5.3) sinh(ζ(1− z)) = sinh(ζ) cosh(ζz)− sinh(ζz) cosh(ζ).

�

6. Entire functions of exponential type < π

This section is devoted to the proof of Theorem 1.8 first and then of Theorem
1.7. We start with the claims on the normal convergence of the series in these
statements.

Proof of the normal convergence. If f is an entire function in Cn of exponential
type τ(f), then

(6.1) lim sup
‖k‖→∞

|Dkf(z0)|
1
‖k‖ = τ(f).

The proof given in [8, Lemma 7.1] for n = 2 extends to all n.
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Let R > 0. According to (4.6), there exists c = c(R) > 0 such that, for (t, i) ∈ T ,
we have

sup
‖z‖≤R

|Λt,i(z)| ≤
c

π‖t‖
·

From (6.1) we deduce that for κ in the range τ(f) < κ < π, for sufficiently large
‖t‖, we have

(6.2) |Dtf(ei)| ≤ κ‖t‖.
Hence the series∑

(t,i)∈T

|(Dtf)(ei)| sup
‖z‖≤R

|Λt,i(z)| and
∑

(t,i)∈T

sup
‖ζ‖≤κ
‖z‖≤R

|Λt,i(z)ζt|

converge. �

Proof of Theorem 1.8. Our goal is to prove the formula (5.1). Thanks to (5.2), it
will be sufficient to check that eζz is given by the right hand side of (5.2).

We use the formula
n∏
i=1

(ai + bi) =
∑

J⊂{1,2,...,n}

∏
j∈J

aj
∏
j 6∈J

bj

with ai = cosh(ζizi) and bi = sinh(ζizi). Hence

eζ1z1+···+ζnzn =

n∏
i=1

(cosh(ζizi)+sinh(ζizi)) =
∑

J⊂{1,2,...,n}

∏
j∈J

cosh(ζjzj)
∏
j 6∈J

sinh(ζjzj).

For (α, i) ∈ A and 1 ≤ j ≤ n, we define Aα,i(ζ, z) and B(α,i),j(ζ, z) as follows.
When i ≥ 1, we set

Aα,i(ζ, z) = sinh(ζizi)
∏

1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

and
B(α,i),j(ζ, z) = δi,jAα,i(ζ, z).

When i = 0, we set

Aα,0(ζ, z) =
∏

1≤j≤n
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

and

B(α,0),j(ζ, z) =


− sinh(ζjzj)

∏
1≤`≤n,` 6=j

α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`) for 1 ≤ j ≤ ν,

0 for ν < j ≤ n,

where ν = ν(α) has been introduced in Definition 5.1. Recall ζ0 = 0 and notice
that

eζ

sinh(ζ)
= 1 + coth(ζ).

According to Theorem 5.2, for all (α, i) ∈ A we have

eζiMα,i(ζ, z) = Aα,i(ζ, z) +

n∑
j=1

coth(ζj)B(α,i),j(ζ, z).
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The class modulo 2 of the number of sinh factors in the product Aα,0(ζ, z) is ‖α‖,
hence the number of sinh factors is even. Among the 2n products of the form∏

j∈J
cosh(ζjzj)

∏
j 6∈J

sinh(ζjzj),

for J a subset of {1, 2, . . . , n}, the Aα,0(ζ, z) with α ∈ A0 are the 2n−1 such products
where the number of sinh factors is even:∑

α∈A0

Aα,0(ζ, z) = cosh(ζ1z1)
∑

I⊂{2,...,n}
|I| even

∏
j∈I

sinh(ζjzj)
∏

2≤j≤n
j 6∈I

cosh(ζjzj)

+ sinh(ζ1z1)
∑

I⊂{2,...,n}
|I| odd

∏
j∈I

sinh(ζjzj)
∏

2≤j≤n
j 6∈I

cosh(ζjzj).

For 1 ≤ i ≤ n, the class modulo 2 of the number of sinh factors in

Aα,i(ζ, z) =

 ∏
1≤j<i

cosh(ζjzj)

 sinh(ζizi)
∏
i<j≤n
αj=1

sinh(ζjzj)
∏
i<j≤n
αj=0

cosh(ζjzj)

is 1+‖α‖, hence this number is odd; these Aα,i(ζ, z) for α ∈ Ai are all the different
products ∏

j∈J
cosh(ζjzj)

∏
j 6∈J

sinh(ζjzj),

which have an odd number of sinh factors and which are starting with

cosh(ζ1z1) · · · cosh(ζi−1zi−1) sinh(ζizi).

Hence the Aα,i(ζ, z) for (α, i) ∈ A with 1 ≤ i ≤ n are the 2n−1 products∏
j∈J

cosh(ζjzj)
∏
j 6∈J

sinh(ζjzj),

for J a subset of {1, 2, . . . , n}, where the number of sinh factors is odd. Therefore∑
(α,i)∈A

Aα,i(ζ, z) =
∑

J⊂{1,2,...,n}

∏
j∈J

cosh(ζjzj)
∏
j 6∈J

sinh(ζjzj) = eζz.

We now fix j ∈ {1, 2, . . . , n}. Let (α, i) ∈ A such that B(α,i),j 6= 0. If i = 0, then
ν ≥ 1, αν+1 = 1, hence

B(α,0),j(ζ, z) = − sinh(ζjzj)
∏

1≤`≤n,` 6=j
α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`).

If i ≥ 1, the condition B(α,i),j 6= 0 implies i = j and

B(α,i),j(ζ, z) = sinh(ζjzj)
∏

1≤`≤n,` 6=j
α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`).

Hence for all 1 ≤ j ≤ n, we have ∑
(α,i)∈A

B(α,i),j = 0.

This completes the proof of Theorem 1.8. �
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Proof of Theorem 1.7. Theorem 1.8 yields the formula (1.1) of Theorem 1.7 for the
special case of the functions eζz with ζ ∈ Cn, |ζ| < π. Once we know (1.1) for

these functions eζz, we deduce the general case by means of the Laplace transform
in several variables as follows.

Let
f(z) =

∑
k∈Nn

ak
k!
zk

be an entire function in Cn of exponential type τ(f). From (6.1) with z0 = 0 it
follows that the Laplace transform of f , viz. the function of n complex variables

(6.3) F (ζ) =
∑
k∈Nn

akζ
−k1−1
1 · · · ζ−kn−1n ,

is analytic in the domain
{
ζ ∈ Cn | |ζi| > τ(f), 1 ≤ i ≤ n

}
. Let r > τ(f). From

Cauchy’s residue Theorem and from the normal convergence of the series (6.3) for
F on |ζ1| = · · · = |ζn| = r we deduce

(6.4) f(z) =
1

(2πi)n

∫
|ζ1|=r

· · ·
∫
|ζn|=r

eζzF (ζ)dζ1 · · · dζn

and

(6.5) Dtf(z) =
1

(2πi)n

∫
|ζ1|=r

· · ·
∫
|ζn|=r

ζteζzF (ζ)dζ1 · · · dζn.

Assume τ(f) < π. Let r satisfy τ(f) < r < π. In (6.4) we replace eζz by the
formula of Theorem 1.8 :

f(z) =
∑

(t,i)∈T

Λt,i(z)
1

(2πi)n

∫
|ζ1|=r

· · ·
∫
|ζn|=r

ζteζiF (ζ)dζ1 · · · dζn.

Using (6.5), we deduce

f(z) =
∑

(t,i)∈T

Λt,i(z)(D
tf)(ei).

This completes the proof of Theorem 1.7. �

Remark. Denote by µ2 the multiplicative group with two elements {−1, 1}. For
γ ∈ µn2 and α ∈ (Z/2Z)n, write

γα = γα1
1 · · · γαnn .

Further, for γ ∈ µn2 , z and ζ ∈ Cn, set

γζ = (γ1ζ1, . . . , γnζn) ∈ Cn, γζz = γ1ζ1z1 + · · ·+ γnζnzn ∈ C
and for i = 0, . . . , n,

(γζ)i =

{
0 for i = 0,

γiζi for 1 ≤ i ≤ n.
For γ ∈ µn2 we deduce from the definition of Mα,i in § 5

Mα,i(γζ, z) = γαMα,i(ζ, z),

and from Theorem 1.8 and (5.2)

(6.6) eγζz =
∑

(α,i)∈A

γαe(γζ)iMα,i(ζ, z).
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Let E(ζ, z) be the column vector with 2n components eγζz, γ ∈ µn2 , and let M(ζ, z)
be the column vector with 2n componentsMα,i(ζ, z), (α, i) ∈ A. Then the equations
(6.6) can be written in matrix form E(ζ, z) = A(ζ)M(ζ, z), where A(ζ) is the 2n×2n

square matrix

A(ζ) =
(
γαe(γζ)i

)
γ∈µn2

(α,i)∈A
.

Theorem 5.2 shows that for 0 < |ζi| < π (1 ≤ i ≤ n) the matrix A(ζ) is regular and
it gives implicitly a formula for its inverse. The case n = 2 is explained in [8, § 7].

7. Entire functions of finite exponential type

The proof of Theorem 1.9 is a generalization of the proof of Theorem 8.1 in [8].

Proof. Let K ≥ 1. Set

AK(ζ, z) = 2π

K∑
k=1

(−1)k+1k sin(kπz)

ζ2 + k2π2
and BK(ζ, z) = −2π

K∑
k=1

k sin(kπz)

ζ2 + k2π2
·

We use the fact (see [7, § 8]) that the functions of two variables GK(ζ, z) and
HK(ζ, z) defined by

sinh(ζz)

sinh(ζ)
= AK(ζ, z) +GK(ζ, z) and sinh(ζz) coth(ζ) = BK(ζ, z) +HK(ζ, z)

are analytic in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. From Theorem 5.2 we
deduce, for (α, i) ∈ A, if i ≥ 1,

Mα,i(ζ, z) =
(
AK(ζi, zi) +GK(ζi, zi)

) ∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

and if i = 0

Mα,0(ζ, z) =
∏

1≤j≤n
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

−
ν∑
j=1

(
BK(ζj , zj) +HK(ζj , zj)

) ∏
1≤`≤n,` 6=j

α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`).

For (t, i) ∈ T we define gt,i(z) by writing the Taylor expansions for i ≥ 1,

GK(ζi, zi)
∑
α∈Ai

 ∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)


=

∑
t∈Nn

(t,i)∈T

gt,i(z)ζ
t,
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and for i = 0

∑
α∈A0

 ∏
1≤j≤n
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

−
ν∑
j=1

HK(ζj , zj)
∏

1≤`≤n,` 6=j
α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`)


=
∑
t∈Nn
‖t‖∈2N

gt,0(z)ζt.

Finally we set

χ(ζ, z) =

n∑
i=1

AK(ζi, zi)e
ζi
∑
α∈Ai

∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

−
∑
α∈A0

ν∑
j=1

BK(ζj , zj)
∏

1≤`≤n, 6̀=j
α`=0

cosh(ζ`z`)
∏

1≤`≤n
α`=1

sinh(ζ`z`),

so that Theorem 1.8 yields

(7.1) eζz =
∑

(t,i)∈T

eζigt,i(z)ζ
t + χ(ζ, z),

The series in the right hand side of (7.1) is normally convergent in {(ζ, z) ∈ Cn ×
Cn | |ζ| < (K + 1)π}, since for i = 0, . . . , n, the series∑

t∈Nn
(t,i)∈T

gt,i(z)ζ
t

defines an analytic function in this domain [2, Theorem 2.2.6]. For the record, we
point out that it follows from Cauchy’s inequalities [2, Theorem 2.2.7] that there
exists c = c(R) > 0 such that, for (t, i) ∈ T , we have

(7.2) sup
‖z‖≤R

|gt,i(z)| ≤
c

r‖t‖
·

For 1 ≤ i ≤ n and z ∈ Cn, we write z(i) for (z1, . . . , zi−1, zi+1, . . . , zn) ∈ Cn−1.
For 1 ≤ k ≤ K and 1 ≤ i ≤ n, define

χk,i(ζ, z
(i)) =

(−1)k+12πkeζi

ζ2i + k2π2

∑
α∈Ai

∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj)

+
∑
α∈A0
ν(α)≥i

2πk

ζ2i + k2π2

∏
1≤j≤n,j 6=i
αj=0

cosh(ζjzj)
∏

1≤j≤n
αj=1

sinh(ζjzj),

so that

(7.3) χ(ζ, z) =

K∑
k=1

n∑
i=1

χk,i(ζ, z
(i)) sin(kπzi).
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For k = 1, . . . ,K and i = 1, . . . , n, the function χk,i(ζ, z
(i)) is analytic in the domain{

(ζ, z(i)) ∈ Cn × Cn−1 | Kπ < |ζj | < (K + 1)π, (1 ≤ j ≤ n)
}
.

Let f be an entire function in Cn of finite exponential type ≤ τ with Kπ ≤ τ <
(K + 1)π. Denote by F the Laplace transform of f . In (6.4), we replace eζz with
(7.1), where we substitute (7.3) for χ(ζ, z). We deduce the formula of Theorem 1.9,
namely

f(z) =
∑

(t,i)∈T

(Dtf)(ei)gt,i(z) +

K∑
k=1

n∑
i=1

hk,i(z
(i)) sin(kπzi),

with

hk,i(z
(i)) =

1

(2πi)n

∫
|ζ1|=r

· · ·
∫
|ζn|=r

χk,i(ζ, z
(i))F (ζ)dζ1 · · · dζn

for any r with τ < r < (K + 1)π. This function hk,i has exponential type ≤ r.
Since this is true for all r in the range τ < r < (K + 1)π, this exponential type is
≤ τ .

Let R > 0 and let κ, r satisfy τ(f) < κ < r < (K + 1)π. Using (6.2) and (7.2),
we deduce that the series ∑

(t,i)∈T

|(Dtf)(ei)| sup
‖z‖≤R

|gt,i(z)|

converges. This proves the claim on the normal convergence of the series and
completes the proof of Theorem 1.9. �

Finally, Corollary 1.10 follows immediately from Theorem 1.9.
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