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http://mathworld.wolfram.com/RamanujanConstant.html

Ramanujan Constant

The irrational constant

R = eπ
√

163 = 262537412640768743.99999999999925 . . .

which is very close to an integer. Numbers such as the Ramanujan constant

can be found using the theory of modular functions. In fact, the nine

Heegner numbers (which include 163) share a deep number theoretic property

related to some amazing properties of the j-function that leads to this sort of

near-identity.
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Although Ramanujan (1913-14) gave few rather spectacular examples of

almost integers (such eπ
√

58), he did not actually mention particular near-

identity give above. In fact, the first to observe this property of 163 was

Hermite (1859). The name ”Ramanujan’s constant” seems to derive from

an April Fool’s joke played by Martin Gardner (Apr. 1975) on the readers of

Scientific American. In his column, Gardner claimed that eπ
√

163 was exactly

an integer, and that Ramanujan had conjectured this in his 1914 paper.

Gardner admitted his hoax a few months later (Gardner, July 1975).

Gardner, M. “Mathematical Games: Six Sensational Discoveries that

Somehow or Another have Escaped Public Attention.” Sci. Amer. 232,

127-131, Apr. 1975.

Gardner, M. “Mathematical Games: On Tessellating the Plane with Convex

Polygons” Sci. Amer. 232, 112-117, Jul. 1975.
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Hermite, C. “Sur la théorie des équations modulaires.” Comptes Rendus

Acad. Sci. Paris 49, 16-24, 110-118, and 141-144, 1859. Reprinted in Œuvres

complètes, Tome II. Paris: Hermann, p. 61, 1912.
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Ramanujan, S. “Modular equations and approximations to π.”
Quaterly J. Math. 45 (1914), 350–372.

eπ
√

22 = 2 508 951.998 2 . . .

eπ
√

37 = 199 148 647.999 978 . . .

eπ
√

58 = 24 591 257 751.999 999 82 . . .

D. Shanks. “Dihedral quartic approximations and series for
π”. J. Number Theory 14 (1982), 397–423.
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Euler statement (1748, Introductio in Analysin Infinitorum):

For any rational d > 0 not a square, eπ
√

d is not a rational
integer, nor even a rational number.

Hilbert’s seventh problem (1900): Show that eπ
√

d is not an
algebraic number.

Gel’fond (1929). Interpolation series for the entire function eπz

at the points of Z[i].

Gel’fond and Schneider (1934). Transcendence of ab –
example: a = eiπ, b = −i

√
d.
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Back to

eπ
√

163 = 262 537 412 640 768 743, 999 999 999 999 2 . . .

Define τ = (1 +
√
−163)/2; the imaginary quadratic field

k = Q(τ) has class number 1. Hence the modular function

J(q) =
1
q

+ 744 + 196 884q + 21 493 760q2 + 864 299 970q3 + · · ·

which is defined for 0 < |q| < 1 satisfies

J(e2iπτ) ∈ Z.
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For

τ = (1 + i
√

163)/2

the number

q = e2iπτ = −e−π
√

163

has

−1
2
10−17 < q < 0

and

−10−12 < 196 884q + 21 493 760q2 + · · · < 0.

Hence

−10−12 < eπ
√

163 + J(q)− 744 < 0

with J(q) ∈ Z.
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S. Chowla:

J(q) = −262 537 412 640 768 000 = −(640 320)3.

eπ
√

163/3 = 640 319.999 1 . . .
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S. Chowla:

J(q) = −262 537 412 640 768 000 = −(640 320)3.

eπ
√

163/3 = 640 319.999 1 . . .

The equation
163y2 = x3 + 1728

has the solution

x = 640 320, y = 40 133 016.
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Euler:

x2 − x + 41 is a prime number for x = 1, 2, . . . , 40.

The discriminant is 1− 4× 41 = −163.
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Ramanujan, S. “On certain arithmetical functions.” Trans.

Camb. Phil. Soc. 22 n◦9 (1916), 159–184.

Eisenstein Series:

P = E2 = 1− 24
∑
n≥1

σ1(n)qn,

Q = E4 = 1 + 240
∑
n≥1

σ3(n)qn,

R = E6 = 1− 504
∑
n≥1

σ5(n)qn

where

σk(n) =
∑
d|n

dk.
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Further let

∆ =
1

1728
(Q3 −R2).
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Special values

Values of P , Q, R and ∆ at the points e−2π (lemniscate: τ = i)
and −e−π

√
3 (anharmonic case: τ = % cubic root of unity)

Let ω1 be the smallest real period of an elliptic curve of

equation y2 = 4x3 − g2x− g3 whose modular invariant is j

with j(τ) = J(e2iπτ) and τ = ω2/ω1 is the quotient of two

fundamental periods.

In the lemniscate case τ = i, j = 1728 and an equation of the

curve is y2 = x3 − x, while in the anharmonic case τ = %, j = 0
and an equation of the curve is y2 = x3 − 1.
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LEMNISCATE: τ = i, j = 1728

ω1 =
Γ(1/4)2√

8π
= 2.6220575542 . . .

P (e−2π) =
3
π

Q(e−2π) = 3
(ω1

π

)4

R(e−2π) = 0

∆(e−2π) =
1
26

(ω1

π

)12
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ANHARMONIC: τ = %, j = 0

ω1 =
Γ(1/3)3

24/3π
= 2.428650648 . . .

P (−e−π
√

3) =
2
√

3
π

Q(−e−π
√

3) = 0

R(−e−π
√

3) =
27
2

(ω1

π

)6

∆(−e−π
√

3) = − 27
256

(ω1

π

)12
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Theorem (Nesterenko, 1996). For 0 < |q| < 1, three at least
of the four numbers

q, P (q), Q(q), R(q)

are algebraically independent.

Corollary. The three numbers

π, eπ, Γ(1/4)

are algebraically independent and the three numbers

π, eπ/
√

3, Γ(1/3)

are algebraically independent.
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The Modular Function ∆

J(q) =
Q

∆
with ∆ =

1
1728

(Q3 −R2).

The function ∆ has a product expansion

∆ = q
∏
n≥1

(1− qn)24

and a series expansion

∆ =
∑
n≥1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − · · ·

with Ramanujan’s tau function τ .
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For z ∈ C with Im(z) > 0 write q = e2iπz.
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For z ∈ C with Im(z) > 0 write q = e2iπz.

Define ∆(z) =
∑

n≥1 τ(n)qn. Then ∆ is a modular function of

weight 12:

∆
(

az + b

cz + d

)
= (cz + d)12∆(z).
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For z ∈ C with Im(z) > 0 write q = e2iπz.

Define ∆(z) =
∑

n≥1 τ(n)qn. Then ∆ is a modular function of

weight 12:

∆
(

az + b

cz + d

)
= (cz + d)12∆(z).

Similarly for

Q(z) = 1 + 240
∑
n≥1

σ3(n)qn (weight 4)
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For z ∈ C with Im(z) > 0 write q = e2iπz.

Define ∆(z) =
∑

n≥1 τ(n)qn. Then ∆ is a modular function of

weight 12:

∆
(

az + b

cz + d

)
= (cz + d)12∆(z).

Similarly for

Q(z) = 1 + 240
∑
n≥1

σ3(n)qn (weight 4)

and for

R(z) = 1− 504
∑
n≥1

σ5(n)qn (weight 6).
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The modular form ∆(z) is a prototype. In fact, three of

Ramanujan’s observations about the coefficients τ(n) provide

a foundation for much of the modern theory of modular forms.
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These three observations are:

• τ(n)τ(m) = τ(nm) if gcd(n, m) = 1.
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These three observations are:

• τ(n)τ(m) = τ(nm) if gcd(n, m) = 1.

• For all primes p we have

|τ(p)| ≤ 2p11/2.
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These three observations are:

• τ(n)τ(m) = τ(nm) if gcd(n, m) = 1.

• For all primes p we have

|τ(p)| ≤ 2p11/2.

• For all primes p we have

τ(p) ≡ 1 + p11 (mod 691).
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These three observations are:

• τ(n)τ(m) = τ(nm) if gcd(n, m) = 1.

• For all primes p we have

|τ(p)| ≤ 2p11/2.

• For all primes p we have

τ(p) ≡ 1 + p11 (mod 691).

Note: Only the third observation was proved by Ramanujan.
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The first observation, on the multiplicativity of the τ function

τ(n)τ(m) = τ(nm) if gcd(n, m) = 1

and other relations which are related with the product expansion∑
n≥1

τ(n)n−s =
∏
p

(
1− τ(p)p−s + p11−2s

)−1
,

was proved by Mordell, based on a theory initiated by Hurwitz

which let to the theory of Hecke operators.
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Hecke operators

Tnf(z) =
∑
ad=n

b modn

dn−1f

(
az + b

d

)
.

This yields the spectral interpretation of τ(n). The function ∆
appears as a simultaneous eigenvector of a ring of operators:

Tn∆ = τ(n)∆.
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The second observation

For all primes p we have |τ(p)| ≤ 2p11/2

led to Deligne’s proof of the Weil Conjectures. Deligne won the

Fields Medal for his work, which has been called

“one of the crowning achievements of mathematics.”
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Katz, Nicholas M. –

An overview of Deligne’s proof of the Riemann hypothesis for
varieties over finite fields.”

Mathematical developments arising from Hilbert problems (Proc.

Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De

Kalb, Ill., 1974), (275–305). Amer. Math. Soc., Providence,

R.I., 1976.
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The third observation led to Deligne and Serre’s theory of

“modular Galois representations.” This theory plays a central

role, for example, in the proof of Fermat’s Last Theorem by

Wiles.
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The Conjectures of Ramanujan and Weil.

Ramanujan Conjecture:

|τ(p)| ≤ 2p11/2 for all primes p.

Recall: ∆(z) =
∞∑

n=1

τ(n)qn has weight 12.
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Generalized Ramanujan Conjecture: If

f(z) =
∞∑

n=1

a(n)qn

has weight k, then

|a(p)| ≤ 2p(k−1)/2 for all primes p.
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Weil Conjectures

Consider a polynomial f(x1, x2, . . . , xn) with rational integer

coefficients, and a prime p.

The Weil Conjectures describe the number of solutions modulo p

to the congruence

f(x1, x2, . . . , xn) ≡ 0 (mod p).

This means that we work in the finite field Fp with p elements

and consider the equation f(x1, x2, . . . , xn) = 0 in Fp.
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Example

An elliptic curve E is defined by an equation

E : y2 = x3 + ax2 + bx + c,

where a, b, c ∈ Z.

If p is a prime number, then let N(p) be the number of points

on E modulo p.

N(p) is the number of solutions (x, y) (mod p) to the equation

y2 ≡ x3 + ax2 + bx + c (mod p).
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Modularity (Andrew Wiles and others)

There is a weight two modular form

f(z) =
∞∑

n=1

a(n)qn

such that

a(p) = p−N(p) for all primes p.

So the Generalized Ramanujan Conjecture tells us that

|N(p)− p| ≤ 2
√

p.
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Ramanujan’s Conjecture is related to the problem of counting

the number of solutions of equations modulo p.

Completing the program initiated by Grothendieck, Deligne first

deduced Ramanujan’s Conjecture from the Weil Conjectures

(much before Wiles work on the modularity Conjecture), and

shortly after proved Weil Conjectures (hence also Ramanujan’s

one).
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The Weil Conjectures deal with more general polynomial

equations

f(x1, x2, . . . , xn) = 0.

They give a precise description of the number of solutions to

these equations modulo p.

(Also they are an analog of Riemann’s Hypothesis for function fields).

In fact, Ramanujan’s original Conjecture that

|τ(p)| ≤ 2p11/2

is equivalent to a special case of the Weil Conjectures.

Moreover, methods developed to attack Ramanujan’s Conjecture

turned out to be instrumental in Deligne’s proof.
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Write
τ(p)
p11/2

= α(p) + β(p) with α(p)β(p) = 1.

Ramanujan’s Conjecture amounts to

|α(p)| = |β(p)| = 1.

Deligne interprets α(p) and β(p) as eigenvalues of Frobenius

acting on certain cohomology groups.
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Back to the third observation:

τ(p) ≡ 1 + p11 (mod 691)

Further similar congruences :

τ(p) ≡ 1 + p11 (mod 25) p 6= 2,

τ(p) ≡ 1 + p (mod 3) p 6= 3,

τ(p) ≡ p30 + p−41 (mod 53) p 6= 5,

τ(p) ≡ p + p4 (mod 7) p 6= 7,
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These all have the form

τ(p) ≡ pa + p11−a (mod `k)

for some prime `.

Recall Fermat’s little theorem: p`−1 ≡ 1 (mod `).

Actually, it turns out that these are the only such congruences.

However, J.-P. Serre’s interpretation of these accidents led to

some of the most important discoveries of the last half-century.
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Let us focus on

τ(p) ≡ 1 + p11 (mod 691).

What is 1 + p11 ?

First answer: It is the trace of the matrix(
1 0
0 p11

)
.

We view everything modulo 691. So this matrix lies in the group

GL2(Z/691Z).
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Serre’s brilliant contribution was to conjecture a profound
relationship with Galois Theory.

Recall that if K is a (nice) field containing Q, then the Galois
Group

Gal(K/Q)

is the group of automorphisms of K.
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If p is a (nice) prime, then Gal(K/Q) contains a distinguished

automorphism

Frobp

called the Frobenius at p.

The automorphism Frobp

acts like raising to the p-th power.
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There is also a homomorphism

χ : Gal(K/Q) −→ (Z/691Z)×

such that

χ(Frobp) = p

for all primes p.

So we can construct a homomorphism

ρ : Gal(K/Q) −→ GL2(Z/691Z)

by defining

ρ(σ) =
(

1 0
0 χ11(σ)

)
.
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Note: It is clear that

ρ(σ1σ2) = ρ(σ1)ρ(σ2).

Notice that

ρ(Frobp) =
(

1 0
0 χ11(Frobp)

)
=

(
1 0
0 p11

)
.

Therefore,

Trace(ρ(Frobp)) = 1 + p11 ≡ τ(p) (mod 691).

http://www.math.jussieu.fr/∼miw/ 48



This is Serre’s answer to the question

What is 1 + p11 ?

For any prime power `k, Serre conjectured that there is a

representation

ρ : Gal(K/Q) → GL2

(
Z/`kZ

)
such that for all p we have

Trace(ρ(Frobp)) ≡ τ(p) (mod `k).
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Note: Moreover,

Det(ρ(Frobp)) ≡ p11 (mod `k).
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Note:

All of the congruences

τ(p) ≡ pa + p11−a (mod `k)

can be explained analogously via representations of the form

ρ(σ) =
(

χa(σ) 0
0 χ11−a(σ)

)
.
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The existence of these representations (for any modular form)

was proved by Deligne.

Typically, these representations do not have such a simple form.

However, the simplicity of the accidents like Ramanujan’s

τ(p) ≡ 1 + p11 (mod 691)

provided crucial insight into the general situation.

It is hard to overstate the importance of these representations.

For example, the proof of Fermat’s Last Theorem is written in

this language.
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Summary:

Ramanujan had an amazing talent for uncovering phenomena

which would turn out to be of fundamental importance in Number

Theory.

Hecke’s Theory

Weil Conjectures

Fermat’s Last Theorem

http://www.math.jussieu.fr/∼miw/ 53



Also:

Goldbach’s Conjecture

Waring’s Problem
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Asymptotics for the partition function.

p(n) := number of partitions of n.

Example: The partitions of 4:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Hence

p(4) = 5.
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Recall the asymptotic formula:

p(n) ∼ eπ
√

2n/3

4n
√

3
.

This means that

p(n) =
eπ
√

2n/3

4n
√

3
+ something smaller .
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Ramanujan believed (unrealistically?) that

something smaller

could be replaced by an exact formula for p(n).

Hardy & Ramanujan proved that this belief is true. Their work

marks the birth of the

Circle method,

which has grown into one of the most powerful tools in analytic

Number Theory.

We sketch a refinement of their work by Rademacher.
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Recall the generating function

F (x) :=
∞∏

n=1

1
1− xn =

∞∑
n=0

p(n)xn, |x| < 1.

Notice that

F (x)
xn+1

= · · ·+ p(n− 1)
x2

+
p(n)
x

+ p(n + 1) + · · ·

So by Cauchy’s Residue Theorem

p(n) =
1

2πi

∫
C

F (x)
xn+1

dx.
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Main contributions come from poles of F (x). These lie at every
root of unity.

Circle Method: Estimate contribution from arcs of C near q-th

root of unity by function

Tq(n).

Estimate is so good that we in fact have

p(n) =
∞∑

q=1

Tq(n).
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Since p(n) is an integer, computing enough terms gives its exact

value.

E.g. the first 8 terms give

p(200) ≈ 3, 972, 999, 029, 388.004.

Over last 80 years circle method has played major role in additive
number theory.
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Some examples:

Lagrange Theorem. Every natural number is the sum of at
most four squares.

Waring’s Problem. Every (sufficiently large) natural number
is the sum of at most G(k) k-th powers.

The quantity G(k) can be estimated with circle method.
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How does circle method apply? An example:

Let

f(x) :=
∞∑

n=0

xn2
.

Then

f(x)2 =
∞∑

n=0

∞∑
m=0

xn2+m2
=

∞∑
N=0

R(N)xN ,

where

R(N) := the number of ways to write N = n2 + m2.
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As above we have

R(N) =
1

2πi

∫
C

f(x)2

xN+1
dx.
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Goldbach’s Conjecture.
Every even number n > 2 is the sum of two primes.
Every odd number n > 5 is the sum of three primes.

Circle method proves that conjecture true for almost every even

number, and for every large odd number.

The circle method has been used to predict entropy and area of

black holes in supergravity theory.

http://www.math.jussieu.fr/∼miw/ 64



Congruences for the partition function.

p(n) := number of partitions of n.

Ramanujan’s congruences:

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).
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Ramanujan (1919): I have proved a number of arithmetical properties
of p(n) . . . in particular that

p(5n + 4) ≡ 0 (mod 5),

and
p(7n + 5) ≡ 0 (mod 7) . . . .

I have since found another method which enables me to prove all of these
properties and a variety of others, of which the most striking is

p(11n + 6) ≡ 0 (mod 11).

There are corresponding properties in which the moduli are powers of 5,

7, or 11.. . . It appears that there are no equally simple properties for any

moduli involving primes other than these three.
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Theorem (Ahlgren+Boylan, Invent. Math., 2003) Suppose
that ` is a prime for which there exists a Ramanujan
congruence

p(`n + α) ≡ 0 (mod `) for all n,

with some α ∈ Z. Then this congruence is one of Ramanujan’s
original three.
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Conjecture of Erdős (1980). If ` is prime, then there exists
an n > 0 such that p(n) ≡ 0 (mod `).
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A few examples of congruences

p(An + B) ≡ 0 (mod `k)

with

` = 13, 17, 19, 23, 29, 31

were found in the 1960s.

• Simplest congruence modulo 13 (Atkin, O’Brien):

p(113 · 13n + 237) ≡ 0 (mod 13).
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Typical congruence modulo 132:

p(132 · 973 · 1033 · n− 6950975499605) ≡ 0 (mod 132).
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Natural Questions:

Are these extra congruences accidents?

Are there congruences for primes ` > 31?

Theorem (Ono, 2000) If ` ≥ 5 is prime, then there are
infinitely many congruences of the form

p(An + B) ≡ 0 (mod `).
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Ono’s result has been extended with

Theorem (Ahlgren, 2000) If ` ≥ 5 is prime and m is a positive
integer, then there are infinitely many congruences of the form

p(An + B) ≡ 0 (mod `m).

These theorems show that congruences like Ramanujan’s are

everywhere.

However, the new congruences are

so far out there

that they are hard to actually see.
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In recent joint work, Ono and Ahlgren have shown that such

congruences are actually much more widespread than previously

known.

Their latest result explains every known example of a partition

function congruence.

Interestingly, to prove these results requires many results from

the theory of modular forms whose roots can be traced back to

Ramanujan.
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Ramanujan’s impact on many different aspects of
mathematics is amazing

Peter Sarnak, India-AMS Meeting Bangalore, Dec 19, 2003
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