The four exponentials conjecture, the six exponentials theorem and related statements.

Michel Waldschmidt

miw@math.jussieu.fr

Transcendental Number Theory

Liouville (1844). Transcendental numbers exist.
Hermite (1873). The number e is transcendental.
Lindemann (1882). The number π is transcendental.
Corollary: Squaring the circle using rule and compass only is not possible.

Theorem (Hermite-Lindemann). Let β be a non zero complex number. Set $\alpha=e^{\beta}$. Then one at least of the two numbers α, β is transcendental.

Corollary 1. If β is a non zero algebraic number, then e^{β} is transcendental.

Example. The numbers e and $e^{\sqrt{2}}$ are transcendental.

Corollary 2. If α is a non zero algebraic number and $\log \alpha$ a non zero logarithm of α, then $\log \alpha$ is transcendental.

Example. The numbers $\log 2$ and π are transcendental.

Recall: the set $\overline{\mathbf{Q}}$ of algebraic numbers is a subfield of \mathbf{C} - it is the algebraic closure of \mathbf{Q} into \mathbf{C}.

The exponential map

$$
\begin{aligned}
\exp : & \mathbf{C} \\
z & \longrightarrow \mathbf{C}^{\times} \\
& \longmapsto e^{z}
\end{aligned}
$$

is a morphism from the additive group of \mathbf{C} onto the multiplicative group of \mathbf{C}^{\times}.

Hermite-Lindemann: $\overline{\mathbf{Q}}^{\times} \cap \exp (\overline{\mathbf{Q}})=\{1\}$.
Also, if we define $\mathcal{L}=\exp ^{-1}\left(\overline{\mathbf{Q}}^{\times}\right)$, then $\overline{\mathbf{Q}} \cap \mathcal{L}=\{0\}$.

Theorem (Gel'fond-Schneider).
(1) Let λ_{1} and λ_{2} be two elements in \mathcal{L} which are linearly independent over \mathbf{Q}. Then λ_{1} and λ_{2} are linearly independent over $\overline{\mathbf{Q}}$.
(2) Let $\lambda \in \mathbf{C}, \lambda \neq 0$ and let $\beta \in \mathbf{C} \backslash \mathbf{Q}$. Then one at least of the three numbers

$$
e^{\lambda}, \beta, e^{\beta \lambda}
$$

is transcendental.
Remark $(1) \Longleftrightarrow(2)$ follows from

$$
\left(\lambda_{1}, \lambda_{2}\right) \longleftrightarrow(\lambda, \beta \lambda) \quad \text { and } \quad\left(\lambda_{1}, \lambda_{2} / \lambda_{1}\right) \longleftrightarrow(\lambda, \beta)
$$

Remarks.

(1) means:

$$
\frac{\log \alpha_{1}}{\log \alpha_{2}} \notin \overline{\mathbf{Q}} \backslash \mathbf{Q} .
$$

(2) means: for $\alpha \in \mathbf{C} \backslash\{0\}, \beta \in \mathbf{C} \backslash \mathbf{Q}$ and any $\log \alpha \neq 0$, one at least of the three numbers

$$
\alpha, \quad \beta \quad \text { and } \quad \alpha^{\beta}=e^{\beta \log \alpha}
$$

is transcendental.

Corollaries. Transcendence of

$$
\frac{\log 2}{\log 3}, \quad 2^{\sqrt{2}}, \quad e^{\pi}
$$

Proof. Take respectively

$$
\begin{gathered}
\lambda_{1}=\log 2, \quad \lambda_{2}=\log 3, \\
\lambda_{1}=\log 2, \quad \lambda_{2}=\sqrt{2} \log 2
\end{gathered}
$$

and

$$
\lambda_{1}=i \pi, \quad \lambda_{2}=\pi
$$

Theorem (A. Baker). Let $\lambda_{1}, \ldots, \lambda_{n}$ be elements in \mathcal{L} which are linearly independent over \mathbf{Q}. Then $1, \lambda_{1}, \ldots, \lambda_{n}$ are linearly independent over $\overline{\mathbf{Q}}$.

Corollary. Transcendence of numbers like

$$
\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}
$$

and

$$
e^{\beta_{0}} \alpha_{1}^{\beta_{1}} \cdots \alpha_{n}^{\beta_{n}} .
$$

Corollary 1. (Hermite-Lindemann) Transcendence of e^{β}.
Proof. Take $n=1$ in Baker's Theorem.
Corollary 2. (Gel'fond-Schneider) Transcendence of α^{β}.
Proof. Take $n=2$ in Baker's Theorem.
Baker's Theorem means: The injection of $\mathbf{Q}+\mathcal{L}$ into \mathbf{C} extends to an injection of $(\mathbf{Q}+\mathcal{L}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}}$ into \mathbf{C}. The image is the $\overline{\mathbf{Q}}$-vector space $\widetilde{\mathcal{L}} \subset \mathbf{C}$ spanned by 1 and \mathcal{L} :

$$
(\mathbf{Q}+\mathcal{L}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}} \simeq \widetilde{\mathcal{L}}
$$

Algebraic independence of logarithms of algebraic numbers

Conjecture Let $\alpha_{1}, \ldots, \alpha_{n}$ be non zero algebraic numbers. For $1 \leq j \leq n$ let $\lambda_{j} \in \mathbf{C}$ satisfy $e^{\lambda_{j}}=\alpha_{j}$. Assume $\lambda_{1}, \ldots, \lambda_{n}$ are linearly independent over \mathbf{Q}. Then $\lambda_{1}, \ldots, \lambda_{n}$ are algebraically independent.

Write $\lambda_{j}=\log \alpha_{j}$.
If $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are \mathbf{Q}-linearly independent then they are algebraically independent.

Recall that \mathcal{L} is the \mathbf{Q} vector space of logarithms of algebraic numbers:

$$
\mathcal{L}=\left\{\lambda \in \mathbf{C} ; e^{\lambda} \in \overline{\mathbf{Q}}\right\}=\left\{\log \alpha ; \alpha \in \overline{\mathbf{Q}}^{\times}\right\}=\exp ^{-1}\left(\overline{\mathbf{Q}}^{\times}\right)
$$

The conjecture on algebraic independence of logarithms of algebraic numbers can be stated:

The injection of \mathcal{L} into \mathbf{C} extends to an injection of the symmetric algebra $\operatorname{Sym}_{\mathbf{Q}}(\mathcal{L})$ on \mathcal{L} into \mathbf{C}.

Four Exponentials Conjecture

History.

A. Selberg (50's).

Th. Schneider(1957) - first problem.
S Lang (60's).
K. Ramachandra (1968).

Leopoldt's Conjecture on the p-adic rank of the units of an algebraic number field (non vanishing of the p-adic regulator).

Quadratic relations between logarithms of algebraic numbers

Homogeneous:

Four Exponentials Conjecture For $i=1,2$ and $j=1,2$, let $\alpha_{i j}$ be a non zero algebraic number and $\lambda_{i j}$ a complex number satisfying $e^{\lambda_{i j}}=\alpha_{i j}$. Assume $\lambda_{11}, \lambda_{12}$ are linearly independent over \mathbf{Q} and also $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q}. Then

$$
\lambda_{11} \lambda_{22} \neq \lambda_{12} \lambda_{21} .
$$

Quadratic relations between logarithms of algebraic numbers

Example. Transcendence of $2^{(\log 2) / \log 3}$:

$$
(\log 2)^{2}=(\log 3)(\log \alpha) ?
$$

Other open problem: Transcendence of $2^{\log 2}$.
Non homogeneous quadratic relations $(\log \alpha)(\log \beta)=\log \gamma$.

$$
(\log 2)^{2}=\log \gamma ?
$$

Quadratic relations between logarithms of algebraic numbers

Non homogeneous:
Three exponentials Conjecture Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be three elements in \mathcal{L} satisfying $\lambda_{1} \lambda_{2}=\lambda_{3}$. Then $\lambda_{3}=0$.

Example. Special case of the open question on the transcendence of $\alpha^{\log \alpha}$: transcendence of $e^{\pi^{2}}$?

Four Exponentials Conjecture For $i=1,2$ and $j=1,2$, let $\alpha_{i j}$ be a non zero algebraic number and $\lambda_{i j}$ a complex number satisfying $e^{\lambda_{i j}}=\alpha_{i j}$. Assume $\lambda_{11}, \lambda_{12}$ are linearly independent over \mathbf{Q} and also $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q}. Then

$$
\lambda_{11} \lambda_{22} \neq \lambda_{12} \lambda_{21}
$$

Notice:

$$
\lambda_{11} \lambda_{22}-\lambda_{12} \lambda_{21}=\operatorname{det}\left|\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{12} & \lambda_{22}
\end{array}\right|
$$

Four Exponentials Conjecture (again) Let x_{1}, x_{2} be two Qlinearly independent complex numbers and y_{1}, y_{2} also two Qlinearly independent complex numbers. Then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.

Four Exponentials Conjecture (again) Let x_{1}, x_{2} be two Qlinearly independent complex numbers and y_{1}, y_{2} also two Qlinearly independent complex numbers. Then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.
Hint: Set

$$
x_{i} y_{j}=\lambda_{i j}(i=1,2 ; j=1,2)
$$

A rank one matrix is a matrix of the form

$$
\left(\begin{array}{ll}
x_{1} y_{1} & x_{1} y_{2} \\
x_{2} y_{1} & x_{2} y_{2}
\end{array}\right)
$$

Sharp Four Exponentials Conjecture. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, are two complex numbers which are \mathbf{Q}-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$ are four algebraic numbers such that the four numbers

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2$ and $j=1,2$.

Sharp Four Exponentials Conjecture. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, are two complex numbers which are \mathbf{Q}-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$ are four algebraic numbers such that the four numbers

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2$ and $j=1,2$.
If $x_{i} y_{j}=\lambda_{i j}+\beta_{i j}$ then

$$
x_{1} x_{2} y_{1} y_{2}=\left(\lambda_{11}+\beta_{11}\right)\left(\lambda_{22}+\beta_{22}\right)=\left(\lambda_{12}+\beta_{12}\right)\left(\lambda_{21}+\beta_{21}\right)
$$

Recall that $\widetilde{\mathcal{L}}$ is the $\overline{\mathbf{Q}}$-vector space spanned by 1 and \mathcal{L} (linear combinations of logarithms of algebraic numbers with algebraic coefficients):

$$
\widetilde{\mathcal{L}}=\left\{\beta_{0}+\sum_{h=1}^{\ell} \beta_{h} \log \alpha_{h} ; \ell \geq 0, \alpha^{\prime} \text { s in } \overline{\mathbf{Q}}^{\times}, \beta^{\prime} \text { s in } \overline{\mathbf{Q}}\right\}
$$

Strong Four Exponentials Conjecture. If x_{1}, x_{2} are $\overline{\mathbf{Q}}-$ linearly independent and if y_{1}, y_{2}, are $\overline{\mathbf{Q}}$-linearly independent, then one at least of the four numbers

$$
x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}
$$

does not belong to $\widetilde{\mathcal{L}}$.

Six Exponentials Theorem. If x_{1}, x_{2} are two complex

 numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, y_{3} are three complex numbers which are \mathbf{Q}-linearly independent, then one at least of the six numbers$$
e^{x_{i} y_{j}} \quad(i=1,2, j=1,2,3)
$$

is transcendental.

Sharp Six Exponentials Theorem. If x_{1}, x_{2} are two complex numbers which are \mathbf{Q}-linearly independent, if y_{1}, y_{2}, y_{3} are three complex numbers which are Q-linearly independent and if $\beta_{i j}$ are six algebraic numbers such that

$$
e^{x_{i} y_{j}-\beta_{i j}} \in \overline{\mathbf{Q}} \quad \text { for } \quad i=1,2, j=1,2,3,
$$

then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2$ and $j=1,2,3$.

Strong Six Exponentials Theorem (D. Roy). If x_{1}, x_{2} are $\overline{\mathbf{Q}}$-linearly independent and if y_{1}, y_{2}, y_{3} are $\overline{\mathbf{Q}}$-linearly independent, then one at least of the six numbers

$$
x_{i} y_{j} \quad(i=1,2, j=1,2,3)
$$

does not belong to $\widetilde{\mathcal{L}}$.

Five Exponentials Theorem. If x_{1}, x_{2} are \mathbf{Q}-linearly independent, y_{1}, y_{2} are \mathbf{Q}-linearly independent and γ is a non zero algebraic number, then one at least of the five numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}, e^{\gamma x_{2} / x_{1}}
$$

is transcendental.

This is a consequence of the sharp six exponentials Theorem: set $y_{3}=\gamma / x_{1}$ and use Baker's Theorem for checking that y_{1}, y_{2}, y_{3} are linearly independent over \mathbf{Q}.

Sharp Five Exponentials Conjecture. If x_{1}, x_{2} are Qlinearly independent, if y_{1}, y_{2} are \mathbf{Q}-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$ and also $\gamma x_{2}=\alpha x_{1}$.

Sharp Five Exponentials Conjecture. If x_{1}, x_{2} are Qlinearly independent, if y_{1}, y_{2} are \mathbf{Q}-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$ and also $\gamma x_{2}=\alpha x_{1}$.

Difficult case: when $y_{1}, y_{2}, \gamma / x_{1}$ are \mathbf{Q}-linearly dependent.
Example: $x_{1}=y_{1}=\gamma=1$.

Sharp Five Exponentials Conjecture. If x_{1}, x_{2} are Qlinearly independent, if y_{1}, y_{2} are \mathbf{Q}-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$
e^{x_{1} y_{1}-\beta_{11}}, e^{x_{1} y_{2}-\beta_{12}}, e^{x_{2} y_{1}-\beta_{21}}, e^{x_{2} y_{2}-\beta_{22}}, e^{\left(\gamma x_{2} / x_{1}\right)-\alpha}
$$

are algebraic, then $x_{i} y_{j}=\beta_{i j}$ for $i=1,2, j=1,2$ and also $\gamma x_{2}=\alpha x_{1}$.

Consequence: Transcendence of the number $e^{\pi^{2}}$.
Proof. Set $x_{1}=y_{1}=1, x_{2}=y_{2}=i \pi, \gamma=1, \alpha=0, \beta_{11}=1$, $\beta_{i j}=0$ for $(i, j) \neq(1,1)$.

Known: One at least of the two statements is true.

- $e^{\pi^{2}}$ is transcendental.
- The two numbers e and π are algebraically independent.

Other consequence of the sharp five exponentials conjecture: Transcendence of the number $e^{\lambda^{2}}=\alpha^{\log \alpha}$ for $\lambda \in \mathcal{L}, e^{\lambda}=\alpha \in \overline{\mathbf{Q}}^{\times}$.

Proof. Set $x_{1}=y_{1}=1, x_{2}=y_{2}=\lambda, \gamma=1, \alpha=0, \beta_{11}=1$, $\beta_{i j}=0$ for $(i, j) \neq(1,1)$.

Other consequence of the sharp five exponentials conjecture: Transcendence of the number $e^{\lambda^{2}}=\alpha^{\log \alpha}$ for $\lambda \in \mathcal{L}, e^{\lambda}=\alpha \in \overline{\mathbf{Q}}^{\times}$.

Proof. Set $x_{1}=y_{1}=1, x_{2}=y_{2}=\lambda, \gamma=1, \alpha=0, \beta_{11}=1$, $\beta_{i j}=0$ for $(i, j) \neq(1,1)$.

Known: One at least of the two numbers

$$
e^{\lambda^{2}}=\alpha^{\log \alpha}, e^{\lambda^{3}}=\alpha^{(\log \alpha)^{2}}
$$

is transcendental.
Also a consequence of the sharp six exponentials Theorem!

Strong Five Exponentials Conjecture. Let x_{1}, x_{2} be Q-linearly independent and y_{1}, y_{2} be \mathbf{Q}-linearly independent. Then one at least of the five numbers

$$
x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}, x_{1} / x_{2}
$$

does not belong to $\widetilde{\mathcal{L}}$.

9 statements

Four exponentials

sharp
strong
Six exponentials

9 statements

Four exponentials

Conjecture

sharp
Five exponentials
strong Six exponentials

9 statements

Four exponentials

Conjecture

sharp
Five exponentials
strong

Four exponentials: three conjectures
Six exponentials: three theorems
Five exponentials: two conjectures (for sharp and strong) one theorem

Remark. The sharp 6 exponentials Theorem implies the 5 exponentials Theorem.

Consequence of the sharp 4 exponentials Conjecture

Let $\lambda_{i j}(i=1,2, j=1,2)$ be four non zero logarithms of algebraic numbers.

Assume

$$
\lambda_{11}-\frac{\lambda_{12} \lambda_{21}}{\lambda_{22}} \in \overline{\mathbf{Q}}
$$

Then

$$
\lambda_{11} \lambda_{22}=\lambda_{12} \lambda_{21}
$$

Proof. Assume

$$
\lambda_{11}-\frac{\lambda_{12} \lambda_{21}}{\lambda_{22}}=\beta \in \overline{\mathbf{Q}}
$$

Use the sharp four exponentials conjecture with

$$
\left(\lambda_{11}-\beta\right) \lambda_{22}=\lambda_{12} \lambda_{21}
$$

Consequence of the strong 4 exponentials Conjecture

Let $\lambda_{i j}(i=1,2, j=1,2)$ be four non zero logarithms of algebraic numbers.

Assume

$$
\frac{\lambda_{11} \lambda_{22}}{\lambda_{12} \lambda_{21}} \in \overline{\mathbf{Q}}
$$

Then

$$
\frac{\lambda_{11} \lambda_{22}}{\lambda_{12} \lambda_{21}} \in \mathbf{Q}
$$

Proof: Assume

$$
\frac{\lambda_{11} \lambda_{22}}{\lambda_{12} \lambda_{21}}=\beta \in \overline{\mathbf{Q}} .
$$

Use the strong four exponentials conjecture with

$$
\lambda_{11} \lambda_{22}=\beta \lambda_{12} \lambda_{21}
$$

Consequence of the strong 4 exponentials Conjecture
Let $\lambda_{i j}(i=1,2, j=1,2)$ be four non zero logarithms of algebraic numbers.

Assume

$$
\frac{\lambda_{11}}{\lambda_{12}}-\frac{\lambda_{21}}{\lambda_{22}} \in \overline{\mathbf{Q}} .
$$

Then

- either $\lambda_{11} / \lambda_{12} \in \mathbf{Q}$ and $\lambda_{21} / \lambda_{22} \in \mathbf{Q}$
- or $\lambda_{12} / \lambda_{22} \in \mathbf{Q}$ and

$$
\frac{\lambda_{11}}{\lambda_{12}}-\frac{\lambda_{21}}{\lambda_{22}} \in \mathbf{Q}
$$

Remark:

$$
\frac{\lambda_{11}}{\lambda_{12}}-\frac{b \lambda_{11}-a \lambda_{12}}{b \lambda_{12}}=\frac{a}{b} .
$$

Proof: Assume

$$
\frac{\lambda_{11}}{\lambda_{12}}-\frac{\lambda_{21}}{\lambda_{22}}=\beta \in \overline{\mathbf{Q}}
$$

Use the strong four exponentials conjecture with

$$
\lambda_{12}\left(\beta \lambda_{22}+\lambda_{21}\right)=\lambda_{11} \lambda_{22}
$$

Question: Let $\lambda_{i j}(i=1,2, j=1,2)$ be four non zero logarithms of algebraic numbers. Assume

$$
\lambda_{11} \lambda_{22}-\lambda_{12} \lambda_{21} \in \overline{\mathbf{Q}}
$$

Deduce

$$
\lambda_{11} \lambda_{22}=\lambda_{12} \lambda_{21}
$$

Question: Let $\lambda_{i j}(i=1,2, j=1,2)$ be four non zero logarithms of algebraic numbers. Assume

$$
\lambda_{11} \lambda_{22}-\lambda_{12} \lambda_{21} \in \overline{\mathbf{Q}}
$$

Deduce

$$
\lambda_{11} \lambda_{22}=\lambda_{12} \lambda_{21}
$$

Answer: This is a consequence of the Conjecture on algebraic independence of logarithms of algebraic numbers.

Consequences of the strong 6 exponentials Theorem

Let $\lambda_{i j}(i=1,2, j=1,2,3)$ be six non zero logarithms of algebraic numbers. Assume

- $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q} and
- $\lambda_{11}, \lambda_{12}, \lambda_{13}$ are linearly independent over \mathbf{Q}.
- One at least of the two numbers

$$
\lambda_{12}-\frac{\lambda_{11} \lambda_{22}}{\lambda_{21}}, \quad \lambda_{13}-\frac{\lambda_{11} \lambda_{23}}{\lambda_{21}}
$$

is transcendental.

- One at least of the two numbers

$$
\frac{\lambda_{12} \lambda_{21}}{\lambda_{11} \lambda_{22}}, \frac{\lambda_{13} \lambda_{21}}{\lambda_{11} \lambda_{23}}
$$

is transcendental.

- One at least of the two numbers

$$
\frac{\lambda_{12}}{\lambda_{11}}-\frac{\lambda_{22}}{\lambda_{21}}, \quad \frac{\lambda_{13}}{\lambda_{11}}-\frac{\lambda_{23}}{\lambda_{21}}
$$

is transcendental.

- Also one at least of the two numbers

$$
\frac{\lambda_{21}}{\lambda_{11}}-\frac{\lambda_{22}}{\lambda_{12}}, \quad \frac{\lambda_{21}}{\lambda_{11}}-\frac{\lambda_{23}}{\lambda_{13}}
$$

is transcendental.

Replacing λ_{21} by 1 .

- One at least of the two numbers

$$
\lambda_{12}-\lambda_{11} \lambda_{22}, \quad \lambda_{13}-\lambda_{11} \lambda_{23}
$$

is transcendental.

- The same holds for

$$
\frac{\lambda_{12}}{\lambda_{11}}-\lambda_{22}, \quad \frac{\lambda_{13}}{\lambda_{11}}-\lambda_{23} .
$$

is transcendental.

- Finally one at least of the two numbers

$$
\frac{\lambda_{11} \lambda_{22}}{\lambda_{12}}, \quad \frac{\lambda_{11} \lambda_{23}}{\lambda_{13}}
$$

is transcendental, and also one at least of the two numbers

$$
\frac{1}{\lambda_{11}}-\frac{\lambda_{22}}{\lambda_{12}}, \quad \frac{1}{\lambda_{11}}-\frac{\lambda_{23}}{\lambda_{13}}
$$

is transcendental.

Theorem 1. Let $\lambda_{i j}(i=1,2, j=1,2,3,4,5)$ be ten non zero logarithms of algebraic numbers. Assume

- $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q} and
- $\lambda_{11}, \ldots, \lambda_{15}$ are linearly independent over \mathbf{Q}.

Then one at least of the four numbers

$$
\lambda_{1 j} \lambda_{21}-\lambda_{2 j} \lambda_{11}, \quad(j=2,3,4,5)
$$

is transcendental.

Elliptic Analogue

Theorem 2. Let \wp and \wp^{*} be two non isogeneous Weierstraß elliptic functions with algebraic invariants g_{2}, g_{3} and g_{2}^{*}, g_{3}^{*} respectively. For $1 \leq j \leq 9$ let u_{j} (resp. u_{j}^{*}) be a non zero logarithm of an algebraic point of $\wp\left(r e s p . \wp^{*}\right)$. Assume u_{1}, \ldots, u_{9} are Q-linearly independent. Then one at least of the eight numbers

$$
u_{j} u_{1}^{*}-u_{j}^{*} u_{1} \quad(j=2, \ldots, 9)
$$

is transcendental
Motivation: periods of $K 3$ surfaces.

Sketch of Proofs

Theorem 3. Let $G=\mathbf{G}_{a}^{d_{0}} \times \mathbf{G}_{m}^{d_{1}} \times G_{2}$ be a commutative algebraic group over $\overline{\mathbf{Q}}$ of dimension $d=d_{0}+d_{1}+d_{2}$, V a hyperplane of the tangent space $T_{e}(G), Y$ a finitely generated subgroup of V of rank ℓ_{1} such that $\exp _{G}(Y) \subset G(\overline{\mathbf{Q}})$ with

$$
\ell_{1}>(d-1)\left(d_{1}+2 d_{2}\right)
$$

Then V contains a non zero algebraic Lie subalgebra of $T_{e}(G)$ defined over $\overline{\mathbf{Q}}$.

Sketch of Proof of Theorem 1

Assume

$$
\lambda_{1 j} \lambda_{21}-\lambda_{2 j} \lambda_{11}=\gamma_{j} \quad \text { for } \quad 1 \leq j \leq \ell_{1} .
$$

Take $G=\mathbf{G}_{a} \times \mathbf{G}_{m}^{2}, \quad d_{0}=1, \quad d_{1}=2, \quad G_{2}=\{0\}, \quad V$ is the hyperplane

$$
z_{0}=\lambda_{21} z_{1}-\lambda_{11} z_{2}
$$

and $Y=\mathbf{Z} y_{1}+\cdots+\mathbf{Z} y_{\ell_{1}}$ with

$$
y_{j}=\left(\gamma_{j}, \lambda_{1 j}, \lambda_{2 j}\right), \quad\left(1 \leq j \leq \ell_{1}\right)
$$

Since $(d-1)\left(d_{1}+2 d_{2}\right)=4$, we need $\ell_{1} \geq 5$.

Sketch of Proof of Theorem 2

Assume

$$
u_{j} u_{1}^{*}-u_{j}^{*} u_{1}=\gamma_{j} \quad \text { for } \quad 1 \leq j \leq \ell_{1} .
$$

Take $G=\mathbf{G}_{a} \times \mathcal{E} \times \mathcal{E}^{*}, \quad d_{0}=1, \quad d_{1}=0, \quad d_{2}=2, \quad V$ is the hyperplane

$$
z_{0}=u_{1}^{*} z_{1}-u_{1} z_{2}
$$

and $Y=\mathbf{Z} y_{1}+\cdots+\mathbf{Z} y_{\ell_{1}}$ with

$$
y_{j}=\left(\gamma_{j}, u_{j}, u_{j}^{*}\right), \quad\left(1 \leq j \leq \ell_{1}\right) .
$$

Since $(d-1)\left(d_{1}+2 d_{2}\right)=8$, we need $\ell_{1} \geq 9$.

In both cases we need to check that V does not contain a non zero Lie subalgebra of $T_{e}(G)$. For Theorem 1 this follows from the assumption
$\lambda_{11}, \lambda_{21}$ are Q-linearly independent,
while for Theorem 2 this follows from the assumption
$\mathcal{E}, \mathcal{E}^{*}$ are not isogeneous.

Further developments

- Abelian varieties in place of product of elliptic curves.
- Semi abelian varieties. Commutative algebraic groups.
- Taking periods into account.
- Conjectures (A. Grothendieck, Y. André, C. Bertolin.)
- Quadratic relations among logarithms of algebraic numbers.

