Number Theory Seminar at NCTS October 29, 2003

The four exponentials conjecture, the six exponentials theorem and related statements.

Michel Waldschmidt

miw@math.jussieu.fr

http://www.math.jussieu.fr/~miw/

Transcendental Number Theory

Liouville (1844). Transcendental numbers exist.

Hermite (1873). The number e is transcendental.

Lindemann (1882). The number π is transcendental.

Corollary: Squaring the circle using rule and compass only is not possible.

Theorem (Hermite-Lindemann). Let β be a non zero complex number. Set $\alpha = e^{\beta}$. Then one at least of the two numbers α, β is transcendental.

Corollary 1. If β is a non zero algebraic number, then e^{β} is transcendental.

Example. The numbers e and $e^{\sqrt{2}}$ are transcendental.

Corollary 2. If α is a non zero algebraic number and $\log \alpha$ a non zero logarithm of α , then $\log \alpha$ is transcendental.

Example. The numbers $\log 2$ and π are transcendental.

Recall: the set $\overline{\mathbf{Q}}$ of algebraic numbers is a subfield of \mathbf{C} - it is the algebraic closure of \mathbf{Q} into \mathbf{C} .

The exponential map

$$\begin{array}{rccc} \exp: & \mathbf{C} & \longrightarrow & \mathbf{C}^{\times} \\ & z & \longmapsto & e^z \end{array}$$

is a morphism from the additive group of \mathbf{C} onto the multiplicative group of \mathbf{C}^{\times} .

Hermite-Lindemann: $\overline{\mathbf{Q}}^{\times} \cap \exp(\overline{\mathbf{Q}}) = \{1\}.$

Also, if we define $\mathcal{L} = \exp^{-1}(\overline{\mathbf{Q}}^{\times})$, then $\overline{\mathbf{Q}} \cap \mathcal{L} = \{0\}$.

Theorem (Gel'fond-Schneider).

(1) Let λ_1 and λ_2 be two elements in \mathcal{L} which are linearly independent over \mathbf{Q} . Then λ_1 and λ_2 are linearly independent over $\overline{\mathbf{Q}}$.

(2) Let $\lambda \in \mathbb{C}$, $\lambda \neq 0$ and let $\beta \in \mathbb{C} \setminus \mathbb{Q}$. Then one at least of the three numbers

 $e^{\lambda}, \ \beta, \ e^{\beta\lambda}$

is transcendental.

Remark $(1) \iff (2)$ follows from

 $(\lambda_1, \lambda_2) \longleftrightarrow (\lambda, \beta \lambda)$ and $(\lambda_1, \lambda_2/\lambda_1) \longleftrightarrow (\lambda, \beta).$

Remarks.

(1) means:

$$\frac{\log \alpha_1}{\log \alpha_2} \not\in \overline{\mathbf{Q}} \setminus \mathbf{Q}.$$

(2) means: for $\alpha \in \mathbb{C} \setminus \{0\}$, $\beta \in \mathbb{C} \setminus \mathbb{Q}$ and any $\log \alpha \neq 0$, one at least of the three numbers

$$lpha, \quad eta \quad {\rm and} \quad lpha^eta = e^{eta \log lpha}$$

Corollaries. Transcendence of

$$\frac{\log 2}{\log 3}, \quad 2^{\sqrt{2}}, \quad e^{\pi}.$$

Proof. Take respectively

$$\lambda_1 = \log 2, \quad \lambda_2 = \log 3,$$

 $\lambda_1 = \log 2, \quad \lambda_2 = \sqrt{2} \log 2,$

$$\lambda_1 = i\pi, \quad \lambda_2 = \pi.$$

and

Theorem (A. Baker). Let $\lambda_1, \ldots, \lambda_n$ be elements in \mathcal{L} which are linearly independent over \mathbf{Q} . Then $1, \lambda_1, \ldots, \lambda_n$ are linearly independent over $\overline{\mathbf{Q}}$.

Corollary. Transcendence of numbers like

 $\beta_1 \log \alpha_1 + \dots + \beta_n \log \alpha_n$

and

 $e^{\beta_0}\alpha_1^{\beta_1}\cdots\alpha_n^{\beta_n}.$

Corollary 1. (Hermite-Lindemann) Transcendence of e^{β} .

Proof. Take n = 1 in Baker's Theorem.

Corollary 2. (Gel'fond-Schneider) Transcendence of α^{β} .

Proof. Take n = 2 in Baker's Theorem.

Baker's Theorem means: The injection of $\mathbf{Q} + \mathcal{L}$ into \mathbf{C} extends to an injection of $(\mathbf{Q} + \mathcal{L}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}}$ into \mathbf{C} . The image is the $\overline{\mathbf{Q}}$ -vector space $\widetilde{\mathcal{L}} \subset \mathbf{C}$ spanned by 1 and \mathcal{L} :

 $(\mathbf{Q} + \mathcal{L}) \otimes_{\mathbf{Q}} \overline{\mathbf{Q}} \simeq \widetilde{\mathcal{L}}.$

Algebraic independence of logarithms of algebraic numbers

Conjecture Let $\alpha_1, \ldots, \alpha_n$ be non zero algebraic numbers. For $1 \leq j \leq n$ let $\lambda_j \in \mathbb{C}$ satisfy $e^{\lambda_j} = \alpha_j$. Assume $\lambda_1, \ldots, \lambda_n$ are linearly independent over \mathbb{Q} . Then $\lambda_1, \ldots, \lambda_n$ are algebraically independent.

Write $\lambda_j = \log \alpha_j$.

If $\log \alpha_1, \ldots, \log \alpha_n$ are **Q**-linearly independent then they are algebraically independent.

Recall that \mathcal{L} is the \mathbf{Q} vector space of logarithms of algebraic numbers:

$$\mathcal{L} = \{\lambda \in \mathbf{C} \; ; \; e^{\lambda} \in \overline{\mathbf{Q}}\} = \{\log \alpha \; ; \; \alpha \in \overline{\mathbf{Q}}^{\times}\} = \exp^{-1}(\overline{\mathbf{Q}}^{\times}).$$

The conjecture on algebraic independence of logarithms of algebraic numbers can be stated:

The injection of \mathcal{L} into \mathbf{C} extends to an injection of the symmetric algebra $\operatorname{Sym}_{\mathbf{Q}}(\mathcal{L})$ on \mathcal{L} into \mathbf{C} .

Four Exponentials Conjecture

History.

A. Selberg (50's).

Th. Schneider(1957) - first problem.

- S Lang (60's).
- K. Ramachandra (1968).

Leopoldt's Conjecture on the p-adic rank of the units of an algebraic number field (non vanishing of the p-adic regulator).

Quadratic relations between logarithms of algebraic numbers

Homogeneous:

Four Exponentials Conjecture For i = 1, 2 and j = 1, 2, let α_{ij} be a non zero algebraic number and λ_{ij} a complex number satisfying $e^{\lambda_{ij}} = \alpha_{ij}$. Assume $\lambda_{11}, \lambda_{12}$ are linearly independent over \mathbf{Q} and also $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q} . Then

 $\lambda_{11}\lambda_{22} \neq \lambda_{12}\lambda_{21}.$

Quadratic relations between logarithms of algebraic numbers

Example. Transcendence of $2^{(\log 2)/\log 3}$:

 $(\log 2)^2 = (\log 3)(\log \alpha)?$

Other open problem: Transcendence of $2^{\log 2}$.

Non homogeneous quadratic relations $(\log \alpha)(\log \beta) = \log \gamma$.

 $(\log 2)^2 = \log \gamma?$

Quadratic relations between logarithms of algebraic numbers

Non homogeneous:

Three exponentials Conjecture Let λ_1 , λ_2 , λ_3 be three elements in \mathcal{L} satisfying $\lambda_1 \lambda_2 = \lambda_3$. Then $\lambda_3 = 0$.

Example. Special case of the open question on the transcendence of $\alpha^{\log \alpha}$: transcendence of e^{π^2} ?

Four Exponentials Conjecture For i = 1, 2 and j = 1, 2, let α_{ij} be a non zero algebraic number and λ_{ij} a complex number satisfying $e^{\lambda_{ij}} = \alpha_{ij}$. Assume $\lambda_{11}, \lambda_{12}$ are linearly independent over \mathbf{Q} and also $\lambda_{11}, \lambda_{21}$ are linearly independent over \mathbf{Q} . Then

 $\lambda_{11}\lambda_{22} \neq \lambda_{12}\lambda_{21}.$

Notice:

$$\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21} = \det \begin{vmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{12} & \lambda_{22} \end{vmatrix}.$$

http://www.math.jussieu.fr/~miw/

Four Exponentials Conjecture (again) Let x_1, x_2 be two Qlinearly independent complex numbers and y_1, y_2 also two Qlinearly independent complex numbers. Then one at least of the four numbers

 $e^{x_1y_1}, e^{x_1y_2}, e^{x_2y_1}, e^{x_2y_2}$

Four Exponentials Conjecture (again) Let x_1, x_2 be two Qlinearly independent complex numbers and y_1, y_2 also two Qlinearly independent complex numbers. Then one at least of the four numbers

$$e^{x_1y_1}, e^{x_1y_2}, e^{x_2y_1}, e^{x_2y_2}$$

is transcendental. Hint: Set

$$x_i y_j = \lambda_{ij} \ (i = 1, 2; \ j = 1, 2).$$

A rank one matrix is a matrix of the form

$$egin{pmatrix} x_1y_1 & x_1y_2 \ x_2y_1 & x_2y_2 \end{pmatrix}.$$

http://www.math.jussieu.fr/~miw/

Sharp Four Exponentials Conjecture. If x_1, x_2 are two complex numbers which are Q-linearly independent, if y_1, y_2 , are two complex numbers which are Q-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$ are four algebraic numbers such that the four numbers

$$e^{x_1y_1-\beta_{11}}, e^{x_1y_2-\beta_{12}}, e^{x_2y_1-\beta_{21}}, e^{x_2y_2-\beta_{22}}$$

are algebraic, then $x_i y_j = \beta_{ij}$ for i = 1, 2 and j = 1, 2.

Sharp Four Exponentials Conjecture. If x_1, x_2 are two complex numbers which are Q-linearly independent, if y_1, y_2 , are two complex numbers which are Q-linearly independent and if $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}$ are four algebraic numbers such that the four numbers

$$e^{x_1y_1-\beta_{11}}, e^{x_1y_2-\beta_{12}}, e^{x_2y_1-\beta_{21}}, e^{x_2y_2-\beta_{22}}$$

are algebraic, then $x_i y_j = \beta_{ij}$ for i = 1, 2 and j = 1, 2. If $x_i y_j = \lambda_{ij} + \beta_{ij}$ then

 $x_1 x_2 y_1 y_2 = (\lambda_{11} + \beta_{11})(\lambda_{22} + \beta_{22}) = (\lambda_{12} + \beta_{12})(\lambda_{21} + \beta_{21}).$

Recall that $\widetilde{\mathcal{L}}$ is the $\overline{\mathbf{Q}}$ -vector space spanned by 1 and \mathcal{L} (linear combinations of logarithms of algebraic numbers with algebraic coefficients):

$$\widetilde{\mathcal{L}} = \left\{ \beta_0 + \sum_{h=1}^{\ell} \beta_h \log \alpha_h \; ; \; \ell \ge 0, \; \alpha' \text{s in } \overline{\mathbf{Q}}^{\times}, \; \beta' \text{s in } \overline{\mathbf{Q}} \right\}$$

Strong Four Exponentials Conjecture. If x_1, x_2 are $\overline{\mathbf{Q}}$ -linearly independent and if y_1, y_2 , are $\overline{\mathbf{Q}}$ -linearly independent, then one at least of the four numbers

 $x_1y_1, x_1y_2, x_2y_1, x_2y_2$

does not belong to $\widetilde{\mathcal{L}}$.

Six Exponentials Theorem. If x_1, x_2 are two complex numbers which are **Q**-linearly independent, if y_1, y_2, y_3 are three complex numbers which are **Q**-linearly independent, then one at least of the six numbers

$$e^{x_i y_j}$$
 $(i = 1, 2, j = 1, 2, 3)$

Sharp Six Exponentials Theorem. If x_1, x_2 are two complex numbers which are Q-linearly independent, if y_1, y_2, y_3 are three complex numbers which are Q-linearly independent and if β_{ij} are six algebraic numbers such that

$$e^{x_i y_j - \beta_{ij}} \in \overline{\mathbf{Q}} \quad for \quad i = 1, 2, \ j = 1, 2, 3,$$

then $x_i y_j = \beta_{ij}$ for i = 1, 2 and j = 1, 2, 3.

Strong Six Exponentials Theorem (*D. Roy***).** If x_1, x_2 are $\overline{\mathbf{Q}}$ -linearly independent and if y_1, y_2, y_3 are $\overline{\mathbf{Q}}$ -linearly independent, then one at least of the six numbers

 $x_i y_j$ (i = 1, 2, j = 1, 2, 3)

does not belong to $\widetilde{\mathcal{L}}$.

Five Exponentials Theorem. If x_1, x_2 are Q-linearly independent, y_1, y_2 are Q-linearly independent and γ is a non zero algebraic number, then one at least of the five numbers

 $e^{x_1y_1}, e^{x_1y_2}, e^{x_2y_1}, e^{x_2y_2}, e^{\gamma x_2/x_1}$

is transcendental.

This is a consequence of the sharp six exponentials Theorem: set $y_3 = \gamma/x_1$ and use Baker's Theorem for checking that y_1, y_2, y_3 are linearly independent over **Q**.

Sharp Five Exponentials Conjecture. If x_1, x_2 are **Q**-linearly independent, if y_1, y_2 are **Q**-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$e^{x_1y_1-\beta_{11}}, e^{x_1y_2-\beta_{12}}, e^{x_2y_1-\beta_{21}}, e^{x_2y_2-\beta_{22}}, e^{(\gamma x_2/x_1)-\alpha}$$

are algebraic, then $x_i y_j = \beta_{ij}$ for i = 1, 2, j = 1, 2 and also $\gamma x_2 = \alpha x_1$.

Sharp Five Exponentials Conjecture. If x_1, x_2 are **Q**-linearly independent, if y_1, y_2 are **Q**-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$e^{x_1y_1-\beta_{11}}, e^{x_1y_2-\beta_{12}}, e^{x_2y_1-\beta_{21}}, e^{x_2y_2-\beta_{22}}, e^{(\gamma x_2/x_1)-\alpha}$$

are algebraic, then $x_i y_j = \beta_{ij}$ for i = 1, 2, j = 1, 2 and also $\gamma x_2 = \alpha x_1$.

Difficult case: when $y_1, y_2, \gamma/x_1$ are Q-linearly dependent.

Example: $x_1 = y_1 = \gamma = 1$.

Sharp Five Exponentials Conjecture. If x_1, x_2 are **Q**-linearly independent, if y_1, y_2 are **Q**-linearly independent and if $\alpha, \beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma$ are six algebraic numbers with $\gamma \neq 0$ such that

$$e^{x_1y_1-\beta_{11}}, e^{x_1y_2-\beta_{12}}, e^{x_2y_1-\beta_{21}}, e^{x_2y_2-\beta_{22}}, e^{(\gamma x_2/x_1)-\alpha}$$

are algebraic, then $x_i y_j = \beta_{ij}$ for i = 1, 2, j = 1, 2 and also $\gamma x_2 = \alpha x_1$.

Consequence: Transcendence of the number e^{π^2} .

Proof. Set $x_1 = y_1 = 1$, $x_2 = y_2 = i\pi$, $\gamma = 1$, $\alpha = 0$, $\beta_{11} = 1$, $\beta_{ij} = 0$ for $(i, j) \neq (1, 1)$.

Known: One at least of the two statements is true.

• e^{π^2} is transcendental.

• The two numbers e and π are algebraically independent.

Other consequence of the sharp five exponentials conjecture: Transcendence of the number $e^{\lambda^2} = \alpha^{\log \alpha}$ for $\lambda \in \mathcal{L}, e^{\lambda} = \alpha \in \overline{\mathbf{Q}}^{\times}$.

Proof. Set $x_1 = y_1 = 1$, $x_2 = y_2 = \lambda$, $\gamma = 1$, $\alpha = 0$, $\beta_{11} = 1$, $\beta_{ij} = 0$ for $(i, j) \neq (1, 1)$.

Other consequence of the sharp five exponentials conjecture: Transcendence of the number $e^{\lambda^2} = \alpha^{\log \alpha}$ for $\lambda \in \mathcal{L}, \ e^{\lambda} = \alpha \in \overline{\mathbf{Q}}^{\times}$.

Proof. Set $x_1 = y_1 = 1$, $x_2 = y_2 = \lambda$, $\gamma = 1$, $\alpha = 0$, $\beta_{11} = 1$, $\beta_{ij} = 0$ for $(i, j) \neq (1, 1)$.

Known: One at least of the two numbers

$$e^{\lambda^2} = \alpha^{\log \alpha}, \ e^{\lambda^3} = \alpha^{(\log \alpha)^2}$$

is transcendental.

Also a consequence of the sharp six exponentials Theorem!

http://www.math.jussieu.fr/~miw/

Strong Five Exponentials Conjecture. Let x_1, x_2 be **Q**-linearly independent and y_1, y_2 be **Q**-linearly independent. Then one at least of the five numbers

 $x_1y_1, x_1y_2, x_2y_1, x_2y_2, x_1/x_2$

does not belong to $\widetilde{\mathcal{L}}$.

	9 statements	
	Four exponentials	
sharp	Five exponentials	
strong	Six exponentials	

	9 statements	
	Four exponentials	
sharp	Five exponentials	Conjecture
strong	Six exponentials	

	9 statements		
	Four exponentials		
sharp	Five exponentials	Conjecture	
strong	Six exponentials	пеоген	
Four exponentials:	three conjectures		
Six exponentials:	three theorems		
Five exponentials:	two conjectures (for shone theorem	arp and strong)	

Alg. indep. C

$$\downarrow\downarrow$$

Strong 4 exp C \Rightarrow Strong 5 exp C \Rightarrow Strong 6 exp T
 $\downarrow\downarrow$
Sharp 4 exp C \Rightarrow Sharp 5 exp C \Rightarrow Sharp 6 exp T
 $\downarrow\downarrow$
4 exp C \Rightarrow 5 exp T \Rightarrow 6 exp T

Remark. The sharp 6 exponentials Theorem implies the 5 exponentials Theorem.

Consequence of the sharp 4 exponentials Conjecture

Let λ_{ij} (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic numbers.

Assume

$$\lambda_{11} - rac{\lambda_{12}\lambda_{21}}{\lambda_{22}} \in \overline{\mathbf{Q}}.$$

Then

 $\lambda_{11}\lambda_{22} = \lambda_{12}\lambda_{21}.$

http://www.math.jussieu.fr/~miw/

Proof. Assume

$$\lambda_{11} - \frac{\lambda_{12}\lambda_{21}}{\lambda_{22}} = \beta \in \overline{\mathbf{Q}}.$$

Use the sharp four exponentials conjecture with

$$(\lambda_{11} - \beta)\lambda_{22} = \lambda_{12}\lambda_{21}.$$

Consequence of the strong 4 exponentials Conjecture

Let λ_{ij} (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic numbers.

Assume

$$\frac{\lambda_{11}\lambda_{22}}{\lambda_{12}\lambda_{21}}\in\overline{\mathbf{Q}}.$$

Then

 $\frac{\lambda_{11}\lambda_{22}}{\lambda_{12}\lambda_{21}} \in \mathbf{Q}.$

 $http://www.math.jussieu.fr/{\sim}miw/$

Proof: Assume

$$\frac{\lambda_{11}\lambda_{22}}{\lambda_{12}\lambda_{21}} = \beta \in \overline{\mathbf{Q}}.$$

Use the strong four exponentials conjecture with

 $\lambda_{11}\lambda_{22} = \beta\lambda_{12}\lambda_{21}.$

Consequence of the strong 4 exponentials Conjecture

Let λ_{ij} (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic numbers.

Assume

$$\frac{\lambda_{11}}{\lambda_{12}} - \frac{\lambda_{21}}{\lambda_{22}} \in \overline{\mathbf{Q}}.$$

Then

- either $\lambda_{11}/\lambda_{12} \in \mathbf{Q}$ and $\lambda_{21}/\lambda_{22} \in \mathbf{Q}$
- or $\lambda_{12}/\lambda_{22} \in \mathbf{Q}$ and

$$\frac{\lambda_{11}}{\lambda_{12}} - \frac{\lambda_{21}}{\lambda_{22}} \in \mathbf{Q}.$$

Remark: $\frac{\lambda_{11}}{\lambda_{12}} - \frac{b\lambda_{11} - a\lambda_{12}}{b\lambda_{12}} = \frac{a}{b}$

Proof: Assume $\frac{\lambda_{11}}{\lambda_{12}} - \frac{\lambda_{21}}{\lambda_{22}} = \beta \in \overline{\mathbf{Q}}.$

Use the strong four exponentials conjecture with

$$\lambda_{12}(\beta\lambda_{22}+\lambda_{21})=\lambda_{11}\lambda_{22}.$$

 $http://www.math.jussieu.fr/{\sim}miw/$

Question: Let λ_{ij} (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic numbers. Assume

$$\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21} \in \overline{\mathbf{Q}}.$$

Deduce

 $\lambda_{11}\lambda_{22} = \lambda_{12}\lambda_{21}.$

Question: Let λ_{ij} (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic numbers. Assume

$$\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21} \in \overline{\mathbf{Q}}.$$

Deduce

$$\lambda_{11}\lambda_{22} = \lambda_{12}\lambda_{21}.$$

Answer: This is a consequence of the Conjecture on algebraic independence of logarithms of algebraic numbers.

Consequences of the strong 6 exponentials Theorem

Let λ_{ij} (i = 1, 2, j = 1, 2, 3) be six non zero logarithms of algebraic numbers. Assume

- $\lambda_{11}, \lambda_{21}$ are linearly independent over Q and
- $\lambda_{11}, \lambda_{12}, \lambda_{13}$ are linearly independent over **Q**.

• One at least of the two numbers

$$\lambda_{12} - \frac{\lambda_{11}\lambda_{22}}{\lambda_{21}}, \quad \lambda_{13} - \frac{\lambda_{11}\lambda_{23}}{\lambda_{21}}$$

is transcendental.

• One at least of the two numbers

$$\frac{\lambda_{12}\lambda_{21}}{\lambda_{11}\lambda_{22}}, \quad \frac{\lambda_{13}\lambda_{21}}{\lambda_{11}\lambda_{23}}$$

• One at least of the two numbers

$$\frac{\lambda_{12}}{\lambda_{11}} - \frac{\lambda_{22}}{\lambda_{21}}, \quad \frac{\lambda_{13}}{\lambda_{11}} - \frac{\lambda_{23}}{\lambda_{21}}$$

is transcendental.

• Also one at least of the two numbers

$$\frac{\lambda_{21}}{\lambda_{11}} - \frac{\lambda_{22}}{\lambda_{12}}, \quad \frac{\lambda_{21}}{\lambda_{11}} - \frac{\lambda_{23}}{\lambda_{13}}$$

Replacing λ_{21} by 1.

• One at least of the two numbers

$$\lambda_{12} - \lambda_{11}\lambda_{22}, \quad \lambda_{13} - \lambda_{11}\lambda_{23}$$

is transcendental.

• The same holds for

$$\frac{\lambda_{12}}{\lambda_{11}} - \lambda_{22}, \quad \frac{\lambda_{13}}{\lambda_{11}} - \lambda_{23}.$$

• Finally one at least of the two numbers

$$\frac{\lambda_{11}\lambda_{22}}{\lambda_{12}}, \quad \frac{\lambda_{11}\lambda_{23}}{\lambda_{13}}$$

is transcendental, and also one at least of the two numbers

$$\frac{1}{\lambda_{11}} - \frac{\lambda_{22}}{\lambda_{12}}, \quad \frac{1}{\lambda_{11}} - \frac{\lambda_{23}}{\lambda_{13}}.$$

Theorem 1. Let λ_{ij} (i = 1, 2, j = 1, 2, 3, 4, 5) be ten non zero logarithms of algebraic numbers. Assume • $\lambda_{11}, \lambda_{21}$ are linearly independent over **Q** and

• $\lambda_{11}, \ldots, \lambda_{15}$ are linearly independent over **Q**. Then one at least of the four numbers

$$\lambda_{1j}\lambda_{21} - \lambda_{2j}\lambda_{11}, \quad (j = 2, 3, 4, 5)$$

Elliptic Analogue

Theorem 2. Let \wp and \wp^* be two non isogeneous Weierstraß elliptic functions with algebraic invariants g_2 , g_3 and g_2^* , g_3^* respectively. For $1 \leq j \leq 9$ let u_j (resp. u_j^*) be a non zero logarithm of an algebraic point of \wp (resp. \wp^*). Assume u_1, \ldots, u_9 are **Q**-linearly independent. Then one at least of the eight numbers

$$u_j u_1^* - u_j^* u_1 \quad (j = 2, \dots, 9)$$

 $is\ transcendental$

Motivation: periods of K3 surfaces.

http://www.math.jussieu.fr/~miw/

Sketch of Proofs

Theorem 3. Let $G = \mathbf{G}_a^{d_0} \times \mathbf{G}_m^{d_1} \times G_2$ be a commutative algebraic group over $\overline{\mathbf{Q}}$ of dimension $d = d_0 + d_1 + d_2$, V a hyperplane of the tangent space $T_e(G)$, Y a finitely generated subgroup of V of rank ℓ_1 such that $\exp_G(Y) \subset G(\overline{\mathbf{Q}})$ with

 $\ell_1 > (d-1)(d_1 + 2d_2).$

Then V contains a non zero algebraic Lie subalgebra of $T_e(G)$ defined over $\overline{\mathbf{Q}}$.

Sketch of Proof of Theorem 1

Assume

$$\lambda_{1j}\lambda_{21} - \lambda_{2j}\lambda_{11} = \gamma_j \quad \text{for} \quad 1 \le j \le \ell_1.$$

Take $G = \mathbf{G}_a \times \mathbf{G}_m^2$, $d_0 = 1$, $d_1 = 2$, $G_2 = \{0\}$, V is the hyperplane

$$z_0 = \lambda_{21} z_1 - \lambda_{11} z_2$$

and $Y = \mathbf{Z}y_1 + \cdots + \mathbf{Z}y_{\ell_1}$ with

$$y_j = (\gamma_j, \lambda_{1j}, \lambda_{2j}), \quad (1 \le j \le \ell_1).$$

Since $(d-1)(d_1+2d_2) = 4$, we need $\ell_1 \ge 5$.

http://www.math.jussieu.fr/~miw/

Sketch of Proof of Theorem 2

Assume

$$u_j u_1^* - u_j^* u_1 = \gamma_j \text{ for } 1 \le j \le \ell_1.$$

Take $G = \mathbf{G}_a \times \mathcal{E} \times \mathcal{E}^*$, $d_0 = 1$, $d_1 = 0$, $d_2 = 2$, V is the hyperplane

$$z_0 = u_1^* z_1 - u_1 z_2$$

and $Y = \mathbf{Z}y_1 + \cdots + \mathbf{Z}y_{\ell_1}$ with

$$y_j = (\gamma_j, u_j, u_j^*), \quad (1 \le j \le \ell_1).$$

Since $(d-1)(d_1+2d_2) = 8$, we need $\ell_1 \ge 9$.

http://www.math.jussieu.fr/~miw/

In both cases we need to check that V does not contain a non zero Lie subalgebra of $T_e(G)$. For Theorem 1 this follows from the assumption

 $\lambda_{11}, \lambda_{21}$ are Q-linearly independent,

while for Theorem 2 this follows from the assumption

 $\mathcal{E}, \mathcal{E}^*$ are not isogeneous.

Further developments

- Abelian varieties in place of product of elliptic curves.
- Semi abelian varieties. Commutative algebraic groups.
- Taking periods into account.
- Conjectures (A. Grothendieck, Y. André, C. Bertolin.)
- Quadratic relations among logarithms of algebraic numbers.