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Transcendental Number Theory

Liouville (1844). Transcendental numbers exist.

Hermite (1873). The number e is transcendental.

Lindemann (1882). The number π is transcendental.

Corollary: Squaring the circle using rule and compass only is not

possible.
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Theorem (Hermite-Lindemann). Let β be a non zero complex

number. Set α = eβ. Then one at least of the two numbers α, β

is transcendental.

Corollary 1. If β is a non zero algebraic number, then eβ is

transcendental.

Example. The numbers e and e
√

2 are transcendental.

Corollary 2. If α is a non zero algebraic number and log α a non

zero logarithm of α, then log α is transcendental.

Example. The numbers log 2 and π are transcendental.
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Recall: the set Q of algebraic numbers is a subfield of C - it is

the algebraic closure of Q into C.

The exponential map

exp : C −→ C×

z 7−→ ez

is a morphism from the additive group of C onto the multiplicative

group of C×.

Hermite-Lindemann: Q
× ∩ exp(Q) = {1}.

Also, if we define L = exp−1(Q
×
), then Q ∩ L = {0}.
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Theorem (Gel’fond-Schneider).

(1) Let λ1 and λ2 be two elements in L which are linearly

independent over Q. Then λ1 and λ2 are linearly independent

over Q.

(2) Let λ ∈ C, λ 6= 0 and let β ∈ C \Q. Then one at least of

the three numbers

eλ, β, eβλ

is transcendental.

Remark (1) ⇐⇒(2) follows from

(λ1, λ2)←→ (λ, βλ) and (λ1, λ2/λ1)←→ (λ, β).
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Remarks.

(1) means:
log α1

log α2
6∈ Q \Q.

(2) means: for α ∈ C \ {0}, β ∈ C \Q and any log α 6= 0, one

at least of the three numbers

α, β and αβ = eβ log α

is transcendental.
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Corollaries. Transcendence of

log 2
log 3

, 2
√

2, eπ.

Proof. Take respectively

λ1 = log 2, λ2 = log 3,

λ1 = log 2, λ2 =
√

2 log 2,

and

λ1 = iπ, λ2 = π.
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Theorem (A. Baker). Let λ1, . . . , λn be elements in L which

are linearly independent over Q. Then 1, λ1, . . . , λn are linearly

independent over Q.

Corollary. Transcendence of numbers like

β1 log α1 + · · ·+ βn log αn

and

eβ0αβ1
1 · · ·αβn

n .
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Corollary 1. (Hermite-Lindemann) Transcendence of eβ.

Proof. Take n = 1 in Baker’s Theorem.

Corollary 2. (Gel’fond-Schneider) Transcendence of αβ.

Proof. Take n = 2 in Baker’s Theorem.

Baker’s Theorem means: The injection of Q + L into C extends

to an injection of (Q + L)⊗Q Q into C. The image is the

Q-vector space L̃ ⊂ C spanned by 1 and L:

(Q + L)⊗Q Q ' L̃.
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Algebraic independence of logarithms of algebraic numbers

Conjecture Let α1, . . . , αn be non zero algebraic numbers. For
1 ≤ j ≤ n let λj ∈ C satisfy eλj = αj. Assume λ1, . . . , λn are
linearly independent over Q. Then λ1, . . . , λn are algebraically
independent.

Write λj = log αj.

If log α1, . . . , log αn are Q-linearly independent then they are
algebraically independent.
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Recall that L is the Q vector space of logarithms of algebraic

numbers:

L = {λ ∈ C ; eλ ∈ Q} = {log α ; α ∈ Q
×} = exp−1(Q

×
).

The conjecture on algebraic independence of logarithms of

algebraic numbers can be stated:

The injection of L into C extends to an injection of the
symmetric algebra SymQ(L) on L into C.
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Four Exponentials Conjecture

History.

A. Selberg (50’s).

Th. Schneider(1957) - first problem.

S Lang (60’s).

K. Ramachandra (1968).

Leopoldt’s Conjecture on the p-adic rank of the units of an

algebraic number field (non vanishing of the p-adic regulator).
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Quadratic relations between logarithms of algebraic
numbers

Homogeneous:

Four Exponentials Conjecture For i = 1, 2 and j = 1, 2, let
αij be a non zero algebraic number and λij a complex number
satisfying eλij = αij. Assume λ11, λ12 are linearly independent
over Q and also λ11, λ21 are linearly independent over Q. Then

λ11λ22 6= λ12λ21.
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Quadratic relations between logarithms of algebraic
numbers

Example. Transcendence of 2(log 2)/ log 3 :

(log 2)2 = (log 3)(log α)?

Other open problem: Transcendence of 2log 2.

Non homogeneous quadratic relations (log α)(log β) = log γ.

(log 2)2 = log γ?
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Quadratic relations between logarithms of algebraic
numbers

Non homogeneous:

Three exponentials Conjecture Let λ1, λ2, λ3 be three
elements in L satisfying λ1λ2 = λ3. Then λ3 = 0.

Example. Special case of the open question on the transcendence

of αlog α: transcendence of eπ2
?
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Four Exponentials Conjecture For i = 1, 2 and j = 1, 2, let
αij be a non zero algebraic number and λij a complex number
satisfying eλij = αij. Assume λ11, λ12 are linearly independent
over Q and also λ11, λ21 are linearly independent over Q. Then

λ11λ22 6= λ12λ21.

Notice:

λ11λ22 − λ12λ21 = det
∣∣∣∣ λ11 λ12

λ12 λ22

∣∣∣∣ .
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Four Exponentials Conjecture (again) Let x1, x2 be two Q-
linearly independent complex numbers and y1, y2 also two Q-
linearly independent complex numbers. Then one at least of
the four numbers

ex1y1, ex1y2, ex2y1, ex2y2

is transcendental.
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Four Exponentials Conjecture (again) Let x1, x2 be two Q-
linearly independent complex numbers and y1, y2 also two Q-
linearly independent complex numbers. Then one at least of
the four numbers

ex1y1, ex1y2, ex2y1, ex2y2

is transcendental.
Hint: Set

xiyj = λij (i = 1, 2; j = 1, 2).

A rank one matrix is a matrix of the form(
x1y1 x1y2

x2y1 x2y2

)
.
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Sharp Four Exponentials Conjecture. If x1, x2 are two
complex numbers which are Q-linearly independent, if y1, y2,

are two complex numbers which are Q-linearly independent
and if β11, β12, β21, β22 are four algebraic numbers such that
the four numbers

ex1y1−β11, ex1y2−β12, ex2y1−β21, ex2y2−β22

are algebraic, then xiyj = βij for i = 1, 2 and j = 1, 2.
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Sharp Four Exponentials Conjecture. If x1, x2 are two
complex numbers which are Q-linearly independent, if y1, y2,

are two complex numbers which are Q-linearly independent
and if β11, β12, β21, β22 are four algebraic numbers such that
the four numbers

ex1y1−β11, ex1y2−β12, ex2y1−β21, ex2y2−β22

are algebraic, then xiyj = βij for i = 1, 2 and j = 1, 2.

If xiyj = λij + βij then

x1x2y1y2 = (λ11 + β11)(λ22 + β22) = (λ12 + β12)(λ21 + β21).
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Recall that L̃ is the Q-vector space spanned by 1 and L (linear

combinations of logarithms of algebraic numbers with algebraic coefficients):

L̃ =

{
β0 +

∑̀
h=1

βh log αh ; ` ≥ 0, α’s in Q
×
, β’s in Q

}

Strong Four Exponentials Conjecture. If x1, x2 are Q-
linearly independent and if y1, y2, are Q-linearly independent,
then one at least of the four numbers

x1y1, x1y2, x2y1, x2y2

does not belong to L̃.
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Six Exponentials Theorem. If x1, x2 are two complex
numbers which are Q-linearly independent, if y1, y2, y3 are
three complex numbers which are Q-linearly independent, then
one at least of the six numbers

exiyj (i = 1, 2, j = 1, 2, 3)

is transcendental.
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Sharp Six Exponentials Theorem. If x1, x2 are two complex
numbers which are Q-linearly independent, if y1, y2, y3 are
three complex numbers which are Q-linearly independent and
if βij are six algebraic numbers such that

exiyj−βij ∈ Q for i = 1, 2, j = 1, 2, 3,

then xiyj = βij for i = 1, 2 and j = 1, 2, 3.
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Strong Six Exponentials Theorem (D. Roy). If x1, x2

are Q-linearly independent and if y1, y2, y3 are Q-linearly
independent, then one at least of the six numbers

xiyj (i = 1, 2, j = 1, 2, 3)

does not belong to L̃.
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Five Exponentials Theorem. If x1, x2 are Q-linearly
independent, y1, y2 are Q-linearly independent and γ is a non
zero algebraic number, then one at least of the five numbers

ex1y1, ex1y2, ex2y1, ex2y2, eγx2/x1

is transcendental.

This is a consequence of the sharp six exponentials Theorem: set

y3 = γ/x1 and use Baker’s Theorem for checking that y1, y2, y3

are linearly independent over Q.
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Sharp Five Exponentials Conjecture. If x1, x2 are Q-
linearly independent, if y1, y2 are Q-linearly independent and
if α, β11, β12, β21, β22, γ are six algebraic numbers with γ 6= 0
such that

ex1y1−β11, ex1y2−β12, ex2y1−β21, ex2y2−β22, e(γx2/x1)−α

are algebraic, then xiyj = βij for i = 1, 2, j = 1, 2 and also
γx2 = αx1.
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Sharp Five Exponentials Conjecture. If x1, x2 are Q-
linearly independent, if y1, y2 are Q-linearly independent and
if α, β11, β12, β21, β22, γ are six algebraic numbers with γ 6= 0
such that

ex1y1−β11, ex1y2−β12, ex2y1−β21, ex2y2−β22, e(γx2/x1)−α

are algebraic, then xiyj = βij for i = 1, 2, j = 1, 2 and also
γx2 = αx1.

Difficult case: when y1, y2, γ/x1 are Q-linearly dependent.

Example: x1 = y1 = γ = 1.
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Sharp Five Exponentials Conjecture. If x1, x2 are Q-
linearly independent, if y1, y2 are Q-linearly independent and
if α, β11, β12, β21, β22, γ are six algebraic numbers with γ 6= 0
such that

ex1y1−β11, ex1y2−β12, ex2y1−β21, ex2y2−β22, e(γx2/x1)−α

are algebraic, then xiyj = βij for i = 1, 2, j = 1, 2 and also
γx2 = αx1.

Consequence: Transcendence of the number eπ2
.

Proof. Set x1 = y1 = 1, x2 = y2 = iπ, γ = 1, α = 0, β11 = 1,

βij = 0 for (i, j) 6= (1, 1).
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Known: One at least of the two statements is true.

• eπ2
is transcendental.

• The two numbers e and π are algebraically independent.
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Other consequence of the sharp five exponentials
conjecture: Transcendence of the number eλ2

= αlog α for
λ ∈ L, eλ = α ∈ Q

×
.

Proof. Set x1 = y1 = 1, x2 = y2 = λ, γ = 1, α = 0, β11 = 1,

βij = 0 for (i, j) 6= (1, 1).
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Other consequence of the sharp five exponentials
conjecture: Transcendence of the number eλ2

= αlog α for
λ ∈ L, eλ = α ∈ Q

×
.

Proof. Set x1 = y1 = 1, x2 = y2 = λ, γ = 1, α = 0, β11 = 1,

βij = 0 for (i, j) 6= (1, 1).

Known: One at least of the two numbers

eλ2
= αlog α, eλ3

= α(log α)2

is transcendental.

Also a consequence of the sharp six exponentials Theorem!
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Strong Five Exponentials Conjecture. Let x1, x2 be
Q-linearly independent and y1, y2 be Q-linearly independent.
Then one at least of the five numbers

x1y1, x1y2, x2y1, x2y2, x1/x2

does not belong to L̃.
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9 statements

Four exponentials

sharp Five exponentials

strong Six exponentials
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9 statements

Four exponentials

Conjecture

sharp Five exponentials

Theorem

strong Six exponentials
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9 statements

Four exponentials

Conjecture

sharp Five exponentials

Theorem

strong Six exponentials

Four exponentials: three conjectures

Six exponentials: three theorems

Five exponentials: two conjectures (for sharp and strong)

one theorem

http://www.math.jussieu.fr/∼miw/ 35



Alg. indep. C
⇓

Strong 4 exp C ⇒ Strong 5 exp C ⇒ Strong 6 exp T
⇓ ⇓ ⇓

Sharp 4 exp C ⇒ Sharp 5 exp C ⇒ Sharp 6 exp T
⇓ ⇓ ⇓

4 exp C ⇒ 5 exp T ⇒ 6 exp T

Remark. The sharp 6 exponentials Theorem implies the 5

exponentials Theorem.
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Consequence of the sharp 4 exponentials Conjecture

Let λij (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic

numbers.

Assume

λ11 −
λ12λ21

λ22
∈ Q.

Then

λ11λ22 = λ12λ21.
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Proof. Assume

λ11 −
λ12λ21

λ22
= β ∈ Q.

Use the sharp four exponentials conjecture with

(λ11 − β)λ22 = λ12λ21.
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Consequence of the strong 4 exponentials Conjecture

Let λij (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic

numbers.

Assume
λ11λ22

λ12λ21
∈ Q.

Then

λ11λ22

λ12λ21
∈ Q.
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Proof: Assume
λ11λ22

λ12λ21
= β ∈ Q.

Use the strong four exponentials conjecture with

λ11λ22 = βλ12λ21.
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Consequence of the strong 4 exponentials Conjecture

Let λij (i = 1, 2, j = 1, 2) be four non zero logarithms of algebraic

numbers.

Assume
λ11

λ12
− λ21

λ22
∈ Q.

Then

• either λ11/λ12 ∈ Q and λ21/λ22 ∈ Q
• or λ12/λ22 ∈ Q and

λ11

λ12
− λ21

λ22
∈ Q.
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Remark:
λ11

λ12
− bλ11 − aλ12

bλ12
=

a

b
·

Proof: Assume
λ11

λ12
− λ21

λ22
= β ∈ Q.

Use the strong four exponentials conjecture with

λ12(βλ22 + λ21) = λ11λ22.
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Question: Let λij (i = 1, 2, j = 1, 2) be four non zero logarithms

of algebraic numbers. Assume

λ11λ22 − λ12λ21 ∈ Q.

Deduce

λ11λ22 = λ12λ21.
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Question: Let λij (i = 1, 2, j = 1, 2) be four non zero logarithms

of algebraic numbers. Assume

λ11λ22 − λ12λ21 ∈ Q.

Deduce

λ11λ22 = λ12λ21.

Answer: This is a consequence of the Conjecture on algebraic
independence of logarithms of algebraic numbers.
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Consequences of the strong 6 exponentials Theorem

Let λij (i = 1, 2, j = 1, 2, 3) be six non zero logarithms of

algebraic numbers. Assume

• λ11, λ21 are linearly independent over Q
and

• λ11, λ12, λ13 are linearly independent over Q.
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• One at least of the two numbers

λ12 −
λ11λ22

λ21

, λ13 −
λ11λ23

λ21

is transcendental.
• One at least of the two numbers

λ12λ21

λ11λ22

, λ13λ21

λ11λ23

is transcendental.
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• One at least of the two numbers

λ12

λ11
− λ22

λ21

, λ13

λ11
− λ23

λ21

is transcendental.

• Also one at least of the two numbers

λ21

λ11
− λ22

λ12

, λ21

λ11
− λ23

λ13

is transcendental.
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Replacing λ21 by 1.

• One at least of the two numbers

λ12 − λ11λ22, λ13 − λ11λ23

is transcendental.

• The same holds for

λ12

λ11
− λ22,

λ13

λ11
− λ23.

is transcendental.
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• Finally one at least of the two numbers

λ11λ22

λ12
,

λ11λ23

λ13

is transcendental, and also one at least of the two numbers

1
λ11
− λ22

λ12
,

1
λ11
− λ23

λ13
·

is transcendental.
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Theorem 1. Let λij (i = 1, 2, j = 1, 2, 3, 4, 5) be ten non zero
logarithms of algebraic numbers. Assume
• λ11, λ21 are linearly independent over Q
and
• λ11, . . . , λ15 are linearly independent over Q.
Then one at least of the four numbers

λ1jλ21 − λ2jλ11, (j = 2, 3, 4, 5)

is transcendental.
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Elliptic Analogue

Theorem 2. Let ℘ and ℘∗ be two non isogeneous Weierstraß
elliptic functions with algebraic invariants g2, g3 and g∗2, g∗3
respectively. For 1 ≤ j ≤ 9 let uj (resp. u∗j) be a non zero
logarithm of an algebraic point of ℘ (resp. ℘∗). Assume
u1, . . . , u9 are Q-linearly independent. Then one at least of
the eight numbers

uju
∗
1 − u∗ju1 (j = 2, . . . , 9)

is transcendental

Motivation: periods of K3 surfaces.
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Sketch of Proofs

Theorem 3. Let G = Gd0
a ×Gd1

m ×G2 be a commutative
algebraic group over Q of dimension d = d0 + d1 + d2, V a
hyperplane of the tangent space Te(G), Y a finitely generated
subgroup of V of rank `1 such that expG(Y ) ⊂ G(Q) with

`1 > (d− 1)(d1 + 2d2).

Then V contains a non zero algebraic Lie subalgebra of Te(G)
defined over Q.

http://www.math.jussieu.fr/∼miw/ 52



Sketch of Proof of Theorem 1

Assume

λ1jλ21 − λ2jλ11 = γj for 1 ≤ j ≤ `1.

Take G = Ga ×G2
m, d0 = 1, d1 = 2, G2 = {0}, V is the

hyperplane

z0 = λ21z1 − λ11z2

and Y = Zy1 + · · ·+ Zy`1 with

yj = (γj, λ1j, λ2j), (1 ≤ j ≤ `1).

Since (d− 1)(d1 + 2d2) = 4, we need `1 ≥ 5.
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Sketch of Proof of Theorem 2

Assume

uju
∗
1 − u∗ju1 = γj for 1 ≤ j ≤ `1.

Take G = Ga × E × E∗, d0 = 1, d1 = 0, d2 = 2, V is the

hyperplane

z0 = u∗1z1 − u1z2

and Y = Zy1 + · · ·+ Zy`1 with

yj = (γj, uj, u
∗
j), (1 ≤ j ≤ `1).

Since (d− 1)(d1 + 2d2) = 8, we need `1 ≥ 9.
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In both cases we need to check that V does not contain a non

zero Lie subalgebra of Te(G). For Theorem 1 this follows from

the assumption

λ11, λ21 are Q-linearly independent,

while for Theorem 2 this follows from the assumption

E , E∗ are not isogeneous.
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Further developments

• Abelian varieties in place of product of elliptic curves.

• Semi abelian varieties. Commutative algebraic groups.

• Taking periods into account.

• Conjectures (A. Grothendieck, Y. André, C. Bertolin.)

• Quadratic relations among logarithms of algebraic numbers.
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