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1 Background

Among many references for this preliminary section are D.S. Dummit &
R.M. Foote [5] and S. Lang [9].

1.1 Group theory

Groups, subgroups. Lagrange’s theorem: the order of a subgroup of a finite
group divides the order of the group. Index of a subgroup in a group.

Additive vs multiplicative notation.
Abelian groups (=commutative groups).
Intersection of subgroups. Subgroup generated by a subset. Finitely

generated group. Subgroup generated by an element.
The order of an element is the order of the subgroup generated by this

element. An element x in a multiplicative group G is torsion if it has finite
order, that means if there exists m ≥ 1 such that xm = 1. In this case the
order of x is the least of these integers m’s. The set of m ∈ Z with xm = 1
is a subgroup of Z which is not 0, hence, it has a unique positive generator
d, which is the order of x. Therefore, for an element x of order d, we have

xm = 1⇐⇒ d|m.

We stress that the condition xm = 1 does not mean that x has order m, it
means that the order of x divides m.

If x is an element in a multiplicative group G and m an integer such that
xm = 1, then for i and j in Z satisfying i ≡ j mod m we have xi = xj . In
other terms, the kernel of the morphism

Z −→ G
j 7→ xj
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contains mZ. Hence, this morphism factors to Z/mZ −→ G, which we
denote again by j 7→ xj . This means that we define xj for j a class modulo
m by selecting any representative of j in Z.

Exercise 1.
(1) Let G be a finite group of order n and let k be a positive integer with
gcd(n, k) = 1. Prove that the only solution x ∈ G of the equation xk = 1 is
x = 1.
(2) Let G be a cyclic group of order n and let k be a positive integer. Prove
that the number of x ∈ G such that xk = 1 is gcd(n, k).
(3) Let G be a finite group of order n. Prove that the following conditions
are equivalent:
(i) G is cyclic
(ii) For each divisor d of n, the number of x ∈ G such that xd = 1 is ≤ d.
(iii) For each divisor d of n, the number of x ∈ G such that xd = 1 is d.

The torsion subgroup of a commutative group. Exponent of a torsion
group G: the smallest integer m ≥ 1 such that xm = 1 for all x ∈ G. Exam-
ples of torsion groups: in additive notation Z/nZ, Q/Z. In multiplicative
notation: n-th roots of unity, group of all roots of unity in C.

Direct product and direct sum of groups (this is the same when there are
only finitely many groups).

Morphisms (also called homomorphisms) between groups. Isomorphisms,
endomorphisms, automorphisms. Kernel of a morphism. Quotient of a group
by a subgroup.
Theorem of factorisation for morphisms of groups.

Given an surjective morphism of groups f : G1 −→ G2 and a morphism
of groups g : G1 −→ G3, there exists a morphism h : G2 −→ G3 such that
h ◦ f = g if and only if ker f ⊂ ker g.

G1
g−−−→ G3

f

y ↗h

G2

If h exists, then h is surjective if and
only if g is surjective, and h is injec-
tive if and only if ker f = ker g.

Example: G2 = G1/H when G1 is abelian, H a subgroup of G1, and f is
the canonical morphism.

Cyclic groups. The subgroups and quotients of a cyclic group are cyclic.
For any cyclic group of order n and for any divisor d of n, there is a unique
subgroup of G of order d; if ζ is a generator of the cyclic group G of order n

3



and if d divides n, then ζn/d has order d, hence, is a generator of the unique
subgroup of G of order d. In a cyclic group whose order is a multiple of d,
there are exactly d elements whose orders are divisors of d, and these are the
elements of the subgroup of order d. In a cyclic group G of order a multiple
of d, the set of elements {xd | x ∈ G} is the unique subgroup of G of index
d.

A direct product G1 × G2 is cyclic if and only if G1 and G2 are cyclic
with relatively prime orders.

The number of generators of a cyclic group of order n is ϕ(n), where ϕ
is Euler’s function (see § 1.4.1).

1.2 Ring theory

Unless otherwise explicitly specified, the rings are commutative, with a unity
1 and 1 6= 0. Often, they have no zero divisors (they are called domains),
but not always: indeed, we will consider quotient rings like Z/nZ where n
is not a prime number.

Characteristic of a ring.
Intersection of rings. For B a ring, A a subring and E a subset of B,

the ring generated by E over A is denoted by A[E]. Special case where
E = {α1, . . . , αn}: we denote it by A[α1, . . . , αn].

Morphisms between rings, isomporhisms, endomorphisms, automorphisms.
Ideal of a ring, kernel of a morphism. Quotient of a commutative ring by
an ideal I 6= {0}. Canonical morphism A → A/I. Prime ideals, maximal
ideals.
Theorem of factorisation for morphisms of rings. Given a surjective
morphism of rings f : A1 −→ A2 and a morphism of rings g : A1 −→ A3,
there exists a morphism h : A2 −→ A3 such that h ◦ f = g if and only if
ker f ⊂ ker g.

A1
g−−−→ A3

f

y ↗h

A2

If h exists, then h is surjective if and
only if g is surjective, and h is injec-
tive if and only if ker f = ker g.

Example: A2 = A1/I when A1 is commutative, I an ideal of A1, and f is
the canonical morphism.

Quotient field of a domain.
The ring of polynomials in one variable A[X] or in several variables

A[X1, . . . , Xn].
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The units of a ring A are the invertible elements, they form a multiplica-
tive group A×. A field is a ring F such that F× = F \ {0}. The torsion
elements in the group A× are the roots of unity in A. Their set

A×tors = {x ∈ A | there exists n ≥ 1 such that xn = 1}

is the torsion subgroup of the group of units A×.
Euclidean rings, principal rings, factorial rings. Examples: Z, k[X]

where k is a field, A[X] where A is a ring, k[X1, . . . , Xn] and A[X1, . . . , Xn].
Given two rings A1, B2, a subring A2 of B2, a morphism of rings

f : A1 → A2 ⊂ B2

and elements y1, . . . , yn of B2, there is a unique morphism

F : A1[X1, . . . , Xn]→ A2[y1, . . . , yn]

such that F (a) = f(a) for a ∈ A1 and F (Xi) = yi for 1 ≤ i ≤ n.
As a consequence, if f : A1 → A2 is a morphism of rings, there is a unique

morphism of rings A1[X1, . . . , Xn] → A2[X1, . . . , Xn] which coincides with
f on A1 and maps Xi to Xi for 1 ≤ i ≤ n.

A fundamental example is the surjective morphism of rings

Ψp : Z[X]→ Fp[X], (2)

which maps X to X and Z onto Fp by reduction modulo p of the coefficients.
Its kernel is the principal ideal pZ[X] = (p) of Z[X] generated by p.

Exercise 3. Given two rings B1, B2, a subring A1 of B1, a subring A2 of
B2, a morphism of ring f : A1 → A2,

B1 B2

∪ ∪
A1 −−−→

f
A2

elements x1, . . . , xn of B1 and elements y1, . . . , yn of B2, a necessary and
sufficient condition for the existence of a morphism F : A1[x1, . . . , xn] →
A2[y1, . . . , yn] such that F (a) = f(a) for a ∈ A1 and F (xi) = yi for 1 ≤ i ≤ n
is the following:

For any polynomial P ∈ A1[X1, . . . , Xn] such that

P (x1, . . . , xn) = 0,

the polynomial Q ∈ A2[X1, . . . , Xn], image of P by the extension
of f to A1[X1, . . . , Xn]→ A2[X1, . . . , Xn], satisfies

Q(y1, . . . , yn) = 0.
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Modules over a ring. Example: Z–modules are nothing else than the
abelian groups.

Structure theorem for finitely generated modules over a principal ring.
Application: structure theorems for finitely generated abelian groups and
for finite groups. Rank of a finitely generated abelian group.
Consequence: In a finite abelian group of exponent e, there exists an element
of order e.

1.3 Field theory

The characteristic of a field K is either 0 or else a prime number p. In the
first case, the prime field (smallest subfield of K, which is the intersection
of all subfields of K) is Q; in the second case, it is Fp := Z/pZ.

Intersection of fields. If L is a field and K a subfield, we say that L is
an extension of K. Then L is a K–vector space. Further, if E is a subset of
L, we denote by K(E) the field generated by E over K: it is the quotient
field of K[E]. If E = {α1, . . . , αn}, we write K(E) = K(α1, . . . , αn). If K1

and K2 are two subfields of a field L, the compositum of K1 and K2 is the
subfield field K1(K2) = K2(K1) of L generated by K1 ∪K2.

A morphism f : K → A, where K is a field and A a ring, is injective.
When L1 and L2 are two extensions of K, a K-morphism L1 → L2 is

a field morphism whose restriction to K is the identity. If f : L1 → L2 is
a field morphism, then L1 and L2 have the same characteristic, hence, the
same prime field F , and f is a F–morphism.

If L is an extension of K, the K–automorphisms of L form a group
denoted Aut(L/K).

Finitely generated extensions. Algebraic and transcendental extensions.
Finite extensions, degree [L : K]. For K1 ⊂ K2 ⊂ K3, we have

[K3 : K1] = [K3 : K2][K2 : K1].

Given an extension L ⊃ K of fields and an element α ∈ L, there is a
unique map K[X] → K[α], which is the identity on K and maps X to α.
Kernel of this map. Irreducible (monic) polynomial of an algebraic element
over a field K. The field K[X]/(f) = K(α) when α is algebraic over K.

For L an extension of K, an element α in L is algebraic over K if and
only if K[α] = K(α), and this is true if and only if [K(α) : K] is finite.

Splitting field of a polynomial over a field. Algebraic closure of a field.
Two algebraic closures of K are K–isomorphic, but, usually, there is no
unicity of such a morphism (since there are many K–automorphisms of the
algebraic closure: they constitute the absolute Galois group of K).
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An element α in an algebraically closed extension Ω of a field K is
algebraic over K if and only if the set of σ(α), where σ ranges over the
K–automorphisms of Ω, is finite.

Given an algebraically closed field Ω, a subfield K of Ω and an element
α ∈ Ω algebraic over K, the roots in Ω of the irreducible polynomial f of α
over K are the conjugates of α over K. If α1, . . . , αm are the distinct roots of
f in Ω, then there are exactly m K–morphisms K(α)→ Ω, say σ1, . . . , σm,
where σi is determined by σi(α) = αi.

Zeroes of polynomials: multiplicity or order of a zero of a polynomial in
one variable.

1.4 Arithmetic

1.4.1 Residue classes modulo n

Subgroups of Z. Morphism sn : Z → Z/nZ. There exists a morphism
ϕ : Z/aZ→ Z/bZ such that ϕ◦sa = sb if and only if aZ ⊂ bZ, which means
if and only if b divides a. If ϕ exists, then ϕ is unique and surjective. Its
kernel is bZ/aZ which is isomorphic to Z/(a/b)Z.

The greatest common divisor gcd(a, b) of a and b is the positive generator
of aZ + bZ, the least common multiple lcm(a, b) of a and b is the positive
generator of aZ ∩ bZ.

The order of the multiplicative group (Z/nZ)× of the ring Z/nZ is the
number ϕ(n) of integers k in the interval 1 ≤ k ≤ n satisfying gcd(n, k) = 1.
The map ϕ : Z>0 → Z is Euler’s function already mentioned in § 1.1. If
gcd(a, b) = d, then a/d and b/d are relatively prime. Hence, the partition of
the set of integers in 1 ≤ k ≤ n according to the value of gcd(k, n) yields:

Lemma 4. For any positive integer n,

n =
∑
d|n

ϕ(d).

(Compare with (85)).
An arithmetic function is a map f : Z>0 → Z. A multiplicative function

is an arithmetic function such that f(mn) = f(m)f(n) when m and n are
relatively prime. For instance, Euler’s ϕ function is multiplicative: this fol-
lows from the ring isomorphim between the ring product (Z/mZ)× (Z/nZ)
and the ring Z/mnZ when m and n are relatively prime (Chinese remainder
Theorem). Also, ϕ(pa) = pa−1(p−1) for p prime and a ≥ 1. Hence, the value
of ϕ(n), for n written as a product of powers of distinct prime numbers, is

ϕ(pa11 · · · p
ar
r ) = pa1−11 (p1 − 1) · · · par−1r (pr − 1).
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Primitive roots modulo a prime number p: there are exactly ϕ(p− 1) of
them in (Z/pZ)×. An element g ∈ (Z/pZ)× is a primitive root modulo p if
and only if

g(p−1)/q 6≡ 1 mod p

for all prime divisors q of p− 1.
If a and n are relatively prime integers, the order of a modulo n is the

order of the class of a in the multiplicative group (Z/nZ)×. In other terms,
it is the smallest integer ` such that a` is congruent to 1 modulo n.

Exercise 5. For n a positive integer, check that the multiplicative group
(Z/nZ)× is cyclic if and only if n is either 2, 4, ps or 2ps, with p an odd
prime and s ≥ 1.

Remark: For s ≥ 2, (Z/2sZ)× is the product of a cyclic group of order
2 by a cyclic group of order 2s−2, hence, for s ≥ 3 it is not cyclic.

1.4.2 The ring Z[X]

When F is a field, the ring F [X] of polynomials in one variable over F is
an Euclidean domain, hence, a principal domain, and, therefore, a factorial
ring. The ring Z[X] is not an Euclidean ring: one cannot divide X by 2 in
Z[X] for instance. But if A and B are in Z[X] and B is monic, then both
the quotient Q and the remainder R of the Euclidean division in Q[X] of A
by B

A = BQ+R

are in Z[X].
The gcd of the coefficients of a non–zero polynomial f ∈ Z[X] is called

the content of f . We denote it by c(f). A non–zero polynomial with content
1 is called primitive. Any non–zero polynomial in Z[X] can be written in a
unique way as f = c(f)g with g ∈ Z[X] primitive.

For any non–zero polynomial f ∈ Q[X], there is a unique positive ratio-
nal number r such that rf belongs to Z[X] and is primitive.

Lemma 6 (Gauss’s Lemma). For f and g non–zero polynomials in Z[X],
we have

c(fg) = c(f)c(g).

Proof. It suffices to check that the product of two primitive polynomials is
primitive. More generally, let p be a prime number and f , g two polynomials
whose contents are not divisible by p. We check that the content of fg is
not divisible by p.
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Recall the surjective morphism of rings (2) Ψp : Z[X] → Fp[X], which
is the reduction modulo p. The kernel of Ψp is the set of polynomials whose
content is divisible by p. The assumption is Ψp(f) 6= 0 and Ψp(g) 6= 0.
Since p is prime, the ring Fp[X] has no zero divisor, hence, Ψp(fg) =
Ψp(f)Ψp(g) 6= 0, which shows that fg is not in the kernel of Ψp.

The ring Z is an Euclidean domain, hence, a principal domain, and,
therefore, a factorial ring. It follows that the ring Z[X] is factorial. The
units of Z[X] are {+1,−1}. The irreducible elements in Z[X] are
– the prime numbers {2, 3, 5, 7, 11, . . . },
– the irreducible polynomials in Q[X] with coefficients in Z and content 1
– and, of course, the product of one of these elements by −1.

From Gauss’s Lemma 6, one deduces that if f and g are two monic
polynomials in Q[X] such that fg ∈ Z[X], then f and g are in Z[X].

A monic polynomial in Z[X] is a product, in a unique way, of irreducible
monic polynomials in Z[X].

1.4.3 Möbius inversion formula

Let f be a map defined on the set of positive integers with values in an
additive group. Define another map g by

g(n) =
∑
d|n

f(d).

It is easy to check by induction that f is completely determined by g. Indeed,
the formula for n = 1 produces f(1) = g(1), and for n ≥ 2, once f(d) is
known for all d | n with d 6= n, one obtains f(n) from the formula

f(n) = g(n)−
∑
d|n
d6=n

f(d).

We wish to write this formula in a close form. If p is a prime, the formula
becomes f(p) = g(p)− g(1). Next, f(p2) = g(p2)− g(p). More generally, for
p prime and m ≥ 1,

f(pm) = g(pm)− g(pm−1).

It is convenient to write this formula as

f(pm) =

m∑
h=0

µ(pm−h)g(ph),
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where µ(1) = 1, µ(p) = −1, µ(pm) = 0 for m ≥ 2. In order to extend this
formula for writing f(n) in terms of g(d) for d | n, one needs to extend the
function µ, and it is easily seen by means of the convolution product (see
Exercise 7) that the right thing to do is to require that µ be a multiplicative
function, namely that µ(ab) = µ(a)µ(b) if a and b are relatively prime.

The Möbius function µ (see, for instance, [13] § 2.6) is the map from the
positive integers to {0, 1,−1} defined by the properties µ(1) = 1, µ(p) = −1
for p prime, µ(pm) = 0 for p prime and m ≥ 2, and µ(ab) = µ(a)µ(b) if a and
b are relatively prime. Hence, µ(a) = 0 if and only if a has a square factor,
while for a squarefree number a, which is a product of s distinct primes we
have µ(a) = (−1)s:

µ(p1 · · · ps) = (−1)s.

One of the many variants of the Möbius inversion formula states that, for
f and g two maps defined on the set of positive integers with values in an
additive group, the two following properties are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∑
d|n

f(d).

(ii) For any integer n ≥ 1,

f(n) =
∑
d|n

µ(n/d)g(d).

For instance, Lemma 4 is equivalent to

ϕ(n) =
∑
d|n

µ(n/d)d for all n ≥ 1.

An equivalent statement of the Möbius inversion formula is the following
multiplicative version, which deals with two maps f , g from the positive
integers into an abelian multiplicative group. The two following properties
are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∏
d|n

f(d).

(ii) For any integer n ≥ 1,

f(n) =
∏
d|n

g(d)µ(n/d).
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A third form of the Möbius inversion formula (which we will not use here)
deals with two functions F and G from [1,+∞) to C. The two following
properties are equivalent:
(i) For any real number x ≥ 1,

G(x) =
∑
n≤x

F (x/n).

(ii) For any real number x ≥ 1,

F (x) =
∑
n≤x

µ(n)G(x/n).

As an illustration, take F (x) = 1 and G(x) = [x] for all x ∈ [1,+∞). Then∑
n≤x

µ(n)[x/n] = 1

Exercise 7. Let A be a (commutative) ring and let R denote the set of
arithmetic functions, namely the set of applications from the positive inte-
gers into A. For f and g in R, define the convolution product

f ? g(m) =
∑
ab=m

f(a)g(b).

(a) Check that R, with the usual addition and with this convolution product,
becomes a commutative ring.
Hint:

f ? g ? h(m) =
∑
abc=m

f(a)g(b)h(c).

Check that the unity is δ ∈ R defined by

δ(a) =

{
1 for a = 1,

0 for a > 1.

(b) Check that if f and g are multiplicative, then so is f ? g.
(c) Define 1 ∈ R by 1(x) = 1 for all x ≥ 1. Check that µ and 1 are inverse
each other in R:

µ ? 1 = δ.

(d) Check that the formula

µ ? 1 ? f = f for all f ∈ R

is equivalent to Möbius inversion formula.
(e) Define j by j(n) = n and, for k ≥ 0, σk(n) =

∑
d|n d

k. Check

µ ? j = ϕ, jk ? 1 = σk.
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2 Continued fractions

We first consider generalized continued fractions of the form

a0 +
b1

a1 +
b2

a2 +
b3
. . .

,

which we denote by2

a0 +
b1 |
|a1

+
b2 |
|a2

+
b3|
. . .
·

Next we restrict to the special case where b1 = b2 = · · · = 1, which yields
the simple continued fractions

a0 +
1 |
|a1

+
1 |
|a2

+ · · · = [a0, a1, a2, . . . ].

2.1 Generalized continued fractions

To start with, a0, . . . , an, . . . and b1, . . . , bn, . . . will be independent variables.
Later, we shall specialize to positive integers (apart from a0 which may be
negative).

Consider the three rational fractions

a0, a0 +
b1
a1

and a0 +
b1

a1 +
b2
a2

·

We write them as
A0

B0
,

A1

B1
and

A2

B2

with

A0 = a0, A1 = a0a1 + b1, A2 = a0a1a2 + a0b2 + a2b1,
B0 = 1, B1 = a1, B2 = a1a2 + b2.

2Another notation for a0 + b1 |
|a1

+ b2 |
|a2

+ · · · + bn|
an

introduced by Th. Muir and used by

Perron in [11] Chap. 1 is

K

(
b1, . . . , bn

a0, a1, . . . , an

)
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Observe that

A2 = a2A1 + b2A0, B2 = a2B1 + b2B0.

Write these relations as (
A2

B2

)
=

(
A1 A0

B1 B0

)(
a2
b2

)
.

In order to iterate the process, it is convenient to work with 2× 2 matrices
and to write (

A2 A1

B2 B1

)
=

(
A1 A0

B1 B0

)(
a2 1
b2 0

)
.

Define inductively two sequences of polynomials with positive rational coef-
ficients An and Bn for n ≥ 3 by(

An An−1
Bn Bn−1

)
=

(
An−1 An−2
Bn−1 Bn−2

)(
an 1
bn 0

)
. (8)

This means

An = anAn−1 + bnAn−2, Bn = anBn−1 + bnBn−2.

This recurrence relation holds for n ≥ 2. It will also hold for n = 1 if we set
A−1 = 1 and B−1 = 0:(

A1 A0

B1 B0

)
=

(
a0 1
1 0

)(
a1 1
b1 0

)
and it will hold also for n = 0 if we set b0 = 1, A−2 = 0 and B−2 = 1:(

A0 A−1
B0 B−1

)
=

(
1 0
0 1

)(
a0 1
b0 0

)
.

Obviously, an equivalent definition is(
An An−1
Bn Bn−1

)
=

(
a0 1
b0 0

)(
a1 1
b1 0

)
· · ·
(
an−1 1
bn−1 0

)(
an 1
bn 0

)
. (9)

These relations (9) hold for n ≥ −1, with the empty product (for n = −1)
being the identity matrix, as always.

Hence An ∈ Z[a0, . . . , an, b1, . . . , bn] is a polynomial in 2n+ 1 variables,
while Bn ∈ Z[a1 . . . , an, b2, . . . , bn] is a polynomial in 2n− 1 variables.
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Exercise 1. Check, for n ≥ −1,

Bn(a1, . . . , an, b2, . . . , bn) = An−1(a1, . . . , an, b2, . . . , bn).

Lemma 10. For n ≥ 0,

a0 +
b1 |
|a1

+ · · ·+ bn |
|an

=
An
Bn
·

Proof. By induction. We have checked the result for n = 0, n = 1 and
n = 2. Assume the formula holds with n− 1 where n ≥ 3. We write

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

= a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

with

x = an−1 +
bn
an
·

We have, by induction hypothesis and by the definition (8),

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

=
An−1
Bn−1

=
an−1An−2 + bn−1An−3
an−1Bn−2 + bn−1Bn−3

·

Since An−2, An−3, Bn−2 and Bn−3 do not depend on the variable an−1, we
deduce

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

=
xAn−2 + bn−1An−3
xBn−2 + bn−1Bn−3

·

The product of the numerator by an is

(anan−1 + bn)An−2 + anbn−1An−3 = an(an−1An−2 + bn−1An−3) + bnAn−2

= anAn−1 + bnAn−2 = An

and similarly, the product of the denominator by an is

(anan−1 + bn)Bn−2 + anbn−1Bn−3 = an(an−1Bn−2 + bn−1Bn−3) + bnBn−2

= anBn−1 + bnBn−2 = Bn.

From (9), taking the determinant, we deduce, for n ≥ −1,

AnBn−1 −An−1Bn = (−1)n+1b0 · · · bn. (11)
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which can be written, for n ≥ 1,

An
Bn
− An−1
Bn−1

=
(−1)n+1b0 · · · bn

Bn−1Bn
· (12)

Adding the telescoping sum, we get, for n ≥ 0,

An
Bn

= A0 +

n∑
k=1

(−1)k+1b0 · · · bk
Bk−1Bk

· (13)

We now substitute for a0, a1, . . . and b1, b2, . . . rational integers, all of
which are ≥ 1, apart from a0 which may be ≤ 0. We denote by pn (resp.
qn) the value of An (resp. Bn) for these special values. Hence pn and qn are
rational integers, with qn > 0 for n ≥ 0. A consequence of Lemma 10 is

pn
qn

= a0 +
b1 |
|a1

+ · · ·+ bn |
|an

for n ≥ 0.

We deduce from (8),

pn = anpn−1 + bnpn−2, qn = anqn−1 + bnqn−2 for n ≥ 0,

and from (11),

pnqn−1 − pn−1qn = (−1)n+1b0 · · · bn for n ≥ −1,

which can be written, for n ≥ 1,

pn
qn
− pn−1
qn−1

=
(−1)n+1b0 · · · bn

qn−1qn
· (14)

Adding the telescoping sum (or using (13)), we get the alternating sum

pn
qn

= a0 +
n∑
k=1

(−1)k+1b0 · · · bk
qk−1qk

· (15)

Recall that for real numbers a, b, c, d, with b and d positive, we have

a

b
<
c

d
=⇒ a

b
<
a+ c

b+ d
<
c

d
· (16)

Since an and bn are positive for n ≥ 0, we deduce that for n ≥ 2, the rational
number

pn
qn

=
anpn−1 + bnpn−2
anqn−1 + bnqn−2
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lies between pn−1/qn−1 and pn−2/qn−2. Therefore we have

p2
q2
<
p4
q4
< · · · < p2n

q2n
< · · · < p2m+1

q2m+1
< · · · < p3

q3
<
p1
q1
· (17)

From (14), we deduce, for n ≥ 3, qn−1 > qn−2, hence qn > (an + bn)qn−2.
The previous discussion was valid without any restriction, now we as-

sume an ≥ bn for all sufficiently large n, say n ≥ n0. Then for n > n0, using
qn > 2bnqn−2, we get∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
b0 · · · bn
qn−1qn

<
bn · · · b0

2n−n0bnbn−1 · · · bn0+1qn0qn0−1
=

bn0 · · · b0
2n−n0qn0qn0−1

and the right hand side tends to 0 as n tends to infinity. Hence the sequence
(pn/qn)n≥0 has a limit, which we denote by

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

From (15), it follows that x is also given by an alternating series

x = a0 +
∞∑
k=1

(−1)k+1b0 · · · bk
qk−1qk

·

We now prove that x is irrational. Define, for n ≥ 0,

xn = an +
bn+1 |
|an+1

+ · · ·

so that x = x0 and, for all n ≥ 0,

xn = an +
bn+1

xn+1
, xn+1 =

bn+1

xn − an

and an < xn < an + 1. Hence for n ≥ 0, xn is rational if and only if
xn+1 is rational, and therefore, if x is rational, then all xn for n ≥ 0 are
also rational. Assume x is rational. Consider the rational numbers xn with
n ≥ n0 and select a value of n for which the denominator v of xn is minimal,
say xn = u/v. From

xn+1 =
bn+1

xn − an
=

bn+1v

u− anv
with 0 < u− anv < v,

it follows that xn+1 has a denominator strictly less than v, which is a con-
tradiction. Hence x is irrational.
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Conversely, given an irrational number x and a sequence b1, b2, . . . of pos-
itive integers, there is a unique integer a0 and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1, such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

Indeed, the unique solution is given inductively as follows: a0 = bxc, x1 =
b1/{x}, and once a0, . . . , an−1 and x1, . . . , xn are known, then an and xn+1

are given by
an = bxnc, xn+1 = bn+1/{xn},

so that for n ≥ 1 we have 0 < xn − an < 1 and

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

Here is what we have proved.

Proposition 18. Given a rational integer a0 and two sequences a0, a1, . . .
and b1, b2, . . . of positive rational integers with an ≥ bn for all sufficiently
large n, the infinite continued fraction

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

exists and is an irrational number.
Conversely, given an irrational number x and a sequence b1, b2, . . . of posi-
tive integers, there is a unique a0 ∈ Z and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1 such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

These results are useful for proving the irrationality of π and er when
r is a non–zero rational number, following the proof by Lambert. See for
instance Chapter 7 (Lambert’s Irrationality Proofs) of David Angell’s course
on Irrationality and Transcendence(3) at the University of New South Wales:

http://www.maths.unsw.edu.au/∼angell/5535/
The following example is related with Lambert’s proof [8]:

tanh z =
z|
|1

+
z2|
| 3

+
z2|
| 5

+ · · ·+ z2 |
|2n+ 1

+ · · ·

3I found this reference from the website of John Cosgrave
http://staff.spd.dcu.ie/johnbcos/transcendental−numbers.htm.
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Here, z is a complex number and the right hand side is a complex valued
function. Here are other examples (see Sloane’s Encyclopaedia of Integer
Sequences(4))

1√
e− 1

= 1 +
2|
|3

+
4|
|5

+
6|
|7

+
8|
|9

+ · · · = 1.541 494 082 . . . (A113011)

1

e− 1
=

1|
|1

+
2|
|2

+
3|
|3

+
4|
|4

+ · · · = 0.581 976 706 . . . (A073333)

Remark. A variant of the algorithm of simple continued fractions is the
following. Given two sequences (an)n≥0 and (bn)n≥0 of elements in a field
K and an element x in K, one defines a sequence (possibly finite) (xn)n≥1
of elements in K as follows. If x = a0, the sequence is empty. Otherwise
x1 is defined by x = a0 + (b1/x1). Inductively, once x1, . . . , xn are defined,
there are two cases:

• If xn = an, the algorithm stops.

• Otherwise, xn+1 is defined by

xn+1 =
bn+1

xn − an
, so that xn = an +

bn+1

xn+1
·

If the algorithm does not stop, then for any n ≥ 1, one has

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

In the special case where a0 = a1 = · · · = b1 = b2 = · · · = 1, the set of x such
that the algorithm stops after finitely many steps is the set (Fn+1/Fn)n≥1 of
quotients of consecutive Fibonacci numbers. In this special case, the limit of

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

is the Golden ratio, which is independent of x, of course!

2.2 Simple continued fractions

We restrict now the discussion of § 2.1 to the case where b1 = b2 = · · · =
bn = · · · = 1. We keep the notations An and Bn which are now polynomials
in Z[a0, a1, . . . , an] and Z[a1, . . . , an] respectively, and when we specialize to

4http://www.research.att.com/∼njas/sequences/
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integers a0, a1, . . . , an . . . with an ≥ 1 for n ≥ 1 we use the notations pn and
qn for the values of An and Bn.

The recurrence relations (8) are now, for n ≥ 0,(
An An−1
Bn Bn−1

)
=

(
An−1 An−2
Bn−1 Bn−2

)(
an 1
1 0

)
, (19)

while (9) becomes, for n ≥ −1,(
An An−1
Bn Bn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
. (20)

From Lemma 10 one deduces, for n ≥ 0,

[a0, . . . , an] =
An
Bn
·

Taking the determinant in (20), we deduce the following special case of (11)

AnBn−1 −An−1Bn = (−1)n+1.

The specialization of these relations to integral values of a0, a1, a2 . . . yields(
pn pn−1
qn qn−1

)
=

(
pn−1 pn−2
qn−1 qn−2

)(
an 1
1 0

)
for n ≥ 0, (21)

(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
for n ≥ −1,

(22)

[a0, . . . , an] =
pn
qn

for n ≥ 0

and
pnqn−1 − pn−1qn = (−1)n+1 for n ≥ −1. (23)

From (23), it follows that for n ≥ 0, the fraction pn/qn is in lowest terms:
gcd(pn, qn) = 1.

Transposing (22) yields, for n ≥ −1,(
pn qn
pn−1 qn−1

)
=

(
an 1
1 0

)(
an−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
from which we deduce, for n ≥ 1,

[an, . . . , a0] =
pn
pn−1

and [an, . . . , a1] =
qn
qn−1

19



Lemma 24. For n ≥ 0,

pnqn−2 − pn−2qn = (−1)nan.

Proof. We multiply both sides of (21) on the left by the inverse of the matrix(
pn−1 pn−2
qn−1 qn−2

)
which is (−1)n

(
qn−2 −pn−2
−qn−1 pn−1

)
.

We get

(−1)n
(
pnqn−2 − pn−2qn pn−1qn−2 − pn−2qn−1
−pnqn−1 + pn−1qn 0

)
=

(
an 1
1 0

)

2.2.1 Finite simple continued fraction of a rational number

Let u0 and u1 be two integers with u1 positive. The first step in Euclid’s
algorithm to find the gcd of u0 and u1 consists in dividing u0 by u1:

u0 = a0u1 + u2

with a0 ∈ Z and 0 ≤ u2 < u1. This means

u0
u1

= a0 +
u2
u1
,

which amonts to dividing the rational number x0 = u0/u1 by 1 with quotient
a0 and remainder u2/u1 < 1. This algorithms continues with

um = amum+1 + um+2,

where am is the integral part of xm = um/um+1 and 0 ≤ um+2 < um+1,
until some u`+2 is 0, in which case the algorithms stops with

u` = a`u`+1.

Since the gcd of um and um+1 is the same as the gcd of um+1 and um+2, it
follows that the gcd of u0 and u1 is u`+1. This is how one gets the regular
continued fraction expansion x0 = [a0, a1, . . . , a`], where ` = 0 in case x0 is
a rational integer, while a` ≥ 2 if x0 is a rational number which is not an
integer.
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Exercise 2. Compare with the geometrical construction of the continued
fraction given in the beamer presentation.
Give a variant of this geometrical construction where rectangles are replaced
by segments.

Proposition 25. Any finite regular continued fraction

[a0, a1, . . . , an],

where a0, a1, . . . , an are rational numbers with ai ≥ 2 for 1 ≤ i ≤ n and
n ≥ 0, represents a rational number. Conversely, any rational number x has
two representations as a continued fraction, the first one, given by Euclid’s
algorithm, is

x = [a0, a1, . . . , an]

and the second one is

x = [a0, a1, . . . , an−1, an − 1, 1].

If x ∈ Z, then n = 0 and the two simple continued fractions representa-
tions of x are [x] and [x− 1, 1], while if x is not an integer, then n ≥ 1 and
an ≥ 2. For instance the two continued fractions of 1 are [1] and [0, 1], they
both end with 1. The two continued fractions of 0 are [0] and [−1, 1], the
first of which is the unique continued fraction which ends with 0.

We shall use later (in the proof of Lemma 30 in § 3.2) the fact that any
rational number has one simple continued fraction expansion with an odd
number of terms and one with an even number of terms.

2.2.2 Infinite simple continued fraction of an irrational number

Given a rational integer a0 and an infinite sequence of positive integers
a1, a2, . . . , the continued fraction

[a0, a1, . . . , an, . . . ]

represents an irrational number. Conversely, given an irrational number x,
there is a unique representation of x as an infinite simple continued fraction

x = [a0, a1, . . . , an, . . . ]

Definitions The numbers an are the partial quotients, the rational numbers

pn
qn

= [a0, a1, . . . , an]
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are the convergents (in French réduites), and the numbers

xn = [an, an+1, . . .]

are the complete quotients.

From these definitions we deduce, for n ≥ 0,

x = [a0, a1, . . . , an, xn+1] =
xn+1pn + pn−1
xn+1qn + qn−1

. (26)

Lemma 27. For n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Proof. From (26) one deduces

x− pn
qn

=
xn+1pn + pn−1
xn+1qn + qn−1

− pn
qn

=
(−1)n

(xn+1qn + qn−1)qn
·

Corollary 28. For n ≥ 0,

1

qn+1 + qn
< |qnx− pn| <

1

qn+1
·

Proof. Since an+1 is the integral part of xn+1, we have

an+1 < xn+1 < an+1 + 1.

Using the recurrence relation qn+1 = an+1qn + qn−1, we deduce

qn+1 < xn+1qn + qn−1 < an+1qn + qn−1 + qn = qn+1 + qn.

In particular, since xn+1 > an+1 and qn−1 > 0, one deduces from Lemma
27

1

(an+1 + 2)q2n
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

an+1q2n
· (29)

Therefore any convergent p/q of x satisfies |x− p/q| < 1/q2 (compare with
(i) ⇒ (v) in Proposition 60). Moreover, if an+1 is large, then the approx-
imation pn/qn is sharp. Hence, large partial quotients yield good rational
approximations by truncating the continued fraction expansion just before
the given partial quotient.
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2.3 Continued fractions and cryptography

We refer to section 6 of the course Cryptoalgomaple by Abderrahmane Nitaj
for a connection between continued fractions and cryptanalysis:

http://www.math.unicaen.fr/~nitaj/cimpamaure/Documents.htm

Cryptanalyse de RSA par les Fractions Continues
Les fractions continues
Définitions et propriétés
Cryptanalyse de RSA par les fractions continues
L’attaque de Wiener.

3 Continued fractions and Pell’s Equation

3.1 The main lemma

The theory which follows is well–known (a classical reference is the book
[11] by O. Perron), but the point of view which we develop here is slightly
different from most classical texts on the subject. We follow [1, 2, 14].
An important role in our presentation of the subject is the following result
(Lemma 4.1 in [12]).

Lemma 30. Let ε = ±1 and let a, b, c, d be rational integers satisfying

ad− bc = ε

and d ≥ 1. Then there is a unique finite sequence of rational integers
a0, . . . , as with s ≥ 1 and a1, . . . , as−1 positive, such that(

a b
c d

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
(31)

These integers are also characterized by

b

d
= [a0, a1, . . . , as−1],

c

d
= [as, . . . , a1], (−1)s+1 = ε. (32)

For instance, when d = 1, for b and c rational integers,(
bc+ 1 b
c 1

)
=

(
b 1
1 0

)(
c 1
1 0

)
and (

bc− 1 b
c 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.
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Proof. We start with unicity. If a0, . . . , as satisfy the conclusion of Lemma
30, then by using (31), we find b/d = [a0, a1, . . . , as−1]. Taking the trans-
pose, we also find c/d = [as, . . . , a1]. Next, taking the determinant, we
obtain (−1)s+1 = ε. The last equality fixes the parity of s, and each of the
rational numbers b/d, c/d has a unique continued fraction expansion whose
length has a given parity (cf. Proposition 25). This proves the unicity of the
factorisation when it exists.

For the existence, we consider the simple continued fraction expansion
of c/d with length of parity given by the last condition in (32), say c/d =
[as, . . . , a1]. Let a0 be a rational integer such that the distance between b/d
and [a0, a1, . . . , as−1] is ≤ 1/2. Define a′, b′, c′, d′ by(

a′ b′

c′ d′

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
.

We have

d′ > 0, a′d′ − b′c′ = ε,
c′

d′
= [as, . . . , a1] =

c

d

and
b′

d′
= [a0, a1, . . . , as−1],

∣∣∣∣ b′d′ − b

d

∣∣∣∣ ≤ 1

2
·

From gcd(c, d) = gcd(c′, d′) = 1, c/d = c′/d′ and d > 0, d′ > 0 we deduce
c′ = c, d′ = d. From the equality between the determinants we deduce
a′ = a+ kc, b′ = b+ kd for some k ∈ Z, and from

b′

d′
− b

d
= k

we conclude k = 0, (a′, b′, c′, d′) = (a, b, c, d). Hence (31) follows.

Corollary 33. Assume the hypotheses of Lemma 30 are satisfied.
a) If c > d, then as ≥ 1 and

a

c
= [a0, a1, . . . , as].

b) If b > d, then a0 ≥ 1 and

a

b
= [as, . . . , a1, a0].
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The following examples show that the hypotheses of the corollary are
not superfluous: (

1 b
0 1

)
=

(
b 1
1 0

)(
0 1
1 0

)
,(

b− 1 b
1 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
0 1
1 0

)
and (

c− 1 1
c 1

)
=

(
0 1
1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.

Proof of Corollary 33. Any rational number u/v > 1 has two continued frac-
tions. One of them starts with 0 only if u/v = 1 and the continued fraction
is [0, 1]. Hence the assumption c > d implies as > 0. This proves part a),
and part b) follows by transposition (or repeating the proof).

Another consequence of Lemma 30 is the following classical result (Satz
13 p. 47 of [11]).

Corollary 34. Let a, b, c, d be rational integers with ad − bc = ±1 and
c > d > 0. Let x and y be two irrational numbers satisfying y > 1 and

x =
ay + b

cy + d
·

Let x = [a0, a1, . . .] be the simple continued fraction expansion of x. Then
there exists s ≥ 1 such that

a = ps, b = ps−1, c = qs, r = qs−1, y = xs+1.

Proof. Using lemma 30, we write(
a b
c d

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
with a′1, . . . , a

′
s−1 positive and

b

d
= [a′0, a

′
1, . . . , a

′
s−1],

c

d
= [a′s, . . . , a

′
1].

From c > d and corollary 33, we deduce a′s > 0 and

a

c
= [a′0, a

′
1, . . . , a

′
s] =

p′s
q′s
, x =

p′sy + p′s−1
q′sy + q′s−1

= [a′0, a
′
1, . . . , a

′
s, y].

Since y > 1, it follows that a′i = ai, p
′
i = q′i for 0 ≤ i ≤ s and y = xs+1.
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Remark.
In [6], § 4, there is a variant of the matrix formula (21) for the simple
continued fraction of a real number.

Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0,
as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two
formulae(

1 a0
0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
=

(
pn−1 pn
qn−1 qn

)
if n is even(

1 a0
0 1

)(
1 0
a1 1

)
. · · ·

(
1 0
an 1

)
=

(
pn pn−1
qn qn−1

)
if n is odd

 (35)

Define two matrices U (up) and L (low) in GL2(R) of determinant +1 by

U =

(
1 1
0 1

)
and L =

(
1 0
1 1

)
.

For p and q in Z, we have

Up =

(
1 p
0 1

)
and Lq =

(
1 0
q 1

)
,

so that these formulae (35) are

Ua0La1 · · ·Uan =

(
pn−1 pn
qn−1 qn

)
if n is even

and

Ua0La1 · · ·Lan =

(
pn pn−1
qn qn−1

)
if n is odd.

The connexion with Euclid’s algorithm is

U−p
(
a b
c d

)
=

(
a− pc b− pd
c d

)
and L−q

(
a b
c d

)
=

(
a b

c− qa d− qb

)
.

The corresponding variant of Lemma 30 is also given in [6], § 4: If a, b, c,
d are rational integers satisfying b > a > 0, d > c ≥ 0 and ad− bc = 1, then
there exist rational integers a0, . . . , an with n even and a1, . . . , an positive,
such that (

a b
c d

)
=

(
1 a0
0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
These integers are uniquely determined by b/d = [a0, . . . , an] with n even.
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3.2 Simple Continued fraction of
√
D

An infinite sequence (an)n≥1 is periodic if there exists a positive integer s
such that

an+s = an for all n ≥ 1. (36)

In this case, the finite sequence (a1, . . . , as) is called a period of the original
sequence. For the sake of notation, we write

(a1, a2, . . . ) = (a1, . . . , as).

If s0 is the smallest positive integer satisfying (36), then the set of s satisfying
(36) is the set of positive multiples of s0. In this case (a1, . . . , as0) is called
the fundamental period of the original sequence.

Theorem 37. Let D be a positive integer which is not a square. Write the
simple continued fraction of

√
D as [a0, a1, . . .] with a0 = b

√
Dc.

a) The sequence (a1, a2, . . .) is periodic.
b) Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 = ±1.
Then there exists s ≥ 1 such that x/y = [a0, . . . , as−1] and

(a1, a2, . . . , as−1, 2a0)

is a period of the sequence (a1, a2, . . .). Further, as−i = ai for 1 ≤ i ≤ s− 1.
One says that the word a1, . . . , as−1 is a palindrome. 5

c) Let (a1, a2, . . . , as−1, 2a0) be a period of the sequence (a1, a2, . . .). Set
x/y = [a0, . . . , as−1]. Then x2 −Dy2 = (−1)s.
d) Let s0 be the length of the fundamental period. Then for i ≥ 0 not multiple
of s0, we have ai ≤ a0.

If (a1, a2, . . . , as−1, 2a0) is a period of the sequence (a1, a2, . . .), then
√
D = [a0, a1, . . . , as−1, 2a0] = [a0, a1, . . . , as−1, a0 +

√
D].

5Note (2016). As kindly pointed out to me by Yoishi Motohashi, the fact that the
word a1, . . . , as−1 is a palindrom is proved in ’Essai sur la théorie des nombres’ by
Legendre (1798).
In his first paper published at the age of 17 by Evariste Galois, it is proved that if the
expansion of a quadratic irrational α is purely periodic, then the same is true for the
conjugate α′ of α, and the continued fraction of α′ is obtained by reversing the order of
the continued fraction of α. Besides, this continued fraction is a palindrom if and only if
αα′ = −1.
É. Galois, Démonstration d’un théorème sur les fractions continues périodiques.
Annales de Mathématiques Pures et Appliquées, 19 (1828-1829), p. 294-301.
http://archive.numdam.org/article/AMPA−1828-1829−−19−−294−0.pdf

For more information on these contributions by Galois, see
https://www.bibnum.education.fr/mathematiques/algebre/demonstration-d-un-theoreme-sur-les-fractions-continues-periodiques
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Consider the fundamental period (a1, a2, . . . , as0−1, as0) of the sequence (a1, a2, . . .).
By part b) of Theorem 37 we have as0 = 2a0, and by part d), it follows that
s0 is the smallest index i such that ai > a0.

From b) and c) in Theorem 37, it follows that the fundamental solution
(x1, y1) to Pell’s equation x2−Dy2 = ±1 is given by x1/y1 = [a0, . . . , as0−1],
and that x21 − Dy21 = (−1)s0 . Therefore, if s0 is even, then there is no
solution to the Pell’s equation x2 − Dy2 = −1. If s0 is odd, then (x1, y1)
is the fundamental solution to Pell’s equation x2 − Dy2 = −1, while the
fundamental solution (x2, y2) to Pell’s equation x2 − Dy2 = 1 is given by
x2/y2 = [a0, . . . , a2s−1].

It follows also from Theorem 37 that the (ns0 − 1)-th convergent

xn/yn = [a0, . . . , ans0−1]

satisfies
xn + yn

√
D = (x1 + y1

√
D)n. (38)

We shall check this relation directly (Lemma 42).

Proof. Start with a positive solution (x, y) to Pell’s equation x2−Dy2 = ±1,
which exists according to Proposition 61. Since Dy ≥ x and x > y, we may
use lemma 30 and corollary 33 with

a = Dy, b = c = x, d = y

and write (
Dy x
x y

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
(39)

with positive integers a′0, . . . , a
′
s and with a′0 = b

√
Dc. Then the contin-

ued fraction expansion of Dy/x is [a′0, . . . , a
′
s] and the continued fraction

expansion of x/y is [a′0, . . . , a
′
s−1].

Since the matrix on the left hand side of (39) is symmetric, the word
a′0, . . . , a

′
s is a palindrome. In particular a′s = a′0.

Consider the periodic continued fraction

δ = [a′0, a
′
1, . . . , a

′
s−1, 2a

′
0].

This number δ satisfies

δ = [a′0, a
′
1, . . . , a

′
s−1, a

′
0 + δ].
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Using the inverse of the matrix(
a′0 1
1 0

)
which is

(
0 1
1 −a′0

)
,

we write (
a′0 + δ 1

1 0

)
=

(
a′0 1
1 0

)(
1 0
δ 1

)
Hence the product of matrices associated with the continued fraction of δ(

a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s−1 1

1 0

)(
a′0 + δ 1

1 0

)
is (

Dy x
x y

)(
1 0
δ 1

)
=

(
Dy + δx x
x+ δy y

)
.

It follows that

δ =
Dy + δx

x+ δy
,

hence δ2 = D. As a consequence, a′i = ai for 0 ≤ i ≤ s − 1 while a′s = a0,
as = 2a0.

This proves that if (x, y) is a non–trivial solution to Pell’s equation x2−
Dy2 = ±1, then the continued fraction expansion of

√
D is of the form

√
D = [a0, a1, . . . , as−1, 2a0] (40)

with a1, . . . , as−1 a palindrome, and x/y is given by the convergent

x/y = [a0, a1, . . . , as−1]. (41)

Consider a convergent pn/qn = [a0, a1, . . . , an]. If an+1 = 2a0, then (29)
with x =

√
D implies the upper bound∣∣∣∣√D − pn

qn

∣∣∣∣ ≤ 1

2a0q2n
,

and it follows from Proposition 62 that (pn, qn) is a solution to Pell’s equation
p2n − Dq2n = ±1. This already shows that ai < 2a0 when i + 1 is not the
length of a period. We refine this estimate to ai ≤ a0.

Assume an+1 ≥ a0 + 1. Since the sequence (am)m≥1 is periodic of period
length s0, for any m congruent to n modulo s0, we have am+1 > a0. For
these m we have ∣∣∣∣√D − pm

qm

∣∣∣∣ ≤ 1

(a0 + 1)q2m
·
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For sufficiently large m congruent to n modulo s we have

(a0 + 1)q2m > q2m
√
D + 1.

Proposition 62 implies that (pm, qm) is a solution to Pell’s equation p2m −
Dq2m = ±1. Finally, Theorem 37 implies that m+1 is a multiple of s0, hence
n+ 1 also.

3.3 Connection between the two formulae for the n-th posi-
tive solution to Pell’s equation

Lemma 42. Let D be a positive integer which is not a square. Consider
the simple continued fraction expansion

√
D = [a0, a1, . . . , as0−1, 2a0] where

s0 is the length of the fundamental period. Then the fundamental solution
(x1, y1) to Pell’s equation x2 −Dy2 = ±1 is given by the continued fraction
expansion x1/y1 = [a0, a1, . . . , as0−1]. Let n ≥ 1 be a positive integer. Define
(xn, yn) by xn/yn = [a0, a1, . . . , ans0−1]. Then xn + yn

√
D = (x1 + y1

√
D)n.

This result is a consequence of the two formulae we gave for the n-th
solution (xn, yn) to Pell’s equation x2 − Dy2 = ±1. We check this result
directly.

Proof. From Lemma 30 and relation (39), one deduces(
Dyn xn
xn yn

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)(
a0 1
1 0

)
.

Since (
Dyn xn
xn yn

)(
0 1
1 −a0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
,

we obtain(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
. (43)

Notice that the determinant is (−1)ns0 = x2n −Dy2n. Formula (43) for n+ 1
and the periodicity of the sequence (a1, . . . , an, . . . ) with as0 = 2a0 give :(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
.
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Take first n = 1 in (43) and multiply on the left by(
2a0 1
1 0

)(
0 1
1 −a0

)
=

(
1 a0
0 1

)
.

Since (
1 a0
0 1

)(
x1 Dy1 − a0x1
y1 x1 − a0y1

)
=

(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

we deduce(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
=

(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

Therefore(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

The first column gives

xn+1 = xnx1 +Dyny1 and yn+1 = x1yn + xny1,

which was to be proved.

3.4 Examples of simple continued fractions

The three first examples below are special cases of results initiated by O. Per-
ron [11] and related with real quadratic fields of Richaud-Degert type.
Example 1. Take D = a2b2 + 2b where a and b are positive integers. A
solution to

x2 − (a2b2 + 2b)y2 = 1

is (x, y) = (a2b + 1, a). As we shall see, this is related with the continued
fraction expansion of

√
D which is√

a2b2 + 2b = [ab, a, 2ab]

since

t =
√
a2b2 + 2b⇐⇒ t = ab+

1

a+
1

t+ ab

·

31



This includes the examples D = a2 + 2 (take b = 1) and D = b2 + 2b (take
a = 1). For a = 1 and b = c− 1, this includes the example D = c2 − 1.

Example 2. Take D = a2b2 + b where a and b are positive integers. A
solution to

x2 − (a2b2 + b)y2 = 1

is (x, y) = (2a2b+ 1, 2a). The continued fraction expansion of
√
D is√

a2b2 + b = [ab, 2a, 2ab]

since

t =
√
a2b2 + b⇐⇒ t = ab+

1

2a+
1

t+ ab

·

This includes the example D = b2 + b (take a = 1).
The case b = 1, D = a2 + 1 is special: there is an integer solution to

x2 − (a2 + 1)y2 = −1,

namely (x, y) = (a, 1). The continued fraction expansion of
√
D is√

a2 + 1 = [a, 2a]

since

t =
√
a2 + 1⇐⇒ t = a+

1

t+ a
·

Example 3. Let a and b be two positive integers such that b2 + 1 divides
2ab + 1. For instance b = 2 and a ≡ 1 (mod 5). Write 2ab + 1 = k(b2 + 1)
and take D = a2 + k. The continued fraction expansion of

√
D is

[a, b, b, 2a]

since t =
√
D satisfies

t = a+
1

b+
1

b+
1

a+ t

= [a, b, b, a+ t].

A solution to x2 −Dy2 = −1 is x = ab2 + a+ b, y = b2 + 1.
In the case a = 1 and b = 2 (so k = 1), the continued fraction has period

length 1 only: √
5 = [1, 2].
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Example 4. Integers which are Polygonal numbers in two ways are given
by the solutions to quadratic equations.

Triangular numbers are numbers of the form

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for n ≥ 1;

their sequence starts with

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, . . .

http://www.research.att.com/∼njas/sequences/A000217.

Square numbers are numbers of the form

1 + 3 + 5 + · · ·+ (2n+ 1) = n2 for n ≥ 1;

their sequence starts with

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, . . .

http://www.research.att.com/∼njas/sequences/A000290.

Pentagonal numbers are numbers of the form

1 + 4 + 7 + · · ·+ (3n+ 1) =
n(3n− 1)

2
for n ≥ 1;

their sequence starts with

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, . . .

http://www.research.att.com/∼njas/sequences/A000326.

Hexagonal numbers are numbers of the form

1 + 5 + 9 + · · ·+ (4n+ 1) = n(2n− 1) for n ≥ 1;

their sequence starts with

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, . . .

http://www.research.att.com/∼njas/sequences/A000384.
For instance, numbers which are at the same time triangular and squares

are the numbers y2 where (x, y) is a solution to Pell’s equation with D = 8.
Their list starts with

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, . . .
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See http://www.research.att.com/∼njas/sequences/A001110.

Example 5. Integer rectangle triangles having sides of the right angle
as consecutive integers a and a + 1 have an hypothenuse c which satisfies
a2 + (a + 1)2 = c2. The admissible values for the hypothenuse is the set of
positive integer solutions y to Pell’s equation x2 − 2y2 = −1. The list of
these hypothenuses starts with

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965,

See http://www.research.att.com/∼njas/sequences/A001653.

3.5 Records

For large D, Pell’s equation may obviously have small integer solutions.
Examples are

for D = m2 − 1 with m ≥ 2, the numbers x = m, y = 1 satisfy
x2 −Dy2 = 1,

for D = m2 + 1 with m ≥ 1, the numbers x = m, y = 1 satisfy
x2 −Dy2 = −1,

for D = m2 ±m with m ≥ 2, the numbers x = 2m ± 1, y = 2 satisfy
x2 −Dy2 = 1,

for D = t2m2 + 2m with m ≥ 1 and t ≥ 1, the numbers x = t2m + 1,
y = t satisfy x2 −Dy2 = 1.

On the other hand, relatively small values of D may lead to large fun-
damental solutions. Tables are available on the internet6.

For D a positive integer which is not a square, denote by S(D) the base
10 logarithm of x1, when (x1, y1) is the fundamental solution to x2−Dy2 = 1.
The number of decimal digits of the fundamental solution x1 is the integral
part of S(D) plus 1. For instance, when D = 61, the fundamental solution
(x1, y1) is

x1 = 1 766 319 049, y1 = 226 153 980

and S(61) = log10 x1 = 9.247 069 . . .
An integer D is a record holder for S if S(D′) < S(D) for all D′ < D.
Here are the record holders up to 1021:

D 2 5 10 13 29 46 53 61 109

S(D) 0.477 0.954 1.278 2.812 3.991 4.386 4.821 9.247 14.198

6For instance:
Tomás Oliveira e Silva: Record-Holder Solutions of Pell’s Equation
http://www.ieeta.pt/∼tos/pell.html.
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D 181 277 397 409 421 541 661 1021

S(D) 18.392 20.201 20.923 22.398 33.588 36.569 37.215 47.298

Some further records with number of digits successive powers of 10:

D 3061 169789 12765349 1021948981 85489307341

S(D) 104.051 1001.282 10191.729 100681.340 1003270.151

3.6 Periodic continued fractions

An infinite sequence (an)n≥0 is said to be ultimately periodic if there exists
n0 ≥ 0 and s ≥ 1 such that

an+s = an for all n ≥ n0. (44)

The set of s satisfying this property (3.6) is the set of positive multiples of an
integer s0, and (an0 , an0+1, . . . , an0+s0−1) is called the fundamental period.

A continued fraction with a sequence of partial quotients satisfying (44)
will be written

[a0, a1, . . . , an0−1, an0 , . . . , an0+s−1].

Example. For D a positive integer which is not a square, setting a0 = b
√
Dc,

we have by Theorem 37

a0 +
√
D = [2a0, a1, . . . , as−1] and

1√
D − a0

= [a1, . . . , as−1, 2a0].

Lemma 45 (Euler 1737). If an infinite continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic, then x is a quadratic irrational number.

Proof. Since the continued fraction of x is infinite, x is irrational. Assume
first that the continued fraction is periodic, namely that (44) holds with
n0 = 0:

x = [a0, . . . , as−1].

This can be written
x = [a0, . . . , as−1, x].

Hence

x =
ps−1x+ ps−2
qs−1x+ qs−2

·
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It follows that
qs−1X

2 + (qs−2 − ps−1)X − ps−2
is a non–zero quadratic polynomial with integer coefficients having x as a
root. Since x is irrational, this polynomial is irreducible and x is quadratic.

In the general case where (44) holds with n0 > 0, we write

x = [a0, a1, . . . , an0−1, an0 , . . . , an0+s−1] = [a0, a1, . . . , an0−1, y],

where y = [an0 , . . . , an0+s−1] is a periodic continued fraction, hence is quadratic.
But

x =
pn0−1y + pn0−2
qn0−1y + qn0−2

,

hence x ∈ Q(y) is also quadratic irrational.

Lemma 46 (Lagrange, 1770). If x is a quadratic irrational number, then
its continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic.

Proof. For n ≥ 0, define dn = qnx− pn. According to Corollary 28, we have
|dn| < 1/qn+1.

Let AX2 +BX + C with A > 0 be an irreducible quadratic polynomial
having x as a root. For each n ≥ 2, we deduce from (26) that the convergent
xn is a root of a quadratic polynomial AnX

2 +BnX + Cn, with

An = Ap2n−1 +Bpn−1qn−1 + Cq2n−1,

Bn = 2Apn−1pn−2 +B(pn−1qn−2 + pn−2qn−1) + 2Cqn−1qn−2,

Cn = An−1.

Using Ax2 +Bx+ C = 0, we deduce

An = (2Ax+B)dn−1qn−1 +Ad2n−1,

Bn = (2Ax+B)(dn−1qn−2 + dn−2qn−1) + 2Adn−1dn−2.

There are similar formulae expressing A, B, C as homogeneous linear com-
binations of An, Bn, Cn, and since (A,B,C) 6= (0, 0, 0), it follows that
(An, Bn, Cn) 6= (0, 0, 0). Since xn is irrational, one deduces An 6= 0.

From the inequalities

qn−1|dn−2| < 1, qn−2|dn−1| < 1, qn−1 < qn, |dn−1dn−2| < 1,
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one deduces

max{|An|, |Bn|/2, |Cn|} < A+ |2Ax+B|.

This shows that |An|, |Bn| and |Cn| are bounded independently of n. There-
fore there exists n0 ≥ 0 and s > 0 such that xn0 = xn0+s. From this we
deduce that the continued fraction of xn0 is purely periodic, hence the con-
tinued fraction of x is ultimately periodic.

A reduced quadratic irrational number is an irrational number x > 1
which is a root of a degree 2 polynomial ax2 + bx + c with rational integer
coefficients, such that the other root x′ of this polynomial, which is the
Galois conjugate of x, satisfies −1 < x′ < 0. If x is reduced, then so is
−1/x′.

Lemma 47. A continued fraction

x = [a0, a1, . . . , an . . .]

is purely periodic if and only if x is a reduced quadratic irrational number.
In this case, if x = [a0, a1, . . . , as−1] and if x′ is the Galois conjugate of x,
then

−1/x′ = [as−1, . . . , a1, a0]

Proof. Assume first that the continued fraction of x is purely periodic:

x = [a0, a1, . . . , as−1].

From as = a0 we deduce a0 > 0, hence x > 1. From x = [a0, a1, . . . , as−1, x]
and the unicity of the continued fraction expansion, we deduce

x =
ps−1x+ ps−2
qs−1x+ qs−2

and x = xs.

Therefore x is a root of the quadratic polynomial

Ps(X) = qs−1X
2 + (qs−2 − ps−1)X − ps−2.

This polynomial Ps has a positive root, namely x > 1, and a negative root
x′, with the product xx′ = −ps−2/qs−1. We transpose the relation(

ps−1 ps−2
qs−1 qs−2

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as−1 1

1 0

)
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and obtain (
ps−1 qs−1
ps−2 qs−2

)
=

(
as−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
.

Define
y = [as−1, . . . , a1, a0],

so that y > 1,

y = [as−1, . . . , a1, a0, y] =
ps−1y + qs−1
ps−2y + qs−2

and y is the positive root of the polynomial

Qs(X) = ps−2X
2 + (qs−2 − ps−1)X − qs−1.

The polynomials Ps and Qs are related by Qs(X) = −X2Ps(−1/X). Hence
y = −1/x′.

For the converse, assume x > 1 and −1 < x′ < 0. Let (xn)n≥1 be the
sequence of complete quotients of x. For n ≥ 1, define x′n as the Galois
conjugate of xn. One deduces by induction that x′n = an + 1/x′n+1, that
−1 < x′n < 0 (hence xn is reduced), and that an is the integral part of
−1/x′n+1.

If the continued fraction expansion of x were not purely periodic, we
would have

x = [a0, . . . , ah−1, ah, . . . , ah+s−1]

with ah−1 6= ah+s−1. By periodicity we have xh = [ah, . . . , ah+s−1, xh], hence
xh = xh+s, x

′
h = x′h+s. From x′h = x′h+s, taking integral parts, we deduce

ah−1 = ah+s−1, a contradiction.

Corollary 48. If r > 1 is a rational number which is not a square, then the
continued fraction expansion of

√
r is of the form

√
r = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome and a0 = b
√
rc.

Conversely, if the continued fraction expansion of an irrational number t > 1
is of the form

t = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome, then t2 is a rational number.
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Proof. If t2 = r is rational > 1, then for and a0 = b
√
tc the number x = t+a0

is reduced. Since t′ + t = 0, we have

− 1

x′
=

1

x− 2a0
·

Hence

x = [2a0, a1, . . . , as−1], − 1

x′
= [as−1, . . . , a1, 2a0]

and a1, . . . , as−1 a palindrome.
Conversely, if t = [a0, a1, . . . , as−1, 2a0] with a1, . . . , as−1 a palindrome,

then x = t + a0 is periodic, hence reduced, and its Galois conjugate x′

satisfies

− 1

x′
= [a1, . . . , as−1, 2a0] =

1

x− 2a0
,

which means t+ t′ = 0, hence t2 ∈ Q.

Lemma 49 (Serret, 1878). Let x and y be two irrational numbers with
continued fractions

x = [a0, a1, . . . , an . . .] and y = [b0, b1, . . . , bm . . .]

respectively. Then the two following properties are equivalent.

(i) There exists a matrix

(
a b
c d

)
with rational integer coefficients and de-

terminant ±1 such that

y =
ax+ b

cx+ d
·

(ii) There exists n0 ≥ 0 and m0 ≥ 0 such that an0+k = bm0+k for all k ≥ 0.

Condition (i) means that x and y are equivalent modulo the action of
GL2(Z) by homographies.

Condition (ii) means that there exists integers n0, m0 and a real number
t > 1 such that

x = [a0, a1, . . . , an0−1, t] and y = [b0, b1, . . . , bm0−1, t].

Example.

If x = [a0, a1, x2], then − x =

{
[−a0 − 1, 1, a1 − 1, x2] if a1 ≥ 2,

[−a0 − 1, 1 + x2] if a1 = 1.
(50)
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Proof. We already know by (26) that if xn is a complete quotient of x, then
x and xn are equivalent modulo GL2(Z). Condition (ii) means that there
is a partial quotient of x and a partial quotient of y which are equal. By
transitivity of the GL2(Z) equivalence, (ii) implies (i).

Conversely, assume (i):

y =
ax+ b

cx+ d
·

Let n be a sufficiently large number. From(
a b
c d

)(
pn pn−1
qn qn−1

)
=

(
un un−1
vn vn−1

)
with

un = apn + bqn, un−1 = apn−1 + bqn−1,
vn = cpn + dqn, vn−1 = cpn−1 + dqn−1,

we deduce

y =
unxn+1 + un−1
vnxn+1 + vn−1

·

We have vn = (cx + d)qn + cδn with δn = pn − qnx. We have qn → ∞,
qn ≥ qn−1 + 1 and δn → 0 as n → ∞. Hence, for sufficiently large n, we
have vn > vn−1 > 0. From part 1 of Corollary 33, we deduce(

un un−1
vn vn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
with a0, . . . , as in Z and a1, . . . , as positive. Hence

y = [a0, a1, . . . , as, xn+1].

A computational proof of (i) ⇒ (ii). Another proof is given by Bombieri [1]
(Theorem A.1 p. 209). He uses the fact that GL2(Z) is generated by the
two matrices (

1 1
0 1

)
and

(
0 1
1 0

)
.

The associated fractional linear transformations are K and J defined by

K(x) = x+ 1 and J(x) = 1/x.

We have J2 = 1 and

K([a0, t]) = [a0 + 1, t], K−1([a0, t]) = [a0 − 1, t].
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Also J([a0, t]) = [0, a0, t] if a0 > 0 and J([0, t]) = btc. According to (50),
the continued fractions of x and −x differ only by the first terms. This
completes the proof. 7

3.7 Diophantine approximation and simple continued frac-
tions

Lemma 51 (Lagrange, 1770). The sequence (|qnx − pn|)n≥0 is strictly de-
creasing: for n ≥ 1 we have

|qnx− pn| < |qn−1x− pn−1|.

Proof. We use Lemma 27 twice: on the one hand

|qnx− pn| =
1

xn+1qn + qn−1
<

1

qn + qn−1

because xn+1 > 1, on the other hand

|qn−1x− pn−1| =
1

xnqn−1 + qn−2
>

1

(an + 1)qn−1 + qn−2
=

1

qn + qn−1

because xn < an + 1.

Corollary 52. The sequence (|x − pn/qn|)n≥0 is strictly decreasing: for
n ≥ 1 we have ∣∣∣∣x− pn

qn

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ .
Proof. For n ≥ 1, since qn−1 < qn, we have∣∣∣∣x− pn

qn

∣∣∣∣ =
1

qn
|qnx−pn| <

1

qn
|qn−1x−pn−1| =

qn−1
qn

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ .

Here is the law of best approximation of the simple continued fraction.

7Bombieri in [1] gives formulae for J([a0, t]) when a0 ≤ −1. He distinguishes eight
cases, namely four cases when a0 = −1 (a1 > 2, a1 = 2, a1 = 1 and a3 > 1, a1 = a3 = 1),
two cases when a0 = −2 (a1 > 1, a1 = 1) and two cases when a0 ≤ −3 (a1 > 1, a1 = 1).
Here, (50) enables us to simplify his proof by reducing to the case a0 ≥ 0.
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Lemma 53. Let n ≥ 0 and (p, q) ∈ Z× Z with q > 0 satisfy

|qx− p| < |qnx− pn|.

Then q ≥ qn+1.

Proof. The system of two linear equations in two unknowns u, v{
pnu+ pn+1v = p
qnu+ qn+1v = q

(54)

has determinant ±1, hence there is a solution (u, v) ∈ Z× Z.
Since p/q 6= pn/qn, we have v 6= 0.
If u = 0, then v = q/qn+1 > 0, hence v ≥ 1 and q ≥ qn+1.
We now assume uv 6= 0.
Since q, qn and qn+1 are > 0, it is not possible for u and v to be both

negative. In case u and v are positive, the desired result follows from the
second relation of (54). Hence one may suppose u and v of opposite signs.
Since qnx − pn and qn+1x − pn+1 also have opposite signs, the numbers
u(qnx− pn) and v(qn+1x− pn+1) have same sign, and therefore

|qnx− pn| ≤ |u(qnx− pn)|+ |v(qn+1x− pn+1)| = |qx− p| < |qnx− pn|,

which is a contradiction.

A consequence of Lemma 53 is that the sequence of pn/qn produces
the best rational approximations to x in the following sense: any rational
number p/q with denominator q < qn has |qx − p| > |qnx − pn|. This is
sometimes referred to as best rational approximations of type 0.

Corollary 55. The sequence (qn)n≥0 of denominators of the convergents of
a real irrational number x is the increasing sequence of positive integers for
which

‖qnx‖ < ‖qx‖ for 1 ≤ q < qn.

As a consequence,
‖qnx‖ = min

1≤q≤qn
‖qx‖.

The theory of continued fractions is developed starting from Corollary 55 as
a definition of the sequence (qn)n≥0 in Cassels’s book [3].
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Corollary 56. Let n ≥ 0 and p/q ∈ Q with q > 0 satisfy∣∣∣∣x− p

q

∣∣∣∣ < ∣∣∣∣x− pn
qn

∣∣∣∣ .
Then q > qn.

Proof. For q ≤ qn we have∣∣∣∣x− p

q

∣∣∣∣ =
1

q
|qx− p| > 1

q
|qnx− pn|

qn
q

∣∣∣∣x− pn
qn

∣∣∣∣ ≥ ∣∣∣∣x− pn
qn

∣∣∣∣ .

Corollary 56 shows that the denominators qn of the convergents are also
among the best rational approximations of type 1 in the sense that∣∣∣∣x− p

q

∣∣∣∣ > ∣∣∣∣x− pn
qn

∣∣∣∣ for 1 ≤ q < qn,

but they do not produce the full list of them: to get the complete set, one
needs to consider also some of the rational fractions of the form

pn−1 + apn
qn−1 + aqn

with 0 ≤ a ≤ an+1 (semi–convergents) – see for instance [11], Chap. II, § 16.

Lemma 57 (Vahlen, 1895). Among two consecutive convergents pn/qn and
pn+1/qn+1, one at least satisfies |x− p/q| < 1/2q2.

Proof. Since x− pn/qn and x− pn−1/qn−1 have opposite signs,∣∣∣∣x− pn
qn

∣∣∣∣+

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ =

∣∣∣∣pnqn − pn−1
qn−1

∣∣∣∣ =
1

qnqn−1
<

1

2q2n
+

1

2q2n−1
·

The last inequality is ab < (a2 + b2)/2 for a 6= b with a = 1/qn and b =
1/qn−1. Therefore,

either

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

2q2n
or

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ < 1

2q2n−1
·
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Lemma 58 (É. Borel, 1903). Among three consecutive convergents pn−1/qn−1,
pn/qn and pn+1/qn+1, one at least satisfies |x− p/q| < 1/

√
5q2.

Compare with the implication (i) ⇒ (vi) in the irrationality criterion
below (Proposition 60.

That the constant
√

5 cannot be replaced by a larger one follows from
Proposition 63. This is true for any number with a continued fraction expan-
sion having all but finitely many partial quotients equal to 1 (which means
the Golden number Φ and all rational numbers which are equivalent to Φ
modulo GL2(Z)).

Proof. Recall Lemma 27: for n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Therefore |qnx−pn| < 1/
√

5qn if and only if |xn+1qn+qn−1| >
√

5qn. Define
rn = qn−1/qn. Then this condition is equivalent to |xn+1 + rn| >

√
5.

Recall the inductive definition of the convergents:

xn+1 = an+1 +
1

xn+2
·

Also, using the definitions of rn, rn+1, and the inductive relation qn+1 =
an+1qn + qn−1, we can write

1

rn+1
= an+1 + rn.

Eliminate an+1:
1

xn+2
+

1

rn+1
= xn+1 + rn.

Assume now

|xn+1 + rn| ≤
√

5 and |xn+2 + rn+1| ≤
√

5.

We deduce

1√
5− rn+1

+
1

rn+1
≤ 1

xn+2
+

1

rn+1
= xn+1 + rn ≤

√
5,

which yields
r2n+1 −

√
5rn+1 + 1 ≤ 0.
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The roots of the polynomial X2 −
√

5X + 1 are Φ = (1 +
√

5)/2 and Φ−1 =
(
√

5− 1)/2. Hence rn+1 > Φ−1 (the strict inequality is a consequence of the
irrationality of the Golden ratio). .

This estimate follows from the hypotheses |qnx − pn| < 1/
√

5qn and
|qn+1x− pn+1| < 1/

√
5qn+1. If we also had |qn+2x− pn+2| < 1/

√
5qn+2, we

would deduce in the same way rn+2 > Φ−1. This would give

1 = (an+2 + rn+1)rn+2 > (1 + Φ−1)Φ−1 = 1,

which is impossible.

Lemma 59 (Legendre, 1798). If p/q ∈ Q satisfies |x − p/q| ≤ 1/2q2, then
p/q is a convergent of x.

Proof. Let r and s in Z satisfy 1 ≤ s < q. From

1 ≤ |qr−ps| = |s(qx−p)− q(sx− r)| ≤ s|qx−p|+ q|sx− r| ≤ s

2q
+ q|sx− r|

one deduces

q|sx− r| ≥ 1− s

2q
>

1

2
≥ q|qx− p|.

Hence |sx − r| > |qx − p| and therefore Lemma 53 implies that p/q is a
convergent of x.

3.8 Appendix

The proof of the following results are left as exercises.

Proposition 60. Let ϑ be a real number. The following conditions are
equivalent:
(i) ϑ is irrational.
(ii) For any ε > 0, there exists (p, q) ∈ Z2 such that q > 0 and

0 < |qϑ− p| < ε.

(iii) For any ε > 0, there exist two linearly independent linear forms in two
variables

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,
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with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

(iv) For any real number Q > 1, there exists an integer q in the range
1 ≤ q < Q and a rational integer p such that

0 < |qϑ− p| < 1

Q
·

(v) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

q2
·

(vi) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

Proposition 61. Given a positive integer D which is not a square, there
exists (x, y) ∈ Z2 with x > 0 and y > 0 such that x2 −Dy2 = 1.

Proposition 62. Let D be a positive integer which is not a square. Let x
and y be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = ±1.

(ii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

2y2
√
D − 1

·

(iii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

y2
√
D + 1

·

Proposition 63. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

4 The theory of finite fields

References:
M. Demazure [4], Chap. 8.
D.S. Dummit & R.M. Foote [5], § 14.3.
S. Lang [9], Chap. 5 § 5.
R. Lidl & H. Niederreiter [10].
V. Shoup [13], Chap. 20.
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4.1 Gauss fields

A field with finitely many elements is also called a Gauss Field. For instance,
given a prime number p, the quotient Z/pZ is a Gauss field. Given two fields
F and F ′ with p elements, p prime, there is a unique isomorphism F → F ′.
Hence, we denote by Fp the unique field with p elements.

The characteristic of finite field F is a prime number p, hence, its prime
field is Fp. Moreover, F is a finite vector space over Fp; if the dimension
of this space is s, which means that F is a finite extension of Fp of degree
[F : Fp] = s, then F has ps elements. Therefore, the number of elements of
a finite field is always a power of a prime number p, and this prime number
is the characteristic of F .

The multiplicative group F× of a field with q elements has order q − 1,
hence, xq−1 = 1 for all x in F×, and xq = x for all x in F . Therefore, F×

is the set of roots of the polynomial Xq−1 − 1, while F is the set of roots of
the polynomial Xq −X:

Xq−1 − 1 =
∏
x∈F×

(X − x), Xq −X =
∏
x∈F

(X − x). (64)

Exercise 65. (a) Let F be a finite field with q elements, where q is odd.
Denote by C the set of non–zero squares in F , which is the image of the
endomorphism x 7→ x2 of the multiplicative group F×:

C = {x2 | x ∈ F×}.

Check

X(q−1)/2 − 1 =
∏
x∈C

(X − x) and X(q−1)/2 + 1 =
∏

x∈F×\C

(X − x)

(b) Let p be an odd prime. For a in Fp, denote by
(
a
p

)
the Legendre symbol:

(
a

p

)
=


0 if a = 0

1 if a is a non–zero square in Fp

−1 if a is not a square in Fp.

Check
X(p−1)/2 − 1 =

∏
a∈Fp,

(
a
p

)
=1

(X − a)
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and
X(p−1)/2 + 1 =

∏
a∈Fp,

(
a
p

)
=−1

(X − a).

Deduce that for a in Fp, (
a

p

)
= a(p−1)/2.

Exercise 66. Prove that in a finite field, any element is a sum of two
squares.

Exercise 67. Prove that if F is a finite field with q elements, then the
polynomial Xq−X+1 has no root in F . Deduce that F is not algebraically
closed.

Proposition 68. Any finite subgroup of the multiplicative group of a field K
is cyclic. If n is the order of G, then G is the set of roots of the polynomial
Xn − 1 in K.

Proof. The last part of the statement is easy: any element x of G satisfies
xn = 1 by Lagrange’s theorem, hence the polynomial Xn − 1, which has
degree n, has n roots in K, namely the elements in G. Since K is a field,
we deduce

Xn − 1 =
∏
x∈G

(X − x),

which means that G is the set of roots of the polynomial Xn − 1 in K
Let e be the exponent go G. By Lagrange’s theorem, e divides n. Any

x in G is a root of the polynomial Xe − 1. Since G has order n, we get n
roots in the field K of this polynomial Xe−1 of degree e ≤ n. Hence e = n.
We conclude by using the fact that there exists in G at least one element of
order e, hence, G is cyclic.

Second proof of Proposition 68. The following alternative proof of Proposi-
tion 68 does not use the exponent. Let K be a field and G a finite subgroup
of K× of order n. For each d | n, the number of elements x in K satisfying
xd = 1 is at most d (the polynomial Xd − 1 has at most d roots in K). The
result now follows from exercise 1 (3).

Programs giving a generator of the cyclic group F×q , also called a primitive
root or a primitive element in Fq, are available online8.

8One of them (in French) is
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Exercise 69. Let F be a finite field, q the number of its elements, k a
positive integer. Denote by Ck the image of the endomorphism x 7→ xk of
the multiplicative group F×:

Ck = {xk | x ∈ F×}.

How many elements are there in Ck?

When F = Fp, a rational integer a is called a primitive root modulo p
if a is not divisible by p and if the class of a modulo p is a generator of
the cyclic group (Z/pZ)×. More generally, when Fq is a finite field with q
elements, a nonzero element α in Fq is a generator of the cyclic group F×q if
and only if α is a primitive (q − 1)th root of unity.

The theorem of the primitive element for finite fields is:

Proposition 70. Let F be a finite field and K a finite extension of F . Then
there exist α ∈ K such that K = F (α).

Proof. Let q = ps be the number of elements in K, where p is the charac-
teristic of F and K; the multiplicative group K× is cyclic (Proposition 68);
let α be a generator. Then

K =
{

0, 1, α, α2, . . . , αq−2
}

= Fp(α),

and, therefore, K = F (α).

Hence the field K is isomorphic to the quotient Fp[X]/(P ) where P ∈
Fp[X] is some irreducible polynomial over Fp of degree s. We prove below
(cf. Theorem 72) that K is isomorphic to the quotient Fp[X]/(P ) where
P ∈ Fp[X] is any irreducible polynomial over Fp of degree s.

Lemma 71. Let K be a field of characteristic p. For x and y in K, we
have (x+ y)p = xp + yp.

Proof. When p is a prime number and n an integer in the range 1 ≤ n < p,
the binomial coefficient ( p

n

)
=

p!

n!(p− n)!

is divisible by p.

http://jean-paul.davalan.pagesperso-orange.fr/mots/comb/gfields/index.

html

Computation on finite fields can be done also with
http://wims.unice.fr/~wims/
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We now prove that for any prime number p and any integer s ≥ 1, there
exists a finite field with ps elements.

Theorem 72. Let p be a prime number and s a positive integer. Set q = ps.
Then there exists a field with q elements. Two finite fields with the same
number of elements are isomorphic. If Ω is an algebraically closed field of
characteristic p, then Ω contains one and only one subfield with q elements.

Proof. Let F be a splitting field over Fp of the polynomial Xq −X. Then
F is the set of roots of this polynomial, hence, has q elements.

If F ′ is a field with q elements, then F ′ is the set of roots of the polynomial
Xq−X, hence, F ′ is the splitting field of this polynomial over its prime field,
and, therefore, is isomorphic to F .

If Ω is an algebraically closed field of characteristic p, then the unique
subfield of Ω with q elements is the set of roots of the polynomial Xq −X.

According to (64), if Fq is a finite field with q elements and F an exten-
sion of Fq, then for a ∈ F , the relation aq = a holds if and only if a ∈ Fq.
We will use the following more general fact:

Lemma 73. Let Fq be a finite field with q elements, F an extension of Fq

and f ∈ F [X] a polynomial with coefficients in F . Then f belongs to Fq[X]
if and only if f(Xq) = f(X)q.

Proof. Since q is a power of the characteristic p of F , if we write

f(X) = a0 + a1X + · · ·+ anX
n,

then, by Lemma 71,

f(X)p = ap0 + ap1X
p + · · ·+ apnX

np

and by induction

f(X)q = aq0 + aq1X
q + · · ·+ aqnX

nq.

Therefore, f(X)q = f(Xq) if and only if aqi = ai for all i = 0, 1, . . . , n.

From Lemma 71, we deduce:
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Proposition 74. Let F be a field of characteristic p.
(a) The map

Frobp : F → F
x 7→ xp

is an endomorphism of F .
(b) If F is finite, or if F is algebraically closed, then Frobp is surjective,
hence is an automorphism of the field F .

Remark. An example of a field of characteristic p for which Frobp is not
surjective is the field Fp(X) of rational fractions in one variable over the
prime field Fp.

Proof. Indeed, this map is a morphism of fields since, by Lemma 71, for x
and y in F ,

Frobp(x+ y) = Frobp(x) + Frobp(y)

and
Frobp(xy) = Frobp(x)Frobp(y).

It is injective since it is a morphism of fields. If F is finite, it is surjective
because it is injective. If F is algebraically closed, any element in F is a
p–th power.

This endomorphism of F is called the Frobenius of F over Fp. It extends
to an automorphism of the algebraic closure of F .

If s is a non–negative integer, we denote by Frobsp or by Frobps the
iterated automorphism

Frob0
p = 1, Frobps = Frobps−1 ◦ Frobp (s ≥ 1),

so that, for x ∈ F ,

Frob0
p(x) = x, Frobp(x) = xp, Frobp2(x) = xp

2
, . . . , Frobps(x) = xp

s
(s ≥ 0).

If F has ps elements, then the automorphism Frobsp = Frobps of F is the
identity.

If F is a finite field with q elements and K a finite extension of F , then
Frobq is a F–automorphism of K called the Frobenius of K over F .

Let F be a finite field of characteristic p with q = pr elements. According
to Proposition 68, the multiplicative group F× of F is cyclic of order q− 1.
Let α be a generator of F×, that means an element of order q − 1. For
1 ≤ ` < r, we have 1 ≤ p` − 1 < pr − 1 = q − 1, hence, αp

`−1 6= 1 and
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Frob`p(α) 6= α. Since Frobrp is the identity on F , it follows that Frobp has
order r in the group of automorphisms of F .

Recall that a finite extension L/K is called a Galois extension if the
group G of K–automorphisms of L has order [L : K], and in this case the
group G is the Galois group of the extension, denoted by Gal(L/K). It
follows that the extension F/Fp is Galois, with Galois group Gal(F/Fp) =
Aut(F ) the cyclic group of order s generated by Frobp.

We extend this result to the more general case where the ground field
Fp is replaced by any finite field.

Theorem 75. [Galois theory for finite fields]

Let F be a finite field with q
elements and K a finite extension
of F of degree s. Then the ex-
tension K/F is Galois with Galois
group Gal(K/F ) = AutF (K) the
cyclic group generated by the Frobe-
nius Frobq. Define G = Gal(K/F ).

K

s/d
(
|
E

d
(

|
F

)
s

There is a bijection between
(i) the divisors d of s.
(ii) the subfields E of K containing F
(iii) the subgroups H of G.
• If E is a subfield of K containing F , then the degree d = [K : E] of E
over K divides s, the number of elements in E is qd, the extension K/F
is Galois with Galois group the unique subgroup H of G of order d, which
is the subgroup generated by Frobqd; furthermore, H is the subgroup of G
which consists of the elements σ ∈ G such that σ(x) = x for all x ∈ E.
• Conversely, if d divides s, then K has a unique subfield E with qd elements,
which is the fixed field by Frobqd:

E = {α ∈ K | Frobqd(α) = α},

this field E contains F , and the Galois group of K over E is the unique
subgroup H of G of order d.

Proof. Since G is cyclic generated by Frobq, there is a bijection between the
divisors d of s and the subgroups H of G: for d|s, the unique subgroup of
G of order s/d (which means of index d) is the cyclic subgroup generated
by Frobqd . The fixed field of H, which is by definition the set of x in K
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satisfying σ(x) = x for all σ ∈ H, is the fixed field of Frobqd , hence it is the

unique subfield of E with qd elements; the degree of K over E is therefore
d. If E is the subfield of K with qd elements, then the Galois group of K/E
is the cyclic group generated by Frobqd .

Under the hypotheses of Theorem 75, the Galois group of E over F is
the quotient Gal(K/F )/Gal(K/E).

Exercise 76.
(a) Let F be a field, m and n two positive integers, a and b two integers
≥ 2. Prove that the following conditions are equivalent.
(i) n divides m.
(ii) In F [X], the polynomial Xn − 1 divides Xm − 1.
(iii) an − 1 divides am − 1.
(ii’) In F [X], the polynomial Xan −X divides Xam −X.
(iii’) ba

n − b divides ba
m − b.

(b) Let m, n and a be positive integers with a ≥ 2. Check

gcd(an − 1, am − 1) = agcd(m,n) − 1.

Fix an algebraic closure Fp of Fp. For each s ≥ 1, denote by Fps the
unique subfield of Ω with ps elements. For n and m positive integers, we
have the following equivalence:

Fpn ⊂ Fpm ⇐⇒ n divides m. (77)

If these conditions are satisfied, then Fpm/Fpn is cyclic, with Galois group
of order m/n generated by Frobpn .

Let F ⊂ Fp be a finite field of characteristic p with q elements, and let
x be an element in Fp. The conjugates of x over F are the roots in Fp of
the irreducible polynomial of x over F , and these are exactly the images of
x by the iterated Frobenius Frobqi , i ≥ 0.

Two fields with ps elements are isomorphic (cf. Theorem 72), but if
s ≥ 2, there is no unicity of such an isomorphic, because the set of automor-
phisms of Fps has more than one element (indeed, it has s elements).

Remarks.

• The additive group (F,+) of a finite field F with q elements is cyclic if and
only if q is a prime number.
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• The multiplicative group (F×,×) of a finite field F with q elements is cyclic,
hence, is isomorphic to the additive group Z/(q − 1)Z.

• A finite field F with q elements is isomorphic to the ring Z/qZ if and only
if q is a prime number (which is equivalent to saying that Z/qZ has no zero
divisor).

Example (Simplest example of a finite field which is not a prime

field). A field F with 4 elements has two elements besides 0 and 1. These
two elements play exactly the same role: the map which permutes them and
sends 0 to 0 and 1 to 1 is an automorphism of F : this automorphism is noth-
ing else than Frob2. Select one of these two elements, call it j. Then j is a
generator of the multiplicative group F×, which means that F× = {1, j, j2}
and F = {0, 1, j, j2}.

Here are the addition and multiplication tables of this field F :

(F,+) 0 1 j j2

0 0 1 j j2

1 1 0 j2 j
j j j2 0 1
j2 j2 j 1 0

(F,×) 0 1 j j2

0 0 0 0 0
1 0 1 j j2

j 0 j j2 1
j2 0 j2 1 j

There are 4 polynomials of degree 2 over F2, three of them split in F2,
namely X2, X2 +1 = (X+1)2 and X2 +X = X(X+1), and just one which
is irreducible, X2 + X + 1, the roots of which are the elements of F other
than 0 and 1.

Example (The field F5). .
We could write F5 = {0, 1,−1, i,−i} with i and −i the two roots of

X2+1, one of them is 2, the other is 3. Notice that there is no automorphism
of F5 mapping i to −i.

Exercise 78. Check the following isomorphisms, and give a generator of
the multiplicative group of non–zero elements in the field.
(a) F4 = F2[X]/(X2 +X + 1).
(b) F8 = F2[X]/(X3 +X + 1).
(c) F16 = F2[X]/(X4 +X + 1).
(d) F16 = F2[X,Y ]/(Y 2 + Y + 1, X2 +X + Y ).
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Exercise 79. (a) Give the list of all irreducible polynomials of degree ≤ 5
over F2.
(b) Give the list of all monic irreducible polynomials of degree ≤ 2 over F4.

Recall (Theorem 75) that any finite extension of a finite field is Galois.
Hence, in a finite field F , any irreducible polynomial is separable: finite
fields are perfect.

Theorem 80 (Normal basis theorem). Given a finite extension L ⊃ K of
finite fields, there exists an element α in L× such that the conjugates of α
over K form a basis of the vector space L over K.
With such a basis, the Frobenius map Frobq, where q is the number of ele-
ments in K, becomes a shift operator on the coordinates.

Remark. The normal basis Theorem holds for any finite Galois extension
L/K: given any finite Galois extension L/K, there exists α ∈ L such that
the conjugates of α give a basis of the K vector space L. We first give a
proof of this result when K is infinite, and then a proof for a cyclic extension
L/K. The second proof will give the result for finite fields.

Let G = Gal(L/K). The conjugates of α over K are the elements σ(α).
Consider a linear relation with coefficients in K among such numbers, for
an arbitrary α ∈ L: ∑

σ∈G
aσσ(α) = 0.

For each τ ∈ G, we also have∑
σ∈G

aστ
−1σ(α) = 0.

Hence, for α ∈ L; a necessary and sufficient condition for the conjugates of
α to give a basis of L over K is

det
(
τ−1σ(α)

)
τ,σ∈G 6= 0.

Since L/K is a finite separable extension, there exists an element β in L such
that L = K(β) (theorem of the primitive element). Let f be the irreducible
polynomial of β over K:

f(X) =
∏
σ∈G

(X − σ(β)).

For σ ∈ G, define gσ(X) ∈ L[X] by

gσ(X) =
f(X)

X − σ(β)
=

∏
τ∈G\{σ}

(X − τ(β)).
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We have gσ(β) 6= 0 for σ = 1 and gσ(β) = 0 for σ 6= 1, hence the determinant

d(X) = det
(
gτ
−1σ(X)

)
τ,σ∈G

does not vanish at β; this shows that d(X) is not the zero polynomial
Assume now that the field K is infinite: hence there exists γ ∈ L such

that d(γ) 6= 0. Set

α =
f(γ)

γ − β
·

Then one checks that α and its conjugates give a basis of L over K.
However this argument does not work for a finite field, which is the case

we are interested in. In this case a different argument is used, which works
more generally for a cyclic extension.

Proof of Theorem 80.
Let σ be a generator of G. The elements of G are distinct characters of L×,
namely homomorphisms of multiplicative groups L× → L×, and therefore
they are linearly independent by Dedekind Theorem (theorem of linear in-
dependence of characters). We now consider σ as an endomorphism of the
K–vector space L: since 1, σ, . . . , σd−1 are linearly independent over K, with
d = [L : K], the minimal polynomial of the endomorphism σ is Xd−1, which
is also the characteristic polynomial of this endomorphism. It follows that
there is a cyclic vector, which is an element α in L solution of our problem.

For such a basis α, αq, αq
2
, . . . , αq

d−1
, an element γ in L has coordinates

a0, a1, . . . , ad−1 with

γ = a0α+ a1α
q + a2α

q2 + · · ·+ ad−1α
qd−1

,

and the image of γ under the Frobenius map Frobq is

γq = ad−1 + a0α
q + a1α

q2 + · · ·+ ad−2α
qd−1

,

the coordinates of which are ad−1, a0, a1, . . . , ad−2. Hence the Frobenius is
a shift operator on the coordinates.

Exercise 81.
a) Let G be a group, N be a normal subgroup of finite index in G and H
a subgroup of G. Show that the index of H ∩N in H is finite and divides
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the index of N in G. Deduce that if H ∩N = {1}, then H is finite and its
order divides the index of N in G.
(b) Let L/K be a finite abelian extension and E1, E2 two subfields of L
containing K. Assume that the compositum of E1 and E2 is L. Show that
[L : E1] divides [E2 : K].
(c) Let F be a finite field, E an extension of F and α, β two elements in E
which are algebraic over F of degree respectively a and b. Assume a and b
are relatively prime. Prove that

F (α, β) = F (α+ β).

One of the main results of the theory of finite fields is the following:

Theorem 82. Let F be a finite field with q elements, α an element in an
algebraic closure of F . There exist integers ` ≥ 1 such that αq

`
= α. Denote

by n the smallest:

n = min{` ≥ 1 | Frob`q(α) = α}.

Then the field F (α) has qn elements, which means that the degree of α over
F is n, and the minimal polynomial of α over F is

n−1∏
`=0

(
X − Frob`q(α)

)
=

n−1∏
`=0

(
X − αq`

)
. (83)

Proof. Define s = [F (α) : F ]. By Theorem 75, the extension F (α)/F is
Galois with Galois group the cyclic group of order s generated by Frobq.
The conjugates of αover F are the elements Frobiq(α), 0 ≤ i ≤ s− 1. Hence
s = n.

4.2 Cyclotomic polynomials

Let n be a positive integer. A n–th root of unity in a field K is an element of
K× which satifies xn = 1. This means that it is a torsion element of order
dividing n.

A primitive n–th root of unity is an element of K× of order n: for k in
Z, the equality xk = 1 holds if and only if n divides k.

For each positive integer n, the n–th roots of unity in F form a finite
subgroup of F×tors having at most n elements. The union of all these sub-
groups of F×tors is just the torsion group F×tors itself. This group contains 1
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and −1, but it could have just one element, like for F2 = Z/2Z or F2(X)
for instance. The torsion subgroup of R× is {±1}, the torsion subgroup of
C× is infinite.

Let K be a field of finite characteristic p and let n be a positive integer.
Write n = prm with r ≥ 0 and gcd(p,m) = 1. In K[X], we have

Xn − 1 = (Xm − 1)p
r
.

If x ∈ K satisfies xn = 1, then xm = 1. Therefore, the order of a finite
subgroup of K× is prime to p.

It also follows that the study of Xn − 1 reduces to the study of Xm − 1
with m prime to p.

Let n be a positive integer and Ω be an algebraically closed field of
characteristic either 0 or a prime number not dividing n. Then the number
of primitive n-th roots of unity in Ω is ϕ(n). These ϕ(n) elements are the
generators of the unique cyclic subgroup Cn of order n of Ω×, which is the
group of n-th roots of unity in Ω:

Cn = {x ∈ Ω | xn = 1}.

4.2.1 Cyclotomic polynomials over C[X]

The map C→ C× defined by z 7→ e2iπz/n is a morphism from the additive
group C to the multiplicative group C×; this morphism is periodic with
period n. Hence, it factors to a morphism from the group C/nZ to C×: we
denote it also by z 7→ e2iπz/n. The multiplicative group (Z/nZ)× of the ring
Z/nZ is the set of classes of integers prime to n. Its order is ϕ(n), where ϕ
is Euler’s function.

The ϕ(n) complex numbers

e2iπk/n k ∈ (Z/nZ)×

are the primitive roots of unity in C.
For n a positive integer, we define a polynomial Φn(X) ∈ C[X] by

Φn(X) =
∏

k∈(Z/nZ)×
(X − e2iπk/n). (84)

This polynomial is called the cyclotomic polynomial of index n; it is monic
and has degree ϕ(n). Since

Xn − 1 =

n−1∏
k=0

(X − e2iπk/n),
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the partition of the set of roots of unity according to their order shows that

Xn − 1 =
∏

1≤d≤n
d|n

Φd(X). (85)

The degree of Xn − 1 is n, and the degree of Φd(X) is ϕ(d), hence, Lemma
4 follows also from (85).

The name cyclotomy comes from the Greek and means divide the circle.
The complex roots of Xn − 1 are the vertices of a regular polygon with n
sides.

From (85), it follows that an equivalent definition of the polynomials
Φ1,Φ2, . . . in Z[X] is by induction on n:

Φ1(X) = X − 1, Φn(X) =
Xn − 1∏

d6=n
d|n

Φd(X)
· (86)

This is the most convenient way to compute the cyclotomic polynomials Φn

for small values of n.
Möbius inversion formula (see the second form in § 1.4.3 with G the

multiplicative group Q(X)×) yields

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d).

First examples. One has

Φ2(X) =
X2 − 1

X − 1
= X + 1, Φ3(X) =

X3 − 1

X − 1
= X2 +X + 1,

and more generally, for p prime

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+X + 1.

The next cyclotomic polynomials are

Φ4(X) =
X4 − 1

X2 − 1
= X2 + 1 = Φ2(X

2),

Φ6(X) =
X6 − 1

(X3 − 1)(X + 1)
=
X3 + 1

X + 1
= X2 −X + 1 = Φ3(−X).
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Exercise 87.
(a) Let p be a prime number and let m ≥ 1. Prove{

Φm(Xp) = Φpm(X) and ϕ(pm) = pϕ(m) if p|m,
Φm(Xp) = Φpm(X)Φm(X) and ϕ(pm) = (p− 1)ϕ(m) if gcd(p,m) = 1.

Deduce

Φpr(X) = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1
+ 1 = Φp(X

pr−1
)

when p is a prime and r ≥ 1.
(b) Let n be a positive integer. Prove

ϕ(2n) =

{
ϕ(n) if n is odd,

2ϕ(n) if n is even,

Φ2n(X) =


−Φ1(−X) if n = 1,

Φn(−X) if n is odd and ≥ 3,

Φn(X2) if n is even.

Deduce, for ` ≥ 1 and for m odd ≥ 3,

Φ2`(X) = X2`−1
+ 1

Φ2`m(X) = Φm(−X2`−1
),

Φm(X)Φm(−X) = Φm(X2).

Theorem 88. For any positive integer n, the polynomial Φn(X) has its
coefficients in Z. Moreover, Φn(X) is irreducible in Z[X].

Proof of the first part of Theorem 88. We check Φn(X) ∈ Z[X] by induc-
tion on n. The results holds for n = 1, since Φ1(X) = X − 1. Assume
Φm(X) ∈ Z[X] for all m < n. From the induction hypothesis, it follows
that

h(X) =
∏
d|n
d 6=n

Φd(X)

is monic with coefficients in Z. We divide Xn−1 by h in Z[X]: let Q ∈ Z[X]
be the quotient and R ∈ Z[X] the remainder:

Xn − 1 = h(X)Q(X) +R(X).

We also have Xn − 1 = h(X)Φn(X) in C[X], as shown by (85). From the
unicity of the quotient and remainder in the Euclidean division in C[X], we
deduce Q = Φn and R = 0, hence, Φn ∈ Z[X].
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We now show that Φn is irreducible in Z[X]. Since it is monic, its content
is 1. It remains to check that it is irreducible in Q[X].

Here is a proof of the irreducibility of the cyclotomic polynomial in the
special case where the index is a prime number p. It rests on Eisenstein’s
Criterion:

Proposition 89 (Eisenstein criterion). Let

C(X) = c0X
d + · · ·+ cd ∈ Z[X]

and let p be a prime number. Assume C to be product of two polynomials
in Z[X] of positive degrees. Assume also that p divides ci for 1 ≤ i ≤ d but
that p does not divide c0. Then p2 divides cd.

Proof. Let

A(X) = a0X
n + · · ·+ an and B(X) = b0X

m + · · ·+ bm

be two polynomials in Z[X] of degrees m and n such that C = AB. Hence,
d = m + n, c0 = a0b0, cd = anbm. We use the morphism (2) of reduction
modulo p, namely Ψp : Z[X] −→ Fp[X]. Write Ã = Ψp(A), B̃ = Ψp(B),
C̃ = Ψp(C),

Ã(X) = ã0X
n + · · ·+ ãn, B̃(X) = b̃0X

m + · · ·+ b̃m

and
C̃(X) = c̃0X

d + · · ·+ c̃d.

By assumption c̃0 6= 0, c̃1 = · · · = c̃d = 0, hence, C̃(X) = c̃0X
d =

Ã(X)B̃(X) with c̃0 = ã0b̃0 6= 0. Now Ã and B̃ have positive degrees n
and m, hence, ãn = b̃m = 0, which means that p divides an and bm, and,
therefore, p2 divides cd = anbm.

Proof of the irreducibility of Φp over Z in Theorem 88 for p prime. We set
X − 1 = Y , so that

Φp(Y + 1) =
(Y + 1)p − 1

Y
= Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

2

)
Y + p ∈ Z[Y ].

We observe that p divides all coefficients – but the leading one – of the monic
polynomial Φp(Y + 1) and that p2 does not divide the constant term. We
conclude by using Eisenstein’s Criterion Proposition 89.

We now consider the general case.
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Proof of the irreducibility of Φn over Z in Theorem 88 for all n. Let f ∈ Z[X]
be an irreducible factor of Φn with a positive leading coefficient and let
g ∈ Z[X] satisfy fg = Φn. Our goal is to prove f = Φn and g = 1.

Since Φn is monic, the same is true for f and g. Let ζ be a root of f
in C and let p be a prime number which does not divide n. Since ζp is a
primitive n-th root of unity, it is a zero of Φn.

The first and main step of the proof is to check that f(ζp) = 0. If ζp

is not a root of f , then it is a root of g. We assume g(ζp) = 0 and we will
reach a contradiction.

Since f is irreducible, f is the minimal polynomial of ζ, hence, from
g(ζp) = 0, we infer that f(X) divides g(Xp). Write g(Xp) = f(X)h(X) and
consider the morphism Ψp of reduction modulo p already introduced in (2).
Denote by F , G, H the images of f , g, h. Recall that fg = Φn in Z[X],
hence, F (X)G(X) divides Xn − 1 in Fp[X]. The assumption that p does
not divide n implies that Xn − 1 has no square factor in Fp[X].

Let P ∈ Z[X] be an irreducible factor of F . From G(Xp) = F (X)H(X),
it follows that P (X) divides G(Xp). But G ∈ Fp[X], hence (see Lemma
73), G(Xp) = G(X)p and, therefore, P divides G(X). Now P 2 divides the
product FG, which is a contradiction.

We have checked that for any root ζ of f in C and any prime number p
which does not divide n, the number ζp is again a root of f . By induction
on the number of prime factors of m, it follows that for any integer m with
gcd(m,n) = 1 the number ζm is a root of f . Now f vanishes at all the
primitive n–th roots of unity, hence, f = Φn and g = 1.

Let n be a positive integer. The cyclotomic field of level n over Q is

Rn = Q
({
e2iπk/n | k ∈ (Z/nZ)×

})
⊂ C.

This is the splitting field of Φn over Q. If ζ ∈ C is any primitive n–th root of
unity, then Rn = Q(ζ) and {1, ζ, . . . , ζϕ(n)−1} is a basis of Rn as a Q–vector
space.

For example we have

R1 = R2 = Q, R3 = R6 = Q(j), R4 = Q(i),

where j is a root of the polynomial X2 +X + 1. It is easy to check that for
n ≥ 1 we have ϕ(n) = 1 if and only if n ∈ {1, 2}, ϕ(n) = 2 if and only if
n ∈ {3, 4, 6} and ϕ(n) is even and ≥ 4 for n ≥ 5 with n 6= 6. That ϕ(n), the
degree of Rn, tends to infinity with n can be checked in an elementary way.
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Exercise 90. Check
n ≤ 2.685ϕ(n)1.161

for all n ≥ 1.

Proposition 91. There is a canonical isomorphism between Gal(Rn/Q)
and the multiplicative group (Z/nZ)×.

Proof. Let ζn be a primitive n-th root of unity and let µn be the group
of n-th roots of unity, which is the subgroup of C× generated by ζn. The
map Z −→ µn which maps m to ζmn is a group homomorphism of kernel
nZ. When c is a class modulo n, we denote by ζc the image of c under the
isomorphism Z/nZ ' µn.

For ϕ ∈ Gal(Rn/Q), define θ(ϕ) ∈ (Z/nZ)× by

ϕ(ζn) = ζθ(ϕ)n .

Then θ is well defined and is a group isomorphism from Gal(Rn/Q) onto
(Z/nZ)×.

Example. The element τ in Gal(Rn/Q) such that θ(τ) = −1 satisfies
τ(ζn) = ζ−1n . But ζ−1n is the complex conjugate of ζn, since |ζn| = 1. Hence
τ is the (restriction to Rn of the) complex conjugation.

Assume n ≥ 3. The subfield of Rn fixed by the subgroup θ−1({1,−1})
of Gal(Rn/Q) is the maximal real subfield of Rn:

R+
n = Q(ζn + ζ−1n ) = Q

(
cos(2π/n)

)
= Rn ∩R

with [Rn : R+
n ] = 2.

4.2.2 Cyclotomic Polynomials over a finite field

Since Φn has coefficients in Z, for any field K, we can view Φn(X) as an
element in K[X]: in zero characteristic, this is plain since K contains Q; in
finite characteristic p, one considers the image of Φn under the morphism
Ψp introduced in (2): we denote again this image by Φn.

Proposition 92. Let K be a field and let n be a positive integer. Assume
that K has characteristic either 0 or else a prime number p prime to n. Then
the polynomial Φn(X) is separable over K and its roots in K are exactly the
primitive n–th roots of unity which belong to K.
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Proof. The derivative of the polynomial Xn − 1 is nXn−1. In K, we have
n 6= 0 since p does not divide n, hence, Xn − 1 is separable over K. Since
Φn(X) is a factor of Xn − 1, it is also separable over K. The roots in K of
Xn− 1 are precisely the n–th roots of unity contained in K. A n-th root of
unity is primitive if and only if it is not a root of Φd when d|n, d 6= n. From
(86), this means that it is a root of Φn.

When n = prm with r ≥ 0 and m ≥ 1, in characteristic p we have

Xn − 1 = (Xm − 1)p
r
.

Therefore, if p divides n, there is no primitive n–th root of unity in a field
of characteristic p.

Exercise 93.
Consider the following polynomials over a field of characteristic p. (a) Prove
that for r ≥ 0 and m ≥ 1 with p 6 |m,

Φprm(X) = Φm(X)ϕ(p
r) with ϕ(pr) =

{
1 if r = 0,

pr − pr−1 if r ≥ 1.

(b) Deduce that if p divides m, then in characteristic p we have

Φprm(X) = Φm(X)p
r
.

According to (64), given q = pr, the unique subfield of Fp with q elements
is the set Fq of roots of Xq −X in Fp. The set {X − x | x ∈ Fq} is the set
of all monic degree 1 polynomials with coefficients in Fq. Hence, (64) is the
special case n = 1 of the next statement.

Theorem 94. Let F be a finite field with q elements and let n be a positive
integer.The polynomial Xqn−X is the product of all irreducible polynomials
in F [X] whose degree divides n. In other terms, for any n ≥ 1,

Xqn −X =
∏
d|n

∏
f∈Eq(d)

f(X)

where Eq(d) is the set all monic irreducible polynomials in Fq[X] of degree
d.
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Proof. The derivative of Xqn −X is −1, which has no root, hence, Xqn −X
has no multiple factor in characteristic p.

Let f ∈ Fq[X] be an irreducible factor of Xqn −X and α be a root of f
in Fp. The polynomial Xqn −X is a multiple of f , therefore, it vanishes at
α, hence, αq

n
= α which means α ∈ Fqn . From the field extensions

Fq ⊂ Fq(α) ⊂ Fqn ,

we deduce that the degree of α over Fq divides the degree of Fqn over Fq,
that is d divides n.

Conversely, let f be an irreducible polynomial in Fq[X] of degree d where
d divides n. Let α be a root of f in Fp. Since d divides n, the field Fq(α) is
a subfield of Fqn , hence α ∈ Fqn satisfies αq

n
= α, and therefore f divides

Xqn −X.
This shows that Xqn −X is a multiple of all irreducible polynomials of

degree dividing n.
In the factorial ring Fq[X], the polynomial Xqn −X, having no multiple

factor, is the product of the monic irreducible polynomials which divide it.
Theorem 94 follows.

Denote by Nq(d) the number of elements in Eq(d), that is the number
of monic irreducible polynomials of degree d in Fq[X]. Theorem 94 yields,
for n ≥ 1,

qn =
∑
d|n

dNq(d). (95)

From Möbius inversion formula (§ 1.4.3), one deduces:

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.

For instance, when ` is a prime number,

Nq(`) =
q` − q
`
· (96)

Exercise 97. Let F be a finite field with q elements.

(a) Give the values of N2(n) for 1 ≤ n ≤ 6.
(b) Check, for n ≥ 2,

qn

2n
≤ Nq(n) ≤ qn

n
·

65



(c) More precisely, check, for n ≥ 2,

qn − qbn/2c+1

n
< Nq(n) ≤ qn − q

n
·

(d) Let F be a finite field of characteristic p. Denote by Fp the prime subfield

of F . Check that more than half of the elements α in F satisfy F = Fp(α).
(e) Check that when pn tends to infinity, the probability that a polynomial

of degree n over Fp be irreducible in Fp[X] tends to 1/n.

Remark. From (c) one deduces that the number Nq(n) of monic irreducible
polynomials of degree n over Fq satisfies

Nq(n) =
qn

n
+O

(
qn/2

n

)
.

This Prime Polynomial Theorem is the analog for polynomials of the Prime
Number Theorem which asserts that the number π(x) of primes p ≤ x is
asymptotically equal to

Li(x) =

∫ x

2

dt

log t
∼ x

log x
,

while the Riemann Hypothesis is equivalent to the assertion that the re-
mainder term π(x) − Li(x) is bounded above by x1/2+o(1). This analogy
takes into account the fact that x is the number of integers ≤ x while qn is
the number of monic polynomials of degree n over Fq.

4.3 Decomposition of cyclotomic polynomials over a finite
field

In all this section, we assume that n is not divisible by the characteristic p
of Fq.

We apply Theorem 82 to the cyclotomic polynomials.

Theorem 98. Let Fq be a finite field with q elements and let n be a pos-
itive integer not divisible by the characteristic of Fq. Then the cyclotomic
polynomial Φn splits in Fq[X] into a product of irreducible factors, all of the
same degree d, where d is the order of q modulo n.

Recall (see § 1.4.1) that the order of q modulo n is by definition the order
of the class of q in the multiplicative group (Z/nZ)× (hence, it is defined
if and only if n and q are relatively prime), it is the smallest integer ` such
that q` is congruent to 1 modulo n.
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Proof. Let ζ be a root of Φn in a splitting field K of the polynomial Φn

over Fq. The order of ζ in the multiplicative group K× is n. According to
Theorem 82, the degree of ζ over Fq is he smallest integer s ≥ 1 such that
ζq

s−1 = 1. Hence it is the smallest positive integer s such that n divides
qs − 1, and this is the order of the image of q in the multiplicative group
(Z/nZ)×.

Since an element ζ ∈ F
×
p has order n in the multiplicative group F

×
p if

and only if ζ is a root of Φn, an equivalent statement to Theorem 98 is the
following.

Corollary 99. If ζ ∈ F
×
p has order n in the multiplicative group F

×
p , then

its degree d = [Fq(ζ) : Fq] over Fq is the order of q modulo n.

The special case d = 1 of corollary 99 produces the next result:

Corollary 100. The polynomial Φn(X) splits completely in Fq[X] (into a
product of linear polynomials) if and only if q ≡ 1 mod n.

This follows from Theorem 98, but it is also plain from Proposition 68
and the fact that the cyclic group F×q of order q − 1 contains a subgroup of
order n if and only if n divides q − 1, which is the condition q ≡ 1 mod n.

The special case d = ϕ(n) of corollary 99 produces the next result:

Corollary 101. The following conditions are equivalent:
(i) The polynomial Φn(X) is irreducible in Fq[X].
(ii) The class of q modulo n has order ϕ(n).
(iii) q is a generator of the group (Z/nZ)×.

This can be true only when this multiplicative group is cyclic, which
means (see Exercise 5) that n is either

2, 4, `s, 2`s

where ` is an odd prime and s ≥ 1.

Corollary 102. Let q be a power of a prime, s a positive integer, and
n = qs − 1. Then q has order s modulo n. Hence, Φn splits in Fq[X] into
irreducible factors, all of which have degree s.

Notice that the number of factors in this decomposition is ϕ(qs − 1)/s,
hence it follows that s divides ϕ(qs − 1).
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Numerical examples
Recall that we fix an algebraic closure Fp of the prime field Fp, and for

q a power of p we denote by Fq the unique subfield of Fp with q elements.
Of course, Fp is also an algebraic closure of Fq.

Example. The field F4, quadratic extension of F2 (see also example
4.1). We consider the quadratic extension F4/F2. There is a unique irre-
ducible polynomial of degree 2 over F2, which is Φ3 = X2 +X + 1. Denote
by ζ one of its roots in F4. The other root is ζ2 with ζ2 = ζ + 1 and

F4 = {0, 1, ζ, ζ2}.

If we set η = ζ2, then the two roots of Φ3 are η and η2, with η2 = η+ 1 and

F4 = {0, 1, η, η2}.

There is no way to distinguish these two roots, they play the same role. It
is the same situation as with the two roots ±i of X2 + 1 in C.

Example. The field F8, cubic extension of F2. We consider the cubic
extension F8/F2. There are 6 elements in F8 which are not in F2, each of
them has degree 3 over F2, hence, there are two irreducible polynomials of
degree 3 in F2[X]. Indeed, from (96), it follows that N2(3) = 2. The two
irreducible factors of Φ7 are the only irreducible polynomials of degree 3
over F2:

X8 −X = X(X + 1)(X3 +X + 1)(X3 +X2 + 1).

The 6 = ϕ(7) elements in F×8 of degree 3 are the six roots of Φ7, hence, they
have order 7. If ζ is any of them, then

F8 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6}.

Since [F8 : F2] = 3, there are three automorphisms of F8, namely the
identity, Frob2 and Frob4 = Frob2

2. If ζ is a root of Q1(X) = X3+X+1, then
the two other roots are ζ2 and ζ4, while the roots of Q2(X) = X3 +X2 + 1
are ζ3, ζ5 and ζ6. Notice that ζ6 = ζ−1 and Q2(X) = X3Q1(1/X). Set
η = ζ−1. Then

F8 = {0, 1, η, η2, η3, η4, η5, η6}

and

Q1(X) = (X − ζ)(X − ζ2)(X − ζ4), Q2(X) = (X − η)(X − η2)(X − η4).
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For transmission of data, it is not the same to work with ζ or with η = ζ−1.
For instance, the map x 7→ x+ 1 is given by

ζ + 1 = ζ3, ζ2 + 1 = ζ6, ζ3 + 1 = ζ, ζ4 + 1 = ζ5, ζ5 + 1 = ζ4, ζ6 + 1 = ζ2

and by

η + 1 = η5, η2 + 1 = η3, η3 + 1 = η2, η4 + 1 = η6, η5 + 1 = η, η6 + 1 = η4.

Example. The field F9, quadratic extension of F3. We consider the
quadratic extension F9/F3. Over F3,

X9 −X = X(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X2 −X − 1).

In F×9 , there are 4 = ϕ(8) elements of order 8 (the four roots of Φ8) which
have degree 2 over F3. There are two elements of order 4, which are the
roots of Φ4; they are also the squares of the elements of order 8 and they
have degree 2 over F3, their square is −1. There is one element of order
2, namely −1, and one of order 1, namely 1. From (96), it follows that
N3(2) = 3: the three monic irreducible polynomials of degree 2 over F3 are
Φ4 and the two irreducible factors of Φ8.

Since [F9 : F3] = 2, there are two automorphisms of F9, namely the
identity and Frob3. Let ζ be a root of X2 + X − 1 and let η = ζ−1. Then
η = ζ7, η3 = ζ5 and

X2 +X − 1 = (X − ζ)(X − ζ3), X2 −X − 1 = (X − η)(X − η3).

We have
F9 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7}

and also
F9 = {0, 1, η, η2, η3, η4, η5, η6, η7}.

The element ζ4 = η4 = −1 is the element of order 2 and degree 1, and the
two elements of order 4 (and degree 2), roots of X2 + 1, are ζ2 = η6 and
ζ6 = η2.

Exercise 103. Check that 3 has order 5 modulo 11 and that

X11 − 1 = (X − 1)(X5 −X3 +X2 −X − 1)(X5 +X4 −X3 +X2 − 1)

is the decomposition of X11 − 1 into irreducible factors over F3.
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Exercise 104. Check that 2 has order 11 modulo 23 and that X23− 1 over
F2 is the product of three irreducible polynomials, namely X − 1,

X11 +X10 +X6 +X5 +X4 +X2 + 1

and
X11 +X9 +X7 +X6 +X5 +X + 1.

Example. Assume that q is odd and consider the polynomial Φ4(X) =
X2 + 1. Corollary 100 implies:

• If q ≡ 1 mod 4, then X2 + 1 has two roots in Fq.

• If q ≡ −1 mod 4, then X2 + 1 is irreducible over Fq.

Example. Assume again that q is odd and consider the polynomial Φ8(X) =
X4 + 1.

• If q ≡ 1 mod 8, then X4 + 1 has four roots in Fq.

• Otherwise X4+1 is a product of two irreducible polynomials of degree
2 in Fq[X].

For instance, Example 4.3 gives over F3

X4 + 1 = (X2 +X − 1)(X2 −X − 1).

Using Example 4.3, one deduces that in the decomposition of X8 − 1 over
Fq, there are

8 linear factors if q ≡ 1 mod 8,
4 linear factors and 2 quadratic factors if q ≡ 5 mod 8,
2 linear factors and 3 quadratic factors if q ≡ −1 mod 4.

Exercise 105. Check that the polynomial X4 + 1 is irreducible over Q but
that it is reducible over Fp for all prime numbers p.

Example. The group (Z/5Z)× is cyclic of order 4, there are ϕ(4) = 2
generators which are the classes of 2 and 3. Hence,

• If q ≡ 2 or 3 mod 5, then Φ5 is irreducible in Fq[X],

• If q ≡ 1 mod 5, then Φ5 has 4 roots in Fq,

• If q ≡ −1 mod 5, then Φ5 splits as a product of two irreducible poly-
nomials of degree 2 in Fq[X].

70



Exercise 106. Let Fq be a finite field with q elements. What are the
degrees of the irreducible factors of the cyclotomic polynomial Φ15 over Fq?
For which values of q is Φ15 irreducible over Fq?

Exercise 107. Let p be a prime number, r a positive integer, q = pr.
Denote by Fq2 a field with q2 elements.
(a) Consider the homomorphism of multiplicative groups F×

q2
−→ F×

q2
which

maps x to xq−1. What is the kernel? What is the image?
(b) Show that there exists α ∈ Fq2 such that αq−1 is not in Fq. Deduce that
(α, αq) is a basis of the Fq–vector space Fq2 .

Decomposition of Φn into irreducible factors over Fq

As usual, we assume gcd(n, q) = 1. Theorem 98 tells us that Φn is
product of irreducible polynomials over Fq all of the same degree d. Denote
by G the multiplicative group (Z/nZ)×. Then d is the order of q in G. Let
H be the subgroup of G generated by q:

H = {1, q, q2, . . . , qd−1}.

Let ζ be any root of Φn (in an algebraic closure of Fq, or if you prefer in
the splitting field of Φn(X) over Fq). Then the conjugates of ζ over Fq are
its images under the iterated Frobenius Frobq which maps x to xq. Hence,
the minimal polynomial of ζ over Fq is

PH(X) =
d−1∏
i=0

(X − ζqi) =
∏
h∈H

(X − ζh).

This is true for any root ζ of Φn. Now fix one of them. Then the others are
ζm where gcd(m,n) = 1. The minimal polynomial of ζm is, therefore,

d−1∏
i=0

(X − ζmqi).

This polynomial can be written

PmH(X) =
∏

h∈mH
(X − ζh)

where mH is the class {mqi | 0 ≤ i ≤ d− 1} of m modulo H in G. There
are ϕ(n)/d classes of G modulo H, and the decomposition of Φd(X) into
irreducible factors over Fq is

Φd(X) =
∏

mH∈G/H

PmH(X).
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Factors of Xn − 1 in Fq[X]
Again we assume gcd(n, q) = 1. We just studied the decomposition over Fq

of the cyclotomic polynomials, and Xn − 1 is the product of the Φd(X) for
d dividing n. This gives all the information on the decomposition of Xn− 1
in Fq[X]. Proposition 108 below follows from these results, but is also easy
to prove directly.

Let ζ be a primitive n-th root of unity in an extension F of Fq. Recall
that for j in Z, ζj depends only on the classe of j modulo n. Hence, ζi

makes sense when i is an element of Z/nZ:

Xn − 1 =
∏

i∈Z/nZ

(X − ζi).

For each subset I of Z/nZ, define

QI(X) =
∏
i∈I

(X − ζi).

For I ranging over the 2n subsets of Z/nZ, we obtain all the monic divisors
of Xn− 1 in F [X]. Lemma 73 implies that QI belongs to Fq[X] if and only
if QI(X

q) = QI(X)q.
Since q and n are relatively prime, the multiplication by q, which we

denote by [q], defines a permutation of the cyclic group Z/nZ:

Z
[q]−−−→ Zy y

Z/nZ
[q]−−−→ Z/nZ

x 7−→ qx.

The condition QI(X
q) = QI(X)q is equivalent to saying that [q](I) = I,

which means that multiplication by q induces a permutation of the elements
in I. We will say for brevity that a subset I of Z/nZ with this property is
stable under multiplication by q. Therefore:

Proposition 108. The map I 7→ QI is a bijective map between the subsets
I of Z/nZ which are stable under multiplication by q on the one hand, and
the monic divisors of Xn − 1 in Fq[X] on the other hand.

An irreducible factor of Xn−1 over Fq is a factor Q such that no proper
divisor of Q has coefficients in Fq. Hence,
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Corollary 109. Under this bijective map, the irreducible factors of Xn− 1
correspond to the minimal subsets I of Z/nZ which are stable under multi-
plication by q.

Here are some examples:

• For I = ∅, Q∅ = 1.

• For I = Z/nZ, QZ/nZ = Xn − 1.

• For I = (Z/nZ)×, Q(Z/nZ)× = Φn.

• For I = {0}, Q0(X) = X − 1.

• If n is even (and q odd, of course), then for I = {n/2}, Q{n/2}(X) =
X + 1.

• Let d be a divisor of n. There is a unique subgroup Cd of order d
in the cyclic group Z/nZ. This subgroup is generated by the class of
n/d, it is the set of k ∈ Z/nZ such that dk = 0, it is stable under
multiplication by any element prime to n. Then QCd

(X) = Xd − 1.

• Let again d be a divisor of n and let Ed be the set of generators of
Cd: this set has ϕ(d) elements which are the elements of order d in
the cyclic group Z/nZ. Again this subset of Z/nZ is stable under
multiplication by any element prime to n. Then QEd

is the cyclotomic
polynomial Φd of degree ϕ(d).

Example. The field F16, quartic extension of F2. Take n = 15, q = 2.
The minimal subsets of Z/15Z which are stable under multiplication by 2
modulo 15 are the classes of

{0}, {5, 10}, {3, 6, 9, 12}, {1, 2, 4, 8}, {7, 11, 13, 14}.

We recover the fact that in the decomposition

X15 − 1 = Φ1(X)Φ3(X)Φ5(X)Φ15(X)

over F2, the factor Φ1 is irreducible of degree 1, the factors Φ3 and Φ5 are
irreducible of degree 2 and 4 respectively, while Φ15 splits into two factors
of degree 4 (use the fact that 2 has order 2 modulo 3, order 4 modulo 5 and
also order 4 modulo 15).

It is easy to find the two factors of Φ15 of degree 4 over F2. There are
four polynomials of degree 4 over F2 without roots in F2 (the number of
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monomials with coefficient 1 should be odd, hence should be 3 or 5) and
Φ2
3 = X4+X2+1 is reducible; hence, there are three irreducible polynomials

of degree 4 over F2:

X4 +X3 + 1, X4 +X + 1, Φ5(X) = X4 +X3 +X2 +X + 1.

Therefore, in F2[X],

Φ15(X) = (X4 +X3 + 1)(X4 +X + 1).

We check the result by computing Φ15: we divide (X15 − 1)/(X5 − 1) =
X10 +X5 + 1 by Φ3(X) = X2 +X + 1 and get in Z[X]:

Φ15(X) = X8 −X7 +X5 −X4 +X3 −X + 1.

Let ζ is a primitive 15-th root of unity (that is, a root of Φ15). Then
ζ15 = 1 is the root of Φ1, ζ

5 and ζ10 are the roots of Φ3 (these are the
primitive cube roots of unity, they belong to F4), while ζ3, ζ6, ζ9, ζ12 are the
roots of Φ5 (these are the primitive 5-th roots of unity). One of the two
irreducible factors of Φ15 has the roots ζ, ζ2, ζ4, ζ8, the other has the roots
ζ7, ζ11, ζ13, ζ14. Also, we have

{ζ7, ζ11, ζ13, ζ14} = {ζ−1, ζ−2, ζ−4, ζ−8}.

The splitting field over F2 of any of the three irreducible factors of degree
4 of X15 − 1 is the field F16 with 24 elements, but for one of them (namely
Φ5) the 4 roots have order 5 in F×16, while for the two others the roots have
order 15.

Hence, we have checked that in F×16, there are

• 1 element of order 1 and degree 1 over F2, namely {1} ⊂ F2,

• 2 elements of order 3 and degree 2 over F2, namely {ζ5, ζ10} ⊂ F4,

• 4 elements of order 5 and degree 4 over F2, namely {ζ3, ζ6, ζ9, ζ12},

• 8 elements of order 15 and degree 4 over F2.

Example. The field F27, cubic extension of F3. Let us write, in
F3[X],

X27 −X = X(X13 − 1)(X13 + 1),

X13 + 1 = (X + 1)f1f2f3f4, X13 − 1 = (X − 1)f5f6f7f8
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with fi of degree 3. The roots of f1, f2, f3, f4 are the 12 = ϕ(26) generators
of the cyclic group F×27 = C26, the roots of f5, f6, f7, f8 are the 12 = ϕ(13)
elements of order 13 which generate the unique cyclic subgroup of F×27 of
order 13, the root of X + 1 is the unique element of order 2.

We are going to exhibit the set {f1, . . . , f8} by looking at the degree 3
irreducible polynomials over F3. We will first describe the set {f1, . . . , f4}.
Then we can take f4+i(X) = −fi(−X) (replace X2j by −X2j and keep the
sign for X2j+1).

In order to get the decomposition of X13 + 1, we write the table of
discrete logarithms for F27. We need a generator. One among 4 solutions is
to take a root α of X3 −X + 1.
Exercise: check α13 = −1.
Hint. Check α3 = α− 1, α9 = α3 − 1 = α+ 1, α12 = α2 − 1.

Hence the roots of X3 − X + 1 are α, α3 = α − 1 and α9 = α + 1.
We deduce that the roots of the reciprocal polynomial X3 + X2 + 1 are
α−1 = α19 − α2 − α− 1, α−3 = α23 = −α− 1 and α−9 = α17 = −α2 + α.

We compute the irreducible polynomial of α7 = α2−α−1, which is also
the irreducible polynomial of α21 = α2 + 1 and of α63 = α11 = α2 + α + 1,
we find X3 +X2 −X + 1.

The irreducible polynomial of α5 = α−21 = −α2+α+1, which is also the
irreducible polynomial of α15 = α−11 = 2α2 and of α45 = α19 = α7 = −α2−
α−1 is the reciprocal polynomial of the previous one, namelyX3−X2+X+1.

Therefore

X13+1 = (X+1)(X3−X+1)(X3−X2+1)(X3+X2−X+1)(X3−X2+X+1).

The roots of X3 −X + 1 are α, α3, α9.
The roots of X3 −X2 + 1 are α−1 = α25, α−3 = α23, α−9 = α17

The roots of X3 +X2 −X + 1 are α7, α21, α11

The roots of X3 −X2 +X + 1 are α−7 = α19, α−21 = α5, α−11 = α15.
This gives the list of 12 generators of F×27.

The twelve elements of order 13 in F×27 are the roots of (X13−1)/(X−1),
where

X13−1 = (X−1)(X3−X−1)(X3−X2−1)(X3−X2−X−1)(X3+X2+X−1).

Exercise: give the list of the three roots of each of the four factors of (X13−
1)/(X − 1) over F3.
Hint: consider the change of variable x 7→ −x using −1 = α13.
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Exercise 110. Let Fq be a finite field with q elements of characteristic p.
Show that the following conditions are equivalent.
(i) Any element α in Fq such that Fq = Fp(α) is a generator of the cyclic
group F×q .
(ii) The number q − 1 is a prime number.

4.4 Trace and Norm

Let F be a finite field with q elements and let E be a finite extension of
degree s of F . For α ∈ E, the norm of α from E to F is the product of the
conjugates of α over F , while the trace of α from E to F is the sum of the
conjugates:

NE/F (α) =

s−1∏
i=0

Frobiq(α) = α(qs−1)/(q−1), TrE/F (α) =

s−1∑
i=0

Frobiq(α) =

s−1∑
i=0

αq
i
.

For α ∈ F , we have NE/F (α) = αs and TrE/F (α) = sα. The norm NE/F

induces a surjective morphism from E× onto F×. The trace TrE/F is a F–
linear surjective map from E onto F , the kernel of which is the set of roots
of the polynomial X +Xq + · · ·+Xqs−1

.

Exercise 111. (a) Let F be a finite field, E a finite extension of F and α
a generator of the cyclic group E×. Check that NE/F (α) is a generator of
the cyclic group F×.
(b) Deduce that the norm NE/F induces a surjective morphism from E×

onto F×.
(c) Given extensions of finite fields K ⊂ F ⊂ E, check NE/K = NE/F ◦NF/K .
(d) For x ∈ F , define

( a
F

)
=


0 if a = 0

1 if a is a non–zero square in F

−1 if a is not a square in F .

Hence Legendre symbol (Exercise 65) is(
a

p

)
=

(
α

Fp

)
for a ∈ Z and α = a (mod p) ∈ Fp. Check that if F has q elements with q
odd, then, for a ∈ F , ( a

F

)
= a(q−1)/2.
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Deduce, for a ∈ E, ( a
E

)
=

(
NE/F (a)

F

)
·

Exercise 112. The field F16, quadratic extension of F4.
Write F4 = F2(j) with j root of X2 +X + 1.

(1) List the irreducible polynomials of degree 2 over F4.
(2) Decompose the 6 irreducible polynomials of F2 of degree 4 into irre-
ducible factors of degree 2 over F2.
(Explain why it should be so)
(3) Select a generator of F×16 and an irreducible polynomial of degree 2 over
F4 of which α is a root in F16. Write the discrete logarithm table of F×16
with basis α. For each of the 15 elements αk with 0 ≤ k ≤ 14, tell which
one is the irreducible polynomial of αk.

Exercise 113. Let Fq be a finite field of odd characteristic p with q = pr

elements.
(a) Check −1 is a square if and only if q ≡ 1 mod 4.
(b) Assume p ≡ −1 mod 4. Let i be a root of X2 + 1 in Fp2 . For a and b
in Fp, check

(a+ ib)p = a− ib.

(Automorphisms of Fp2).
(c) Let p be a Mersenne prime, p = 2` − 1 with ` prime. Check that for a
and b in Fp, a+ ib is a generator of the cyclic group F×

p2
if and only if a2 +b2

is a generator of the cyclic group F×p .

4.5 Infinite Galois theory

Let p be a prime number. For each pair (n,m) of positive integers such that
n divides m, there exists a field homomorphism from Fpn into Fpm . Such a
morphism is not unique if n < m: if we compose it with the Frobenius over
Fp, we get another one. For each n|m, we choose one of them, say ιn,m,
which allow us to consider Fpn as a subfield of Fpm .Then one checks that
the union of the increasing family of fields Fpn! is an algebraic closure of Fp.

Let Fp be an algebraic closure of Fp. The extension Fp/Fp is algebraic,
infinite, normal and separable: it is an infinite Galois extension. Its Galois
group Gal(Fp/Fp) is the group of automorphisms of Fp. It is the projective
limit of the Galois groups of the finite extensions of Fp contained in Fp/Fp:

Gal(Fp/Fp) = lim←−
[L:Fp]<∞

Gal(L/Fp).
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This group Gal(Fp/Fp) is

Ẑ := lim←−
n→∞

Z/nZ.

The projective limite is the set of (an)n≥1 in the Cartesian product
∏
n≥1 Z/nZ

which satisfy snm(an) = am for all pairs of positive integers (n,m) where m
divides n, where

sn,m : Z/nZ −→ Z/mZ

lis the canonical surjective morphism.
We also have

Ẑ :=
∏
p

Zp avec Zp = lim←−
r→∞

Z/prZ.

See, for instance, [5] exercise 19 p. 635. and [7] Appendice.
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