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Abstract

Problems in number theory are sometimes easy to state and
often very hard to solve. We survey some of them.
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Extended abstract

We start with prime numbers. The twin prime conjecture
and the Goldbach conjecture are among the main challenges.

The largest known prime numbers are Mersenne numbers.
Are there infinitely many Mersenne (resp. Fermat) prime
numbers ?
Mersenne prime numbers are also related with perfect
numbers, a problem considered by Euclid and still unsolved.

One the most famous open problems in mathematics is
Riemann’s hypothesis, which is now more than 150 years old.
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Extended abstract (continued)

Diophantine equations conceal plenty of mysteries.
Fermat’s Last Theorem has been proved by A. Wiles, but
many more questions are waiting for an answer. We discuss a
conjecture due to S.S. Pillai, as well as the abc-Conjecture of
Oesterlé–Masser.

Kontsevich and Zagier introduced the notion of periods
and suggested a far reaching statement which would solve a
large number of open problems of irrationality and
transcendence.

Finally we discuss open problems (initiated by E. Borel in
1905 and then in 1950) on the decimal (or binary) expansion
of algebraic numbers. Almost nothing is known on this topic.
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Hilbert’s 8th Problem

August 8, 1900

David Hilbert (1862 - 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis
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The seven Millennium Problems

The Clay Mathematics Institute (CMI)
Cambridge, Massachusetts http://www.claymath.org

7 million US$ prize fund for the solution to these problems,
with 1 million US$ allocated to each of them.

Paris, May 24, 2000 :
Timothy Gowers, John Tate and Michael Atiyah.

• Birch and Swinnerton-Dyer Conjecture
• Hodge Conjecture
• Navier-Stokes Equations
• P vs NP
• Poincaré Conjecture
• Riemann Hypothesis
• Yang-Mills Theory
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Numbers

Numbers = real or complex numbers R, C.

Natural integers : N = {0, 1, 2, . . .}.

Rational integers : Z = {0,±1,±2, . . .}.
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Prime numbers
Numbers with exactly two divisors.
There are 25 prime numbers less than 100 :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

The On-Line Encyclopedia of Integer Sequences
http://oeis.org/A000040

Neil J. A. Sloane
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Composite numbers
Numbers with more than two divisors :

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, . . .

http://oeis.org/A002808

The composite numbers : numbers n of the form x · y for
x > 1 and y > 1.
There are 73 composite numbers less than 100.
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Euclid of Alexandria
(about 325 BC – about 265 BC)

Given any finite collection p1, . . . , pn of primes, there is one
prime which is not in this collection.
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Euclid numbers and Primorial primes

Set p#n = 2 · 3 · 5 · · · pn.
Euclid numbers are the numbers of the form p

#
n + 1.

p
#
n + 1 is prime for n = 0, 1, 2, 3, 4, 5, 11, . . . (sequence
A014545 in the OEIS).

23 prime Euclid numbers are known, the largest known of
which is p#33237 + 1 with 169 966 digits.

Primorial primes are prime numbers of the form p
#
n � 1.

p
#
n � 1 is prime for n = 2, 3, 5, 6, 13, 24, . . . (sequence
A057704 in the OEIS).

20 primorial prime are known, the largest known of which is
p
#
85586 � 1 with 476 311 digits.
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Largest explicitly known prime numbers

January 2019 : 282 589 933 � 1 decimal digits 24, 862, 048

January 2018 : 277 232 917 � 1 decimal digits 23 249 425

January 2016 : 274 207 281 � 1 decimal digits 22 338 618

February 2013 : 257 885 161 � 1 decimal digits 17 425 170

August 2008 : 243 112 609 � 1 decimal digits 12 978 189

June 2009 : 242 643 801 � 1 decimal digits 12 837 064

September 2008 : 237 156 667 � 1 decimal digits 11 185 272
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Large prime numbers

Among the 13 largest explicitly known prime numbers, 12 are
of the form 2

p � 1.
The 9th is 10 223 · 231 172 165 + 1 found in 2016.

One knows (as of January 2019)
• 428 prime numbers with more than 1 000 000 decimal

digits
• 2296 prime numbers with more than 500 000 decimal

digits

List of the 5 000 largest explicitly known prime numbers :
http://primes.utm.edu/largest.html

51 prime numbers of the form of the form 2
p � 1 are known

http://www.mersenne.org/
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Marin Mersenne

(1588 – 1648)
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Mersenne prime numbers

If a number of the form 2
k � 1 is prime, then k itself is prime.

A prime number of the form 2
p � 1 is called a Mersenne prime.

50 of them are known, among them 11 of the 12 largest are
also the largest explicitly known primes.

The smallest Mersenne primes are

3 = 2
2 � 1, 7 = 2

3 � 1 31 = 2
5 � 1, 127 = 2

7 � 1.

Are there infinitely many Mersenne primes ?
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Mersenne prime numbers

In 1536, Hudalricus Regius noticed that 211 � 1 = 2 047 is not
a prime number : 2 047 = 23 · 89.

In the preface of Cogitata Physica-Mathematica (1644),
Mersenne claimed that the numbers 2n � 1 are prime for

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257

and that they are composite for all other values of n < 257.

The correct list is

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

http://oeis.org/A000043
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Perfect numbers

A number is called perfect if it is equal to the sum of its
divisors, excluding itself.
For instance 6 is the sum 1 + 2 + 3, and the divisors of 6 are
1, 2, 3 and 6.
In the same way, the divisors of 28 are 1, 2, 4, 7, 14 and 28.
The sum 1 + 2 + 4 + 7 + 14 is 28, hence 28 is perfect.

Notice that 6 = 2 · 3 and 3 is a Mersenne prime 2
2 � 1.

Also 28 = 4 · 7 and 7 is a Mersenne prime 2
3 � 1.

Other perfect numbers :

496 = 16 · 31 with 16 = 2
4
, 31 = 2

5 � 1,

8128 = 64 · 127 and 64 = 2
6
, 127 = 2

7 � 1, . . .
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Perfect numbers

Euclid, Elements, Book IX : numbers of the form
2
p�1 · (2p � 1) with 2

p � 1 a (Mersenne) prime (hence p is
prime) are perfect.

Euler (1747) : all even perfect numbers are of this form.

Sequence of perfect numbers :
6, 28, 496, 8 128, 33 550 336, . . .

http://oeis.org/A000396

Are there infinitely many even perfect numbers ?

Do there exist odd perfect numbers ?
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Fermat numbers

Fermat numbers are the numbers Fn = 2
2n

+ 1.

Pierre de Fermat (1601 – 1665)
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Fermat primes

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 are prime
http://oeis.org/A000215

They are related with the construction of regular polygons
with ruler and compass.

Fermat suggested in 1650 that all Fn are prime

Euler : F5 = 2
32
+ 1 is divisible by 641

4294967297 = 641 · 6700417

20 / 109



Fermat primes

F5 = 2
32
+ 1 is divisible by 641

641 = 5
4
+ 2

4
= 5 · 27 + 1

5
4 ⌘ �2

4
(mod 641),

5 · 27 ⌘ �1 (mod 641),
5
4
2
28 ⌘ 1 (mod 641),

2
32 ⌘ �1 (mod 641).

Are there infinitely many Fermat primes ? Only five are known.
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Twin primes

Conjecture : there are infinitely many primes p such that p+ 2

is prime.

Examples : 3, 5, 5, 7, 11, 13, 17, 19,. . .

More generally : is every even integer (infinitely often) the
di↵erence of two primes ? of two consecutive primes ?

Largest known example of twin primes (found in Sept. 2016)
with 388 342 decimal digits :

2 996 863 034 895 · 21 290 000 ± 1

http://primes.utm.edu/
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Conjecture (Hardy and Littlewood, 1915)

Twin primes

The number of primes p  x such that p+ 2 is prime is

⇠ C
x

(log x)2

where

C =

Y

p�3

p(p� 2)

(p� 1)2
⇠ 0.660 16 . . .
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Circle method

Srinivasa Ramanujan
(1887 – 1920)

G.H. Hardy
(1877 – 1947)

J.E. Littlewood
(1885 – 1977)

Hardy, ICM Stockholm, 1916
Hardy and Ramanujan (1918) : partitions
Hardy and Littlewood (1920 – 1928) :

Some problems in Partitio Numerorum
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Small gaps between primes
In 2013, Yitang Zhang proved that infinitely many gaps
between prime numbers do not exceed 70 · 106.

Yitang Zhang
(1955 - )

http://en.wikipedia.org/wiki/Prime_gap

Polymath8a, July 2013 : 4680
James Maynard, November 2013 : 576
Polymath8b, December 2014 : 246
EMS Newsletter December 2014 issue 94 p. 13–23.
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No large gaps between primes

Bertrand’s Postulate. There is always a prime between n and
2n.
Chebychev (1851) :

0.8
x

log x
 ⇡(x)  1.2

x

log x
·

Joseph Bertrand
(1822 - 1900)

Pafnuty Lvovich Chebychev
(1821 – 1894)
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Legendre question (1808)

Question : Is there always a prime between n
2 and (n+ 1)

2 ?

Adrien-Marie Legendre
(1752 - 1833)

This caricature is the only known portrait of Adrien-Marie
Legendre.
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Louis Legendre

Louis Legendre
(ca. 1755–1797)

http://www.ams.org/notices/200911/rtx091101440p.pdf

http://www.numericana.com/answer/record.htm
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Leonhard Euler (1707 – 1783)

For s > 1,

⇣(s) =

Y

p

(1� p
�s
)
�1

=

X

n�1

1

ns
.

For s = 1 :

X

p

1

p
= +1.
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Johann Carl Friedrich Gauss (1777 – 1855)

Let pn be the n-th prime. Gauss introduces

⇡(x) =

X

px

1

He observes numerically

⇡(t+ dt)� ⇡(t) ⇠ dt

log t

Define the density d⇡ by

⇡(x) =

Z x

0

d⇡(t).

Problem : estimate from above

E(x) =

����⇡(x)�
Z x

0

dt

log t

���� .
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Plot
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Riemann 1859 Critical strip, critical line

⇣(s) = 0

with 0 < <e(s) < 1

implies
<e(s) = 1/2.
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Riemann Hypothesis

Certainly one would wish for a stricter proof here ; I
have meanwhile temporarily put aside the search for
this after some fleeting futile attempts, as it appears
unnecessary for the next objective of my
investigation.

Über die Anzahl der Primzahlen unter einer gegebenen Grösse.
(Monatsberichte der Berliner Akademie, November 1859)

Bernhard Riemann’s Gesammelte Mathematische Werke und
Wissenschaftlicher Nachlass’, herausgegeben under Mitwirkung
von Richard Dedekind, von Heinrich Weber. (Leipzig : B. G.
Teubner 1892). 145–153.

http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/
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Small Zeros of Zeta

Infinitely many zeroes on the
critical line : Hardy 1914

First 1013 zeroes :
Gourdon – Demichel

34 / 109

Riemann Hypothesis
Riemann Hypothesis is equivalent to :

E(x)  Cx
1/2

log x

for the remainder

E(x) =

����⇡(x)�
Z x

0

dt

log t

���� .

Let Even(N) (resp. Odd(N)) denote the number of positive
integers  N with an even (resp. odd) number of prime
factors, counting multiplicities. Riemann Hypothesis is also
equivalent to

|Even(N)�Odd(N)|  CN
1/2

.
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Prime Number Theorem : ⇡(x) ' x/ log x
Jacques Hadamard Charles de la Vallée Poussin
(1865 – 1963) (1866 – 1962)

1896 : ⇣(1 + it) 6= 0 for t 2 R \ {0}.
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Prime Number Theorem : pn ' n log n

Elementary proof of the Prime Number Theorem (1949)

Paul Erdős
(1913 - 1996)

Atle Selberg
(1917 – 2007)
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Goldbach’s Conjecture

Christian Goldbach
(1690 – 1764)

Leonhard Euler
(1707 – 1783)

Letter of Goldbach
to Euler, 1742 :
any integer � 6 is
sum of 3 primes.

Euler : Equivalent
to :

any even integer greater than 2 can be expressed as the sum
of two primes.

Proof :
2n = p+ p

0
+ 2 ()2n+ 1 = p+ p

0
+ 3.
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Sums of two primes

4 = 2 + 2 6 = 3 + 3

8 = 5 + 3 10 = 7 + 3

12 = 7 + 5 14 = 11 + 3

16 = 13 + 3 18 = 13 + 5

20 = 17 + 3 22 = 19 + 3

24 = 19 + 5 26 = 23 + 3

...
...
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Circle method

Hardy and Littlewood Ivan Matveevich Vinogradov
(1891 – 1983)

Every su�ciently large odd
integer is the sum of at most
three primes.

40 / 109



Sums of primes

Theorem – I.M. Vinogradov (1937)
Every su�ciently large odd integer is a sum of three primes.

Theorem – Chen Jing-Run (1966)
Every su�ciently large even integer is a sum of a prime and an
integer that is either a prime or a product of two primes.

Ivan Matveevich Vinogradov
(1891 – 1983)

Chen Jing Run
(1933 - 1996)

41 / 109

Sums of primes

• 27 is neither prime nor a sum of two primes

• Weak (or ternary) Goldbach Conjecture : every odd integer
� 7 is the sum of three odd primes.

• Terence Tao, February 4,
2012, arXiv:1201.6656 :
Every odd number greater
than 1 is the sum of at most
five primes.
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Ternary Goldbach Problem
Theorem – Harald Helfgott (2013).
Every odd number greater than 5 can be expressed as the sum
of three primes.
Every odd number greater than 7 can be expressed as the sum
of three odd primes.

Harald Helfgott
(1977- )

Earlier results due to Hardy and Littlewood (1923),
Vinogradov (1937), Deshouillers et al. (1997), and more
recently Ramaré, Kaniecki, Tao . . .
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Lejeune Dirichlet (1805 – 1859)

Prime numbers in arithmetic progressions.

a, a+ q, a+ 2q, a+ 3q, . . .

1837 :
For gcd(a, q) = 1,

X

p⌘a (mod q)

1

p
= +1.
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Arithmetic progressions : van der Waerden

Theorem – B.L. van der Waerden (1927).
If the integers are coloured using finitely many colours, then
one of the colour classes must contain arbitrarily long
arithmetic progressions.

Bartel Leendert van der Waerden
(1903 - 1996)
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Arithmetic progressions : Erdős and Turán

Conjecture – P. Erdős and P. Turán (1936).
Any set of positive integers for which the sum of the
reciprocals diverges should contain arbitrarily long arithmetic
progressions.

Paul Erdős
(1913 - 1996)

Paul Turán
(1910 - 1976)
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Arithmetic progressions : E. Szemerédi

Theorem – E. Szemerédi (1975).
Any subset of the set of integers of positive density contains
arbitrarily long arithmetic progressions.

Endre Szemerédi
(1940 - )
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Primes in arithmetic progression

Theorem – B. Green and T. Tao (2004).
The set of prime numbers contains arbitrarily long arithmetic
progressions.

Barry Green Terence Tao
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Further open problems on prime numbers
Euler : are there infinitely many primes of the form x

2
+ 1 ?

also a problem of Hardy – Littlewood and of Landau.

Conjecture of Bunyakovsky : prime values of one polynomial.

Schinzel hypothesis H : simultaneous prime values of several
polynomial.

Bateman – Horn conjecture : quantitative refinement (includes
the density of twin primes).

Viktor Bunyakovsky
(1804 – 1889)

Andrzej Schinzel
(1937 – )
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Diophantine Problems

Diophantus of Alexandria (250 ±50)
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Fermat’s Last Theorem x
n + y

n = z
n

Pierre de Fermat Andrew Wiles
1601 – 1665 1953 –

Solution in June 1993 completed in 1994
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S.Sivasankaranarayana Pillai (1901–1950)

Collected works of S. S. Pillai,
ed. R. Balasubramanian and
R. Thangadurai, 2010.

http ://www.geocities.com/thangadurai�kr/PILLAI.html
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Square, cubes. . .

• A perfect power is an integer of the form a
b where a � 1

and b > 1 are positive integers.

• Squares :

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . . .

• Cubes :

1, 8, 27, 64, 125, 216, 343, 512, 729, 1 000, 1 331, . . .

• Fifth powers :

1, 32, 243, 1 024, 3 125, 7 776, 16 807, 32 768, . . .
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Perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,

128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,

361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, . . .

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/A001597
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Consecutive elements in the sequence of perfect
powers

• Di↵erence 1 : (8, 9)

• Di↵erence 2 : (25, 27), . . .

• Di↵erence 3 : (1, 4), (125, 128), . . .

• Di↵erence 4 : (4, 8), (32, 36), (121, 125), . . .

• Di↵erence 5 : (4, 9), (27, 32),. . .
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Two conjectures

Eugène Charles Catalan (1814 – 1894)

Subbayya Sivasankaranarayana Pillai
(1901-1950)

• Catalan’s Conjecture : In the sequence of perfect powers,
8, 9 is the only example of consecutive integers.

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.
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Pillai’s Conjecture :

• Pillai’s Conjecture : In the sequence of perfect powers, the
di↵erence between two consecutive terms tends to infinity.

• Alternatively : Let k be a positive integer. The equation

x
p � y

q
= k,

where the unknowns x, y, p and q take integer values, all � 2,
has only finitely many solutions (x, y, p, q).
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Pillai’s conjecture

Pillai, S. S. – On the equation 2
x � 3

y
= 2

X
+ 3

Y , Bull.
Calcutta Math. Soc. 37, (1945). 15–20.
I take this opportunity to put in print a conjecture which I
gave during the conference of the Indian Mathematical Society
held at Aligarh.
Arrange all the powers of integers like squares, cubes etc. in
increasing order as follows :

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, . . .

Let an be the n-th member of this series so that a1 = 1,
a2 = 4, a3 = 8, a4 = 9, etc. Then
Conjecture :

lim inf(an � an�1) = 1.
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Results

P. Mihăilescu, 2002.

Catalan was right : the
equation x

p � y
q
= 1 where

the unknowns x, y, p and q

take integer values, all � 2,
has only one solution
(x, y, p, q) = (3, 2, 2, 3).

Previous partial results : J.W.S. Cassels, R. Tijdeman,
M. Mignotte,. . .
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Higher values of k

There is no value of k > 1 for which one knows that Pillai’s
equation x

p � y
q
= k has only finitely many solutions.

Pillai’s conjecture as a consequence of the abc conjecture :

|xp � y
q| � c(✏)max{xp

, y
q}�✏

with

 = 1� 1

p
� 1

q
·
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The abc Conjecture

• For a positive integer n, we denote by

R(n) =

Y

p|n

p

the radical or the square free part of n.

• Conjecture (abc Conjecture). For each " > 0 there exists
(") such that, if a, b and c in Z>0 are relatively prime and
satisfy a+ b = c, then

c < (")R(abc)
1+"

.
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Poster with Razvan Barbulescu — Archives HAL

https://hal.archives-ouvertes.fr/hal-01626155
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The abc Conjecture of Œsterlé and Masser

The abc Conjecture resulted from a discussion between
J. Œsterlé and D. W. Masser around 1980.

M.W. On the abc conjecture and some of its consequences.

Mathematics in 21st Century, 6th World Conference, Lahore, March 2013,

(P. Cartier, A.D.R. Choudary, M. Waldschmidt Editors),

Springer Proceedings in Mathematics and Statistics 98 (2015), 211–230.
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Shinichi Mochizuki

INTER-UNIVERSAL
TEICHMÜLLER THEORY
IV :
LOG-VOLUME
COMPUTATIONS AND
SET-THEORETIC
FOUNDATIONS
by
Shinichi Mochizuki
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http://www.kurims.kyoto-u.ac.jp/⇠motizuki/

    

    

    

    

Shinichi Mochizuki@RIMS http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

1 sur 1 10/10/12 12:48
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Beal Equation x
p + y

q = z
r

Assume
1

p
+

1

q
+

1

r
< 1

and x, y, z are relatively prime

Only 10 solutions (up to obvious symmetries) are known

1 + 2
3
= 3

2
, 2

5
+ 7

2
= 3

4
, 7

3
+ 13

2
= 2

9
, 2

7
+ 17

3
= 71

2
,

3
5
+ 11

4
= 122

2
, 17

7
+ 76271

3
= 21063928

2
,

1414
3
+ 2213459

2
= 65

7
, 9262

3
+ 15312283

2
= 113

7
,

43
8
+ 96222

3
= 30042907

2
, 33

8
+ 1549034

2
= 15613

3
.
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Beal Conjecture and prize problem

“Fermat-Catalan” Conjecture (H. Darmon and A. Granville) :
the set of solutions (x, y, z, p, q, r) to x

p
+ y

q
= z

r with
gcd(x, y, z) = 1 and (1/p) + (1/q) + (1/r) < 1 is finite.

Consequence of the abc Conjecture. Hint:

1

p
+

1

q
+

1

r
< 1 implies

1

p
+

1

q
+

1

r
 41

42
·

Conjecture of R. Tijdeman, D. Zagier and A. Beal : there is no
solution to x

p
+ y

q
= z

r where gcd(x, y, z) = 1 and each of p,
q and r is � 3.
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Beal conjecture and prize problem

For a proof or a
counterexample published in a
refereed journal, A. Beal
initially o↵ered a prize of US
$ 5,000 in 1997, raising it to
$ 50,000 over ten years, but
has since raised it to US
$ 1,000,000.

R. D. Mauldin, A generalization of Fermat’s last theorem :
the Beal conjecture and prize problem, Notices Amer. Math.
Soc., 44 (1997), pp. 1436–1437.

http://www.ams.org/profession/prizes-awards/ams-supported/beal-prize
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Waring’s Problem

Edward Waring
(1736 - 1798)

In 1770, a few months before J.L. Lagrange
solved a conjecture of Bachet and Fermat
by proving that every positive integer is the
sum of at most four squares of integers,
E. Waring wrote :

“Every integer is a cube or the sum of two, three, . . . nine
cubes ; every integer is also the square of a square, or the sum
of up to nineteen such ; and so forth. Similar laws may be
a�rmed for the correspondingly defined numbers of quantities
of any like degree.”
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Theorem. (D. Hilbert, 1909)

For each positive integer k, there exists an integer g(k) such
that every positive integer is a sum of at most g(k) k-th
powers.
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Waring’s function g(k)

• Waring’s function g is defined as follows : For any integer
k � 2, g(k) is the least positive integer s such that any
positive integer N can be written x

k
1 + · · ·+ x

k
s .

• Conjecture (The ideal Waring’s Theorem) : For each integer
k � 2,

g(k) = 2
k
+ [(3/2)

k
]� 2.

• This is true for 3  k  471 600 000, and (K. Mahler) also
for all su�ciently large k.
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Evaluations of g(k) for k = 2, 3, 4, . . .

g(2)=4 Lagrange 1770
g(3)=9 Kempner 1912
g(4)=19 Balusubramanian,Dress,Deshouillers 1986
g(5)=37 Chen Jingrun 1964
g(6)=73 Pillai 1940
g(7)=143 Dickson 1936
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n = x
4
1
+ · · · + x

4
g
: g(4) = 19

Any positive integer is the
sum of at most 19 biquadrates
R. Balasubramanian,
J-M. Deshouillers,
F. Dress
(1986).

79 = 4⇥ 2
4
+ 15⇥ 1

5
.
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Waring’s Problem and the abc Conjecture

S. David : the ideal Waring
Theorem
g(k) = 2

k
+ [(3/2)

k
]� 2

follows from an explicit
solution of the abc

Conjecture.
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Baker’s explicit abc conjecture

Alan Baker Shanta Laishram
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Waring’s function G(k)

• Waring’s function G is defined as follows : For any integer
k � 2, G(k) is the least positive integer s such that any
su�ciently large positive integer N can be written
x
k
1 + · · ·+ x

k
s .

• G(k)  g(k).

• G(k) is known only in two cases : G(2) = 4 and G(4) = 16
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G(2) = 4

Joseph-Louis Lagrange
(1736–1813)

Solution of a conjecture of
Bachet and Fermat in 1770 :

Every positive integer is the
sum of at most four squares
of integers.

No integer congruent to �1 modulo 8 can be a sum of three
squares of integers.
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G(k)

Kempner (1912) G(4) � 16

16
m · 31 needs at least 16 biquadrates

Hardy Littlewood (1920) G(4)  21

circle method, singular series

Davenport, Heilbronn, Esterman (1936) G(4)  17

Davenport (1939) G(4) = 16

Yu. V. Linnik (1943) g(3) = 9, G(3)  7

Other estimates for G(k), k � 5 : Davenport, K. Sambasiva
Rao, V. Narasimhamurti, K. Thanigasalam, R.C. Vaughan,. . .
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Real numbers : rational, irrational

Rational numbers :
a/b with a and b rational integers, b > 0.

Irreducible representation :
p/q with p and q in Z, q > 0 and gcd(p, q) = 1.

Irrational number : a real number which is not rational.
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Complex numbers : algebraic, transcendental

Algebraic number : a complex number which is a root of a
non-zero polynomial with rational coe�cients.

Examples :
rational numbers : a/b, root of bX � a.p
2, root of X2 � 2.

i, root of X2
+ 1.

e
2i⇡/n, root of Xn � 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set Q of complex algebraic numbers is a field,
the algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.
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Inverse Galois Problem

Evariste Galois
(1811 – 1832)

A number field is a finite extension of Q.

Is any finite group G the
Galois group over Q of a number field ?

Equivalently :
The absolute Galois group of the field Q is the group
Gal(Q/Q) of automorphisms of the field Q of algebraic
numbers. The previous question amounts to deciding whether
any finite group G is a quotient of Gal(Q/Q).
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Periods : Maxime Kontsevich and Don Zagier

Periods,
Mathematics
unlimited—2001
and beyond,
Springer 2001,
771–808.

A period is a complex number whose real and imaginary parts
are values of absolutely convergent integrals of rational
functions with rational coe�cients, over domains in Rn given
by polynomial inequalities with rational coe�cients.
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The number ⇡
Period of a function :

f(z + !) = f(z).

Basic example :
e
z+2i⇡

= e
z

Connection with an integral :

2i⇡ =

Z

|z|=1

dz

z

The number ⇡ is a period :

⇡ =

Z Z

x2+y21

dxdy =

Z 1

�1

dx

1� x2
·
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Further examples of periods

p
2 =

Z

2x21

dx

and all algebraic numbers.

log 2 =

Z

1<x<2

dx

x

and all logarithms of algebraic numbers.
M. Kontsevich

⇡
2

6
= ⇣(2) =

X

n�1

1

n2
=

Z

1>t1>t2>0

dt1

t1
· dt2

1� t2
·

A product of periods is a period (subalgebra of C), but 1/⇡ is
expected not to be a period.
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Relations among periods

1 Additivity
(in the integrand and in the domain of integration)

Z b

a

�
f(x) + g(x)

�
dx =

Z b

a

f(x)dx+

Z b

a

g(x)dx,

Z b

a

f(x)dx =

Z c

a

f(x)dx+

Z b

c

f(x)dx.

2 Change of variables :
if y = f(x) is an invertible change of variables, then

Z f(b)

f(a)

F (y)dy =

Z b

a

F
�
f(x)

�
f
0
(x)dx.
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Relations among periods (continued)

3 Newton–Leibniz–Stokes Formula

Z b

a

f
0
(x)dx = f(b)� f(a).
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Conjecture of Kontsevich and Zagier

A widely-held belief, based on a
judicious combination
of experience, analogy,
and wishful thinking,
is the following

Conjecture (Kontsevich–Zagier). If a period has two integral
representations, then one can pass from one formula to
another by using only rules 1 , 2 , 3 in which all functions
and domains of integration are algebraic with algebraic
coe�cients.

87 / 109

Conjecture of Kontsevich and Zagier (continued)

In other words, we do not expect any miraculous
coincidence of two integrals of algebraic functions
which will not be possible to prove using three simple
rules.
This conjecture, which is similar in spirit to the
Hodge conjecture, is one of the central conjectures
about algebraic independence and transcendental
numbers, and is related to many of the results and
ideas of modern arithmetic algebraic geometry and
the theory of motives.
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Conjectures by S. Schanuel, A. Grothendieck
and Y. André

• Schanuel : if x1, . . . , xn are Q–linearly independent complex
numbers, then at least n of the 2n numbers x1, . . . , xn,
e
x1 , . . . , e

xn are algebraically independent.

• Periods conjecture by Grothendieck : Dimension of the
Mumford–Tate group of a smooth projective variety.

• Y. André : generalization to motives.
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S. Ramanujan, C.L. Siegel, S. Lang,
K. Ramachandra

Ramanujan : Highly composite numbers.

Alaoglu and Erdős (1944), Siegel,
Schneider, Lang, Ramachandra
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Four exponentials conjecture

Let t be a positive real number. Assume 2
t and 3

t are both
integers. Prove that t is an integer.

Equivalently :
If n is a positive integer such that

n
(log 3)/ log 2

is an integer, then n is a power of 2 :

2
k(log 3)/ log 2

= 3
k
.
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First decimals of
p
2 http://wims.unice.fr/wims/wims.cgi

1.41421356237309504880168872420969807856967187537694807317667973

799073247846210703885038753432764157273501384623091229702492483

605585073721264412149709993583141322266592750559275579995050115

278206057147010955997160597027453459686201472851741864088919860

955232923048430871432145083976260362799525140798968725339654633

180882964062061525835239505474575028775996172983557522033753185

701135437460340849884716038689997069900481503054402779031645424

782306849293691862158057846311159666871301301561856898723723528

850926486124949771542183342042856860601468247207714358548741556

570696776537202264854470158588016207584749226572260020855844665

214583988939443709265918003113882464681570826301005948587040031

864803421948972782906410450726368813137398552561173220402450912

277002269411275736272804957381089675040183698683684507257993647

290607629969413804756548237289971803268024744206292691248590521

810044598421505911202494413417285314781058036033710773091828693

1471017111168391658172688941975871658215212822951848847 . . .
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First binary digits of
p
2 http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000

10001011001011111011000100110110011011101010100101010111110100

11111000111010110111101100000101110101000100100111011101010000

10011001110110100010111101011001000010110000011001100111001100

10001010101001010111111001000001100000100001110101011100010100

01011000011101010001011000111111110011011111101110010000011110

11011001110010000111101110100101010000101111001000011100111000

11110110100101001111000000001001000011100110110001111011111101

00010011101101000110100100010000000101110100001110100001010101

11100011111010011100101001100000101100111000110000000010001101

11100001100110111101111001010101100011011110010010001000101101

00010000100010110001010010001100000101010111100011100100010111

10111110001001110001100111100011011010101101010001010001110001

01110110111111010011101110011001011001010100110001101000011001

10001111100111100100001001101111101010010111100010010000011111

00000110110111001011000001011101110101010100100101000001000100

110010000010000001100101001001010100000010011100101001010 . . .
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Computation of decimals of
p
2

1 542 decimals computed by hand by Horace Uhler in 1951

14 000 decimals computed in 1967

1 000 000 decimals in 1971

137 · 109 decimals computed by Yasumasa Kanada and
Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours
and 31 minutes.

• Motivation : computation of ⇡.
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Émile Borel (1871–1956)

• Les probabilités dénombrables et leurs applications
arithmétiques,
Palermo Rend. 27, 247-271 (1909).
Jahrbuch Database JFM 40.0283.01
http://www.emis.de/MATH/JFM/JFM.html

• Sur les chi↵res décimaux de
p
2 et divers problèmes de

probabilités en châınes,
C. R. Acad. Sci., Paris 230, 591-593 (1950).

Zbl 0035.08302
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Émile Borel : 1950

Let g � 2 be an integer and x

a real irrational algebraic
number. The expansion in
base g of x should satisfy
some of the laws which are
valid for almost all real
numbers (with respect to
Lebesgue’s measure).
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Conjecture of Émile Borel

Conjecture (É. Borel). Let x be an irrational algebraic real
number, g � 3 a positive integer and a an integer in the range
0  a  g � 1. Then the digit a occurs at least once in the
g–ary expansion of x.
Corollary. Each given sequence of digits should occur
infinitely often in the g–ary expansion of any real irrational
algebraic number.
(consider powers of g).

• An irrational number with a regular expansion in some base
g should be transcendental.
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The state of the art

There is no explicitly known example of a triple (g, a, x),
where g � 3 is an integer, a a digit in {0, . . . , g � 1} and x an
algebraic irrational number, for which one can claim that the
digit a occurs infinitely often in the g–ary expansion of x.

A stronger conjecture, also due to Borel, is that algebraic
irrational real numbers are normal : each sequence of n digits
in basis g should occur with the frequency 1/g

n, for all g and
all n.
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Complexity of the expansion in basis g of a real
irrational algebraic number

Theorem (B. Adamczewski, Y. Bugeaud 2005 ; conjecture of
A. Cobham 1968).
If the sequence of digits of a real number x is produced by a
finite automaton, then x is either rational or else
transcendental.
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Open problems (irrationality)

• Is the number

e+ ⇡ = 5.859 874 482 048 838 473 822 930 854 632 . . .

irrational ?
• Is the number

e⇡ = 8.539 734 222 673 567 065 463 550 869 546 . . .

irrational ?
• Is the number

log ⇡ = 1.144 729 885 849 400 174 143 427 351 353 . . .

irrational ?
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Catalan’s constant

Is Catalan’s constant
X

n�1

(�1)
n

(2n+ 1)2

= 0.915 965 594 177 219 015 0 . . .

an irrational number ?
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Special values of the Riemann zeta function

Leonhard Euler
(1707 – 1783)

Introductio in analysin
infinitorum (1748)

For any even integer value of
s � 2, the number

⇣(s) =

X

n�1

1

ns

is a rational multiple of ⇡s.

Examples : ⇣(2) = ⇡
2
/6, ⇣(4) = ⇡

4
/90, ⇣(6) = ⇡

6
/945,

⇣(8) = ⇡
8
/9450 · · ·

Coe�cients : Bernoulli numbers.
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Riemann zeta function

The number

⇣(3) =

X

n�1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational (Apéry 1978).

Recall that ⇣(s)/⇡s is rational for any even value of s � 2.

Open question : Is the number ⇣(3)/⇡3 irrational ?
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Riemann zeta function

Is the number

⇣(5) =

X

n�1

1

n5
= 1.036 927 755 143 369 926 331 365 486 457 . . .

irrational ?

T. Rivoal (2000) : infinitely many ⇣(2n+ 1) are irrational.

F. Brown (2014) : Irrationality proofs for zeta values, moduli
spaces and dinner parties arXiv:1412.6508

Moscow Journal of Combinatorics and Number Theory, 6 2–3
(2016), 102–165.
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Euler–Mascheroni constant

Lorenzo Mascheroni
(1750 – 1800)

Euler’s Constant is

�= lim
n!1

✓
1 +

1

2
+

1

3
+ · · ·+ 1

n
� log n

◆

= 0.577 215 664 901 532 860 606 512 090 082 . . .

Is it a rational number ?

�=

1X

k=1

✓
1

k
� log

✓
1 +

1

k

◆◆
=

Z 1

1

✓
1

[x]
� 1

x

◆
dx

= �
Z 1

0

Z 1

0

(1� x)dxdy

(1� xy) log(xy)
·
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Artin’s Conjecture
• Artin’s Conjecture (1927) : given an integer a which is not a
square nor �1, there are infinitely many p such that a is a
primitive root modulo p.
(+ Conjectural asymptotic estimate for the density).

(1967), C.Hooley : conditional proof for the conjecture,
assuming the Generalized Riemann hypothesis.

(1984), R. Gupta and M. Ram Murty : Artin’s conjecture is
true for infinitely many a

(1986) R. Heath-Brown : there are at most two exceptional
prime numbers a for which Artin’s conjecture fails.

For instance one out of 3, 5, and 7 is a primitive root modulo
p for infinitely many p.

There is not a single value of a for which the Artin conjecture
is known to hold.
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Other open problems

• Theory of partitions.

• Lehmer’s problem : Let ✓ 6= 0 be an algebraic integer of
degree d, and M(✓) =

Qd
i=1 max(1, |✓i|), where ✓ = ✓1 and

✓2, · · · , ✓d are the conjugates of ✓. Is there a constant c > 1

such that M(✓) < c implies that ✓ is a root of unity ?
c < 1.176280 . . . (Lehmer 1933).

• Marko↵ conjecture.

• Leopoldt’s conjecture.

• The Birch and Swinnerton–Dyer Conjecture

• Langlands program
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Collatz equation (Syracuse Problem)

Iterate

n 7�!
(
n/2 if n is even,

3n+ 1 if n is odd.

Is (4, 2, 1) the only cycle ?
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